metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Bis[bis­­(2,2′-bi­pyridine-κ2N,N′)chloridocopper(II)] bis­­(μ-2,6-pyridine­di­carboxyl­ato)-κ4O2,N,O6:O6;κ4O2:O2,N,O6-bis­­[aqua­di­chloridobismuthate(III)] penta­hydrate

aCollege of Chemistry and Pharmacy Engineering, Nanyang Normal University, Nanyang 473061, People's Republic of China, and bDepartment of Equipment and Lab Administration, Nanyang Normal University, Nanyang 473061, People's Republic of China
*Correspondence e-mail: yqfeng2008@126.com

(Received 17 October 2011; accepted 28 October 2011; online 2 November 2011)

In the title compound, [CuCl(C10H8N2)2]2[Bi2Cl4(C7H3NO4)2(H2O)2]·5H2O, the dianion [Bi2Cl4(C7H3NO4)2(H2O)2]2− is located about an inversion center. The CuII atom of the cation is coordinated by four N atoms of the two chelating 2,2′-bypyridine ligands and one Cl ion, completing a distorted trigonal–bipyramidal coordination environment. In the anion, each BiIII atom is seven-coordinate and is bonded to a tridentate pyridine-2,6-dicarboxyl­ate ligand, a water mol­ecule, two chloride ions and a bridging carboxyl­ate O atom of another carboxyl­ate ligand. The coordination geometry of BiIII is distorted penta­gonal–bipyramidal with the Cl ions located in axial positions. The structure of the dianion is additionally stabilized by an intra­molecular O—H⋯O hydrogen bond between the coordinated water mol­ecule and carboxyl­ate O atom. In the crystal, O—H⋯O hydrogen bonds occur . The H atoms of the solvent water mol­ecules could not be located.

Related literature

For examples of bis­muth(III) coordination compounds, see: Sun et al. (2004[Sun, H., Zhang, L. & Szeto, K. Y. (2004). Met. Ions Biol. Syst. 41, 333-378.]); Jiang et al. (2006[Jiang, Q. Y., Shen, J. & Zhong, G. Q. (2006). Chin. J. Prog. Chem. 18, 1634-1645.]); Meng & Zhang (2011[Meng, Z.-H. & Zhang, S.-S. (2011). Acta Cryst. E67, m1402-m1403.]).

[Scheme 1]

Experimental

Crystal data
  • [CuCl(C10H8N2)2]2[Bi2Cl4(C7H3NO4)2(H2O)2]·5H2O

  • Mr = 1838.72

  • Monoclinic, C 2/c

  • a = 22.880 (6) Å

  • b = 22.044 (6) Å

  • c = 13.628 (4) Å

  • β = 110.130 (4)°

  • V = 6454 (3) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 6.41 mm−1

  • T = 296 K

  • 0.18 × 0.16 × 0.15 mm

Data collection
  • Bruker APEXII CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2008[Bruker (2008). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.392, Tmax = 0.447

  • 16290 measured reflections

  • 5684 independent reflections

  • 4963 reflections with I > 2σ(I)

  • Rint = 0.025

Refinement
  • R[F2 > 2σ(F2)] = 0.025

  • wR(F2) = 0.063

  • S = 1.04

  • 5684 reflections

  • 408 parameters

  • 3 restraints

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.88 e Å−3

  • Δρmin = −0.74 e Å−3

Table 1
Selected bond lengths (Å)

Bi1—O3 2.297 (3)
Bi1—N1 2.385 (3)
Bi1—O1 2.485 (3)
Bi1—O5 2.531 (4)
Bi1—Cl2 2.6174 (15)
Bi1—Cl1 2.7479 (16)
Cl3—Cu1 2.2962 (14)
Cu1—N4 1.983 (3)
Cu1—N3 1.994 (4)
Cu1—N5 2.107 (3)
Cu1—N2 2.118 (4)

Table 2
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O5—H1⋯O3W 0.83 (2) 1.92 (3) 2.733 (7) 169 (11)
O5—H2⋯O2i 0.83 (2) 2.04 (6) 2.777 (5) 147 (10)
Symmetry code: (i) [-x, y, -z+{\script{3\over 2}}].

Data collection: APEX2 (Bruker, 2008[Bruker (2008). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2008[Bruker (2008). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

Increasing attention has been paid to bismuth(III) coordination compounds in recent years due to their fascinating structural architectures and potential applications. As an expansion of bismuth(III) coordination compounds, recently, we have successfully isolated a novel compound [Cu(C10H8N2)2Cl]2[Bi2(C7H3NO4)2(H2O)2Cl4].5H2O.

The title compound consists of the coordination cations [Cu(C10H8N2)2Cl]+, coordination dianions [Bi2(C7H3NO4)2(H2O)2Cl4]2- and solvent water molecules (Fig. 1). In coordination cation [Cu(C10H8N2)2Cl]+, the CuII center is coordinated by one Cl atom and four N atoms from two C10H8N2 ligands. In dianion [Bi2(C7H3NO4)2(H2O)2Cl4]2-, each BiIII center is coordinated by one N atom, two Cl atoms, three O atoms and one water molecule. It is worth noting that one of the carboxylate groups acts as bridging group between two Bi centers. The structure of the dianion is additionally stabilized by intramolecular hydrogen bonds [O5—H2···O2(-x,y,-z + 3/2) and O(5)—H(1)···O(3 W)]. There exist the electrostatic interactions between the coordination cations and dianions, the crystal packing of the title compound along the c axis is shown in Fig. 2. Obviously, these electrostatic interactions and hydrogen bonds play a crucial role in the chemical stability of the title compound.

Related literature top

For examples of bismuth(III) coordination compounds, see: Sun et al. (2004); Jiang et al. (2006); Meng & Zhang (2011).

Experimental top

All chemicals were of reagent grade quality obtained from commercial sources and used without further purification. The title compound was synthesized from a mixture of Bi(NO3)3.5H2O (0.49 g, 1 mmol), CuCl2.2H2O(0.26 g, 1.5 mmol), 2,6-pyridinedicarboxylic acid (0.17 g, 1 mmol), 2,2'-bipyridine(0.24 g, 1.5 mmol) and H2O (12 g, 667 mmol) in a molar ratio of 1: 1.5: 1: 1.5: 667 by hydrothermal reaction. The mixture was stirred for half an hour, and then transferred into a Teflon-lined stainless steel autoclave (50 ml) and treated at 170 °C for 5 days. After the mixture was slowly cooled to room temperature, blue crystals were obtained. Yield: 75% (based on Bi).

Refinement top

The H atoms bonded to C were positioned geometrically and refined using a riding model, with C—H = 0.93 Å and with Uiso(H) = 1.2 times Ueq(C). The H atoms bonded to O5 atom were located from Fourier difference maps and refined with distance restraints of O5—H1 = 0.83 (2), O5—H2 = 0.83 (2), H1···H2 = 1.37 (2) Å. The H atoms bonded to O1W, O2W and O3W were not located in Fourier difference maps, most probably due to their disorder.

Structure description top

Increasing attention has been paid to bismuth(III) coordination compounds in recent years due to their fascinating structural architectures and potential applications. As an expansion of bismuth(III) coordination compounds, recently, we have successfully isolated a novel compound [Cu(C10H8N2)2Cl]2[Bi2(C7H3NO4)2(H2O)2Cl4].5H2O.

The title compound consists of the coordination cations [Cu(C10H8N2)2Cl]+, coordination dianions [Bi2(C7H3NO4)2(H2O)2Cl4]2- and solvent water molecules (Fig. 1). In coordination cation [Cu(C10H8N2)2Cl]+, the CuII center is coordinated by one Cl atom and four N atoms from two C10H8N2 ligands. In dianion [Bi2(C7H3NO4)2(H2O)2Cl4]2-, each BiIII center is coordinated by one N atom, two Cl atoms, three O atoms and one water molecule. It is worth noting that one of the carboxylate groups acts as bridging group between two Bi centers. The structure of the dianion is additionally stabilized by intramolecular hydrogen bonds [O5—H2···O2(-x,y,-z + 3/2) and O(5)—H(1)···O(3 W)]. There exist the electrostatic interactions between the coordination cations and dianions, the crystal packing of the title compound along the c axis is shown in Fig. 2. Obviously, these electrostatic interactions and hydrogen bonds play a crucial role in the chemical stability of the title compound.

For examples of bismuth(III) coordination compounds, see: Sun et al. (2004); Jiang et al. (2006); Meng & Zhang (2011).

Computing details top

Data collection: APEX2 (Bruker, 2008); cell refinement: SAINT (Bruker, 2008); data reduction: SAINT (Bruker, 2008); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. View of the title compound with displacement ellipsoids drawn at the 30% probability level (symmetry code (i): -x, y, -z+3/2).
[Figure 2] Fig. 2. Crystal packing of the title compound along the c axis.
Bis[bis(2,2'-bipyridine-κ2N,N')chloridocopper(II)] bis(µ-2,6-pyridinedicarboxylato)- κ4O2,N,O6:O6; κ4O2:O2,N,O6- bis[aquadichloridobismuthate(III)] pentahydrate top
Crystal data top
[CuCl(C10H8N2)2]2[Bi2Cl4(C7H3NO4)2(H2O)2]·5H2OF(000) = 3528
Mr = 1838.72Dx = 1.882 Mg m3
Monoclinic, C2/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -C 2ycCell parameters from 8126 reflections
a = 22.880 (6) Åθ = 2.4–28.1°
b = 22.044 (6) ŵ = 6.41 mm1
c = 13.628 (4) ÅT = 296 K
β = 110.130 (4)°Block, blue
V = 6454 (3) Å30.18 × 0.16 × 0.15 mm
Z = 4
Data collection top
Bruker APEXII CCD
diffractometer
5684 independent reflections
Radiation source: fine-focus sealed tube4963 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.025
φ and ω scansθmax = 25.0°, θmin = 1.8°
Absorption correction: multi-scan
(SADABS; Bruker, 2008)
h = 2723
Tmin = 0.392, Tmax = 0.447k = 2626
16290 measured reflectionsl = 1614
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.025Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.063H atoms treated by a mixture of independent and constrained refinement
S = 1.04 w = 1/[σ2(Fo2) + (0.0312P)2 + 11.1454P]
where P = (Fo2 + 2Fc2)/3
5684 reflections(Δ/σ)max = 0.002
408 parametersΔρmax = 0.88 e Å3
3 restraintsΔρmin = 0.74 e Å3
Crystal data top
[CuCl(C10H8N2)2]2[Bi2Cl4(C7H3NO4)2(H2O)2]·5H2OV = 6454 (3) Å3
Mr = 1838.72Z = 4
Monoclinic, C2/cMo Kα radiation
a = 22.880 (6) ŵ = 6.41 mm1
b = 22.044 (6) ÅT = 296 K
c = 13.628 (4) Å0.18 × 0.16 × 0.15 mm
β = 110.130 (4)°
Data collection top
Bruker APEXII CCD
diffractometer
5684 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2008)
4963 reflections with I > 2σ(I)
Tmin = 0.392, Tmax = 0.447Rint = 0.025
16290 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0253 restraints
wR(F2) = 0.063H atoms treated by a mixture of independent and constrained refinement
S = 1.04 w = 1/[σ2(Fo2) + (0.0312P)2 + 11.1454P]
where P = (Fo2 + 2Fc2)/3
5684 reflectionsΔρmax = 0.88 e Å3
408 parametersΔρmin = 0.74 e Å3
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Bi10.025844 (6)0.242343 (7)0.610971 (11)0.02982 (6)
C10.12686 (18)0.23152 (18)0.8542 (3)0.0326 (9)
C20.16677 (19)0.24402 (17)0.7868 (3)0.0327 (9)
C30.23102 (19)0.25200 (18)0.8283 (4)0.0402 (10)
H3A0.25210.25020.90000.048*
C40.2625 (2)0.2627 (2)0.7598 (4)0.0526 (13)
H4A0.30550.26830.78560.063*
C50.2309 (2)0.2652 (2)0.6536 (4)0.0457 (11)
H5A0.25220.27120.60730.055*
C60.16695 (18)0.25867 (17)0.6173 (3)0.0321 (9)
C70.1267 (2)0.26348 (19)0.5032 (4)0.0379 (10)
C80.1129 (2)0.0957 (2)0.1789 (4)0.0517 (12)
H8A0.09510.08750.10790.062*
C90.0795 (2)0.1308 (2)0.2266 (4)0.0578 (13)
H9A0.04030.14580.18830.069*
C100.1061 (3)0.1424 (2)0.3317 (5)0.0612 (14)
H10A0.08450.16460.36630.073*
C110.1655 (2)0.1207 (2)0.3858 (4)0.0525 (12)
H11A0.18420.12870.45670.063*
C120.1965 (2)0.08714 (19)0.3336 (4)0.0416 (10)
C130.2607 (2)0.0635 (2)0.3840 (3)0.0413 (10)
C140.2988 (2)0.0786 (2)0.4839 (4)0.0592 (13)
H14A0.28460.10480.52420.071*
C150.3586 (2)0.0543 (3)0.5239 (4)0.0638 (14)
H15A0.38480.06460.59070.077*
C160.3783 (2)0.0150 (2)0.4636 (4)0.0610 (14)
H16A0.41800.00190.48890.073*
C170.3379 (2)0.0010 (2)0.3640 (4)0.0538 (12)
H17A0.35100.02590.32320.065*
C180.1123 (2)0.0074 (2)0.0053 (4)0.0475 (11)
H18A0.10140.03360.03900.057*
C190.0703 (2)0.0024 (2)0.1038 (4)0.0530 (12)
H19A0.03150.01630.12560.064*
C200.0872 (2)0.0408 (2)0.1695 (4)0.0538 (12)
H20A0.05950.04860.23640.065*
C210.1451 (2)0.0674 (2)0.1356 (4)0.0461 (11)
H21A0.15720.09260.17990.055*
C220.18524 (18)0.05626 (17)0.0343 (3)0.0349 (9)
C230.24907 (18)0.08145 (18)0.0105 (3)0.0367 (10)
C240.2784 (2)0.1136 (2)0.0478 (4)0.0468 (11)
H24A0.25730.12180.11810.056*
C250.3389 (2)0.1332 (2)0.0002 (4)0.0553 (13)
H25A0.35940.15400.03780.066*
C260.3683 (2)0.1215 (2)0.1044 (4)0.0535 (12)
H26A0.40890.13460.13850.064*
C270.3365 (2)0.0900 (2)0.1577 (4)0.0488 (11)
H27A0.35650.08260.22860.059*
Cl10.03209 (6)0.36683 (7)0.61824 (12)0.0693 (4)
Cl20.03436 (7)0.12583 (6)0.58147 (13)0.0695 (4)
Cl30.22828 (6)0.08940 (5)0.17806 (10)0.0560 (3)
Cu10.22536 (2)0.01472 (2)0.17652 (4)0.04341 (14)
N10.13659 (14)0.24776 (13)0.6839 (3)0.0299 (7)
N20.16967 (16)0.07324 (16)0.2309 (3)0.0413 (8)
N30.28081 (16)0.02474 (16)0.3248 (3)0.0440 (9)
N40.16815 (15)0.01917 (15)0.0295 (3)0.0386 (8)
N50.27864 (15)0.06980 (15)0.1128 (3)0.0390 (8)
O10.06762 (13)0.23135 (14)0.8042 (2)0.0413 (7)
O20.15260 (13)0.22296 (15)0.9484 (2)0.0471 (7)
O30.06808 (14)0.25476 (14)0.4818 (2)0.0455 (8)
O40.15195 (14)0.27517 (16)0.4391 (2)0.0516 (8)
O50.06953 (17)0.2428 (2)0.4468 (3)0.0731 (12)
O1W0.00000.5052 (4)0.75000.173 (4)
H10.073 (5)0.257 (5)0.389 (4)0.208*
H20.103 (3)0.233 (5)0.454 (9)0.208*
O3W0.0652 (3)0.2915 (3)0.2650 (4)0.151 (3)
O2W0.4613 (3)0.0920 (3)0.3689 (4)0.1270 (19)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Bi10.02219 (9)0.04836 (10)0.01923 (9)0.00043 (6)0.00754 (6)0.00092 (6)
C10.028 (2)0.044 (2)0.025 (2)0.0032 (17)0.0069 (17)0.0018 (17)
C20.029 (2)0.038 (2)0.029 (2)0.0015 (15)0.0080 (18)0.0032 (17)
C30.027 (2)0.057 (3)0.032 (3)0.0022 (17)0.0046 (18)0.0015 (19)
C40.022 (2)0.083 (3)0.047 (3)0.005 (2)0.004 (2)0.007 (2)
C50.034 (2)0.064 (3)0.045 (3)0.005 (2)0.021 (2)0.002 (2)
C60.028 (2)0.042 (2)0.028 (2)0.0020 (16)0.0118 (18)0.0032 (17)
C70.037 (2)0.049 (2)0.032 (2)0.0020 (18)0.018 (2)0.0033 (19)
C80.055 (3)0.054 (3)0.044 (3)0.006 (2)0.014 (2)0.003 (2)
C90.053 (3)0.059 (3)0.063 (4)0.001 (2)0.022 (3)0.002 (3)
C100.069 (4)0.059 (3)0.067 (4)0.000 (3)0.039 (3)0.008 (3)
C110.064 (3)0.051 (3)0.046 (3)0.012 (2)0.023 (2)0.009 (2)
C120.047 (3)0.040 (2)0.039 (3)0.0089 (19)0.017 (2)0.002 (2)
C130.049 (3)0.046 (2)0.030 (2)0.012 (2)0.015 (2)0.0052 (19)
C140.063 (3)0.079 (4)0.035 (3)0.017 (3)0.016 (2)0.009 (3)
C150.059 (3)0.089 (4)0.035 (3)0.017 (3)0.006 (3)0.002 (3)
C160.048 (3)0.073 (4)0.051 (3)0.005 (2)0.002 (2)0.014 (3)
C170.053 (3)0.060 (3)0.046 (3)0.004 (2)0.013 (2)0.008 (2)
C180.043 (3)0.055 (3)0.041 (3)0.008 (2)0.011 (2)0.005 (2)
C190.038 (2)0.062 (3)0.052 (3)0.003 (2)0.007 (2)0.003 (2)
C200.046 (3)0.067 (3)0.037 (3)0.007 (2)0.001 (2)0.001 (2)
C210.052 (3)0.049 (3)0.037 (3)0.005 (2)0.016 (2)0.006 (2)
C220.040 (2)0.035 (2)0.032 (2)0.0012 (17)0.0138 (18)0.0058 (18)
C230.045 (3)0.033 (2)0.036 (3)0.0007 (17)0.020 (2)0.0029 (18)
C240.060 (3)0.046 (3)0.038 (3)0.008 (2)0.021 (2)0.003 (2)
C250.067 (3)0.048 (3)0.061 (4)0.019 (2)0.036 (3)0.009 (2)
C260.049 (3)0.052 (3)0.060 (4)0.015 (2)0.019 (3)0.009 (2)
C270.047 (3)0.054 (3)0.041 (3)0.005 (2)0.009 (2)0.003 (2)
Cl10.0662 (9)0.0669 (8)0.0728 (10)0.0064 (6)0.0214 (7)0.0097 (7)
Cl20.0781 (9)0.0537 (7)0.0808 (10)0.0080 (6)0.0326 (8)0.0003 (7)
Cl30.0835 (9)0.0496 (6)0.0356 (6)0.0040 (6)0.0213 (6)0.0012 (5)
Cu10.0458 (3)0.0514 (3)0.0292 (3)0.0035 (2)0.0081 (2)0.0028 (2)
N10.0232 (16)0.0408 (19)0.0261 (19)0.0002 (12)0.0092 (14)0.0019 (14)
N20.045 (2)0.046 (2)0.034 (2)0.0004 (16)0.0153 (17)0.0033 (16)
N30.044 (2)0.050 (2)0.033 (2)0.0016 (17)0.0084 (17)0.0047 (17)
N40.0390 (19)0.044 (2)0.031 (2)0.0048 (15)0.0089 (15)0.0021 (16)
N50.0378 (19)0.046 (2)0.031 (2)0.0052 (15)0.0085 (16)0.0026 (16)
O10.0284 (15)0.070 (2)0.0261 (16)0.0004 (13)0.0101 (12)0.0002 (14)
O20.0369 (16)0.077 (2)0.0258 (17)0.0039 (15)0.0083 (13)0.0036 (15)
O30.0317 (16)0.080 (2)0.0268 (17)0.0045 (13)0.0126 (13)0.0020 (14)
O40.0481 (18)0.082 (2)0.0329 (18)0.0098 (16)0.0247 (15)0.0006 (17)
O50.036 (2)0.143 (4)0.032 (2)0.0002 (19)0.0021 (16)0.001 (2)
O1W0.187 (9)0.111 (6)0.191 (11)0.0000.026 (8)0.000
O3W0.221 (6)0.136 (5)0.053 (3)0.077 (5)0.009 (4)0.012 (3)
O2W0.149 (5)0.119 (4)0.110 (5)0.006 (4)0.040 (4)0.011 (3)
Geometric parameters (Å, º) top
Bi1—O32.297 (3)C14—H14A0.9300
Bi1—N12.385 (3)C15—C161.373 (8)
Bi1—O12.485 (3)C15—H15A0.9300
Bi1—O52.531 (4)C16—C171.390 (7)
Bi1—Cl22.6174 (15)C16—H16A0.9300
Bi1—Cl12.7479 (16)C17—N31.336 (5)
C1—O21.229 (5)C17—H17A0.9300
C1—O11.290 (5)C18—N41.336 (5)
C1—C21.527 (6)C18—C191.372 (6)
C2—N11.335 (5)C18—H18A0.9300
C2—C31.393 (6)C19—C201.380 (7)
C3—C41.382 (7)C19—H19A0.9300
C3—H3A0.9300C20—C211.375 (6)
C4—C51.379 (7)C20—H20A0.9300
C4—H4A0.9300C21—C221.392 (6)
C5—C61.382 (6)C21—H21A0.9300
C5—H5A0.9300C22—N41.347 (5)
C6—N11.341 (5)C22—C231.483 (5)
C6—C71.515 (6)C23—N51.349 (5)
C7—O41.229 (5)C23—C241.396 (6)
C7—O31.285 (5)C24—C251.381 (6)
C8—N21.341 (6)C24—H24A0.9300
C8—C91.395 (7)C25—C261.371 (7)
C8—H8A0.9300C25—H25A0.9300
C9—C101.374 (7)C26—C271.381 (6)
C9—H9A0.9300C26—H26A0.9300
C10—C111.390 (7)C27—N51.329 (5)
C10—H10A0.9300C27—H27A0.9300
C11—C121.380 (6)Cl3—Cu12.2962 (14)
C11—H11A0.9300Cu1—N41.983 (3)
C12—N21.355 (6)Cu1—N31.994 (4)
C12—C131.485 (6)Cu1—N52.107 (3)
C13—N31.360 (6)Cu1—N22.118 (4)
C13—C141.380 (6)O5—H10.83 (2)
C14—C151.393 (7)O5—H20.83 (2)
O3—Bi1—N169.30 (11)N3—C17—C16122.3 (5)
O3—Bi1—O1135.54 (10)N3—C17—H17A118.9
N1—Bi1—O166.26 (10)C16—C17—H17A118.9
O3—Bi1—O577.55 (13)N4—C18—C19122.7 (4)
N1—Bi1—O5146.83 (13)N4—C18—H18A118.6
O1—Bi1—O5146.85 (12)C19—C18—H18A118.6
O3—Bi1—Cl285.76 (8)C18—C19—C20118.2 (4)
N1—Bi1—Cl289.34 (8)C18—C19—H19A120.9
O1—Bi1—Cl292.60 (8)C20—C19—H19A120.9
O5—Bi1—Cl287.41 (12)C19—C20—C21119.8 (4)
O3—Bi1—Cl183.01 (8)C19—C20—H20A120.1
N1—Bi1—Cl184.28 (8)C21—C20—H20A120.1
O1—Bi1—Cl193.61 (8)C20—C21—C22119.2 (4)
O5—Bi1—Cl192.67 (12)C20—C21—H21A120.4
Cl2—Bi1—Cl1168.47 (5)C22—C21—H21A120.4
O2—C1—O1126.1 (4)N4—C22—C21120.6 (4)
O2—C1—C2119.0 (3)N4—C22—C23115.2 (4)
O1—C1—C2114.9 (4)C21—C22—C23124.2 (4)
N1—C2—C3120.7 (4)N5—C23—C24121.1 (4)
N1—C2—C1116.3 (3)N5—C23—C22115.3 (3)
C3—C2—C1123.0 (4)C24—C23—C22123.6 (4)
C4—C3—C2118.1 (4)C25—C24—C23119.3 (4)
C4—C3—H3A121.0C25—C24—H24A120.4
C2—C3—H3A121.0C23—C24—H24A120.4
C5—C4—C3120.5 (4)C26—C25—C24119.2 (4)
C5—C4—H4A119.7C26—C25—H25A120.4
C3—C4—H4A119.7C24—C25—H25A120.4
C6—C5—C4118.7 (4)C25—C26—C27118.6 (4)
C6—C5—H5A120.6C25—C26—H26A120.7
C4—C5—H5A120.6C27—C26—H26A120.7
N1—C6—C5120.5 (4)N5—C27—C26123.3 (5)
N1—C6—C7115.7 (3)N5—C27—H27A118.4
C5—C6—C7123.8 (4)C26—C27—H27A118.4
O4—C7—O3125.5 (4)N4—Cu1—N3170.69 (14)
O4—C7—C6118.4 (4)N4—Cu1—N580.20 (13)
O3—C7—C6116.1 (4)N3—Cu1—N595.56 (14)
N2—C8—C9123.0 (5)N4—Cu1—N293.21 (14)
N2—C8—H8A118.5N3—Cu1—N280.07 (15)
C9—C8—H8A118.5N5—Cu1—N2107.23 (14)
C10—C9—C8118.2 (5)N4—Cu1—Cl393.77 (10)
C10—C9—H9A120.9N3—Cu1—Cl395.46 (11)
C8—C9—H9A120.9N5—Cu1—Cl3124.09 (10)
C9—C10—C11119.2 (5)N2—Cu1—Cl3128.65 (10)
C9—C10—H10A120.4C2—N1—C6121.4 (3)
C11—C10—H10A120.4C2—N1—Bi1121.7 (3)
C12—C11—C10119.7 (5)C6—N1—Bi1116.8 (3)
C12—C11—H11A120.2C8—N2—C12118.3 (4)
C10—C11—H11A120.2C8—N2—Cu1129.0 (3)
N2—C12—C11121.4 (4)C12—N2—Cu1112.6 (3)
N2—C12—C13115.1 (4)C17—N3—C13119.5 (4)
C11—C12—C13123.5 (4)C17—N3—Cu1123.7 (3)
N3—C13—C14120.6 (4)C13—N3—Cu1116.4 (3)
N3—C13—C12115.4 (4)C18—N4—C22119.4 (4)
C14—C13—C12124.0 (4)C18—N4—Cu1123.7 (3)
C13—C14—C15119.7 (5)C22—N4—Cu1116.5 (3)
C13—C14—H14A120.1C27—N5—C23118.5 (4)
C15—C14—H14A120.1C27—N5—Cu1129.0 (3)
C16—C15—C14119.2 (5)C23—N5—Cu1112.3 (3)
C16—C15—H15A120.4C1—O1—Bi1120.7 (2)
C14—C15—H15A120.4C7—O3—Bi1121.7 (3)
C15—C16—C17118.6 (5)Bi1—O5—H1128 (8)
C15—C16—H16A120.7Bi1—O5—H2117 (8)
C17—C16—H16A120.7H1—O5—H2114 (5)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O5—H1···O3W0.83 (2)1.92 (3)2.733 (7)169 (11)
O5—H2···O2i0.83 (2)2.04 (6)2.777 (5)147 (10)
Symmetry code: (i) x, y, z+3/2.

Experimental details

Crystal data
Chemical formula[CuCl(C10H8N2)2]2[Bi2Cl4(C7H3NO4)2(H2O)2]·5H2O
Mr1838.72
Crystal system, space groupMonoclinic, C2/c
Temperature (K)296
a, b, c (Å)22.880 (6), 22.044 (6), 13.628 (4)
β (°) 110.130 (4)
V3)6454 (3)
Z4
Radiation typeMo Kα
µ (mm1)6.41
Crystal size (mm)0.18 × 0.16 × 0.15
Data collection
DiffractometerBruker APEXII CCD
Absorption correctionMulti-scan
(SADABS; Bruker, 2008)
Tmin, Tmax0.392, 0.447
No. of measured, independent and
observed [I > 2σ(I)] reflections
16290, 5684, 4963
Rint0.025
(sin θ/λ)max1)0.595
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.025, 0.063, 1.04
No. of reflections5684
No. of parameters408
No. of restraints3
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
w = 1/[σ2(Fo2) + (0.0312P)2 + 11.1454P]
where P = (Fo2 + 2Fc2)/3
Δρmax, Δρmin (e Å3)0.88, 0.74

Computer programs: APEX2 (Bruker, 2008), SAINT (Bruker, 2008), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Selected bond lengths (Å) top
Bi1—O32.297 (3)Cl3—Cu12.2962 (14)
Bi1—N12.385 (3)Cu1—N41.983 (3)
Bi1—O12.485 (3)Cu1—N31.994 (4)
Bi1—O52.531 (4)Cu1—N52.107 (3)
Bi1—Cl22.6174 (15)Cu1—N22.118 (4)
Bi1—Cl12.7479 (16)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O5—H1···O3W0.83 (2)1.92 (3)2.733 (7)169 (11)
O5—H2···O2i0.83 (2)2.04 (6)2.777 (5)147 (10)
Symmetry code: (i) x, y, z+3/2.
 

References

First citationBruker (2008). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationJiang, Q. Y., Shen, J. & Zhong, G. Q. (2006). Chin. J. Prog. Chem. 18, 1634–1645.  CAS Google Scholar
First citationMeng, Z.-H. & Zhang, S.-S. (2011). Acta Cryst. E67, m1402–m1403.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSun, H., Zhang, L. & Szeto, K. Y. (2004). Met. Ions Biol. Syst. 41, 333–378.  Web of Science PubMed CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds