organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

[8-(4-But­­oxy­benzo­yl)-2,7-dimeth­­oxy­naphthalen-1-yl](4-but­­oxy­phen­yl)methanone

aDepartment of Organic and Polymer Materials Chemistry, Tokyo University of Agriculture & Technology, Koganei, Tokyo 184-8588, Japan
*Correspondence e-mail: aokamoto@cc.tuat.ac.jp

(Received 5 November 2011; accepted 15 November 2011; online 19 November 2011)

The mol­ecule of the title compound, C34H36O6, is located on a twofold rotation axis. The two 4-but­oxy­benzoyl groups at the 1- and 8-positions of the naphthalene ring system are aligned almost anti­parallel. The dihedral angles between the benzene rings and the naphthalene ring system are 71.70 (4)°. In the crystal, the mol­ecules are connected via C—H⋯π inter­actions into a layer parallel to (010).

Related literature

For electrophilic aromatic aroylation of the naphthalene core, see: Okamoto & Yonezawa (2009[Okamoto, A. & Yonezawa, N. (2009). Chem. Lett. 38, 914-915.]); Okamoto et al. (2011[Okamoto, A., Mitsui, R., Oike, H. & Yonezawa, N. (2011). Chem. Lett. 40, 1283-1284.]). For the structures of closely related compounds, see: Hijikata et al. (2010[Hijikata, D., Takada, T., Nagasawa, A., Okamoto, A. & Yonezawa, N. (2010). Acta Cryst. E66, o2902-o2903.]); Muto et al. (2010[Muto, T., Kato, Y., Nagasawa, A., Okamoto, A. & Yonezawa, N. (2010). Acta Cryst. E66, o2752.]); Nakaema et al. (2008[Nakaema, K., Watanabe, S., Okamoto, A., Noguchi, K. & Yonezawa, N. (2008). Acta Cryst. E64, o807.]); Watanabe et al. (2010[Watanabe, S., Nagasawa, A., Okamoto, A., Noguchi, K. & Yonezawa, N. (2010). Acta Cryst. E66, o329.]); Sasagawa et al. (2011[Sasagawa, K., Hijikata, D., Okamoto, A., Oike, H. & Yonezawa, N. (2011). Acta Cryst. E67, o2119.]).

[Scheme 1]

Experimental

Crystal data
  • C34H36O6

  • Mr = 540.63

  • Orthorhombic, P b c n

  • a = 11.0930 (2) Å

  • b = 20.0537 (3) Å

  • c = 13.1409 (2) Å

  • V = 2923.26 (8) Å3

  • Z = 4

  • Cu Kα radiation

  • μ = 0.67 mm−1

  • T = 193 K

  • 0.60 × 0.40 × 0.20 mm

Data collection
  • Rigaku R-AXIS RAPID diffractometer

  • Absorption correction: numerical (NUMABS; Higashi, 1999[Higashi, T. (1999). NUMABS. Rigaku Corporation, Tokyo, Japan.]) Tmin = 0.689, Tmax = 0.878

  • 50625 measured reflections

  • 2679 independent reflections

  • 2542 reflections with I > 2σ(I)

  • Rint = 0.028

Refinement
  • R[F2 > 2σ(F2)] = 0.037

  • wR(F2) = 0.105

  • S = 1.04

  • 2679 reflections

  • 185 parameters

  • H-atom parameters constrained

  • Δρmax = 0.27 e Å−3

  • Δρmin = −0.16 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

Cg is the centroid of the C9–C14 ring.

D—H⋯A D—H H⋯A DA D—H⋯A
C7—H7ACgi 0.98 2.68 3.5056 (14) 142
Symmetry code: (i) [-x+{\script{3\over 2}}, -y+{\script{1\over 2}}, z-{\script{1\over 2}}].

Data collection: PROCESS-AUTO (Rigaku, 1998[Rigaku (1998). PROCESS-AUTO. Rigaku Corporation, Tokyo, Japan.]); cell refinement: PROCESS-AUTO; data reduction: CrystalStructure (Rigaku, 2010[Rigaku (2010). CrystalStructure. Rigaku Corporation, Tokyo, Japan.]); program(s) used to solve structure: SIR2004 (Burla et al., 2005[Burla, M. C., Caliandro, R., Camalli, M., Carrozzini, B., Cascarano, G. L., De Caro, L., Giacovazzo, C., Polidori, G. & Spagna, R. (2005). J. Appl. Cryst. 38, 381-388.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEPIII (Burnett & Johnson, 1996[Burnett, M. N. & Johnson, C. K. (1996). ORTEPIII. Report ORNL-6895. Oak Ridge National Laboratory, Tennessee, USA.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

In the course of our study on electrophilic aromatic aroylation of the naphthalene core, 1,8-diaroylnaphthalene compounds have proved to be formed regioselectively by the aid of a suitable acidic mediator (Okamoto & Yonezawa, 2009, Okamoto et al., 2011). Recently, we have reported the X-ray crystal structures of 1,8-diaroylated 2,7-dimethoxynaphthalene derivatives such as 1,8-dibenzoyl-2,7-dimethoxynaphthalene (Nakaema et al., 2008), (2,7-dimethoxynaphthalene-1,8-diyl)bis(4-fluorophenyl)dimethanone [1,8-bis(4-fluorobenzoyl)-2,7-dimethoxynaphthalene] (Watanabe, Nagasawa et al., 2010), 1,8-bis(4-methylbenzoyl)-2,7-dimethoxynaphthalene (Muto et al., 2010), and {8-[4-(bromomethyl)benzoyl]-2,7-dimethoxynaphthalen-1-yl}[4-(bromomethyl)phenyl]methanone [1,8-bis(4-bromomethylbenzoyl)-2,7-dimethoxynaphthalene] (Sasagawa et al., 2011). The aroyl groups in these compounds are perpendicularly attached to the naphthalene rings and oriented in opposite directions. On the other hand, X-ray structure of 2,7-dimethoxy-1,8-bis(4-phenoxybenzoyl)naphthalene (Hijikata et al., 2010) having the aroyl groups oriented in the same directions has been also revealed. As a part of our ongoing studies on the molecular structures of this kind of homologous molecules, the X-ray crystal structure of title compound, 1,8-diaroylnaphthalene bearing butoxy groups, is discussed in this article.

The molecular structure of the title compound is displayed in Fig 1. The molecule of (I) lies on a crystallographic 2-fold axis so that the asymmetric unit contains one-half of the molecule. Thus, two 4-butoxybenzoyl groups are situated in anti orientation and are twisted away from the attached naphthalene ring. The dihedral angle between the best planes of the 4-butoxyphenyl groups and the naphthalene ring system is 71.70 (4)°.

The dihedral between the naphthalene ring system and the bridging carbonyl C—C(O)—C plane is 77.60 (5)° [C5—C6—C8—O2 torsion angle = -77.75 (12)°], far larger than that [8.64 (5)°; C12—C10—C8—O2 torsion angle = 8.33 (14)°] between the phenyl group and the bridging carbonyl group.

In the crystal, molecules are arranged into (0 1 0) layers via C-H···π interactions (Fig. 2).

Related literature top

For electrophilic aromatic aroylation of the naphthalene core, see: Okamoto & Yonezawa (2009); Okamoto et al. (2011). For the structures of closely related compounds, see: Hijikata et al. (2010); Muto et al. (2010); Nakaema et al. (2008); Watanabe et al. (2010); Sasagawa et al. (2011).

Experimental top

The title compound was prepared by SN2 reaction of 1,8-bis(4-hydroxybenzoyl)-2,7-dimethoxynaphthalene (1.0 mmol, 428.5 mg), which was obtained via SNAr reaction of 1,8-bis(4-fluorobenzoyl)-2,7-dimethoxynaphthalene with sodium hydroxide, with bromobutane (3.0 mmol, 411 mg) and potassium carbonate (2.8 mmol, 387 mg) in N,N-dimethylformamide (DMF; 2.5 ml). After the reaction mixture was stirred at 333 K for 6 h, it was poured into water (30 ml) and the mixture was extracted with CHCl3 (15 ml × 3). The combined extracts were washed with brine. The organic layers thus obtained were dried over anhydrous MgSO4. The solvent was removed under reduced pressure to give cake (96% yield). The crude product was purified by recrystallization from methanol (isolated yield 65%). Furthermore, the isolated product was crystallized from methanol to give single crystal. Spectroscopic data:1H NMR δ(300 MHz, CDCl3); 0.98(6H, t, J = 7.2), 1.49(4H, m, J = 7.5 Hz), 1.77(4H, q, J = 8.1 Hz), 3.70(6H, s), 3.98(4H, m), 6.80(4H, broad), 7.20(2H, d, J = 9.0 Hz), 7.65(4H, broad), 7.92(2H, d, J = 9.3 Hz) p.p.m.. 13C NMR δ(100 MHz, CDCl3); 13.8, 19.2, 31.2, 56.5, 67.7, 111.3, 113.4, 122.0, 125.6, 129.6, 131.4, 131.6, 131.8, 155.9, 162.7, 194.9 p.p.m.. IR (KBr); 2956, 2936, 1665, 1600, 1509, 1267, 1250 cm-1. (m/z): [M + H]+ Calcd for C34H37O6, 541.2590; found, 541.2559. m.p. = 392–399.9 K

Refinement top

All H atoms were found in a difference map and were subsequently refined as riding atoms, with C—H = 0.95 -0.99 Å, and with Uĩso(H) = 1.2 Ueq(C).

Structure description top

In the course of our study on electrophilic aromatic aroylation of the naphthalene core, 1,8-diaroylnaphthalene compounds have proved to be formed regioselectively by the aid of a suitable acidic mediator (Okamoto & Yonezawa, 2009, Okamoto et al., 2011). Recently, we have reported the X-ray crystal structures of 1,8-diaroylated 2,7-dimethoxynaphthalene derivatives such as 1,8-dibenzoyl-2,7-dimethoxynaphthalene (Nakaema et al., 2008), (2,7-dimethoxynaphthalene-1,8-diyl)bis(4-fluorophenyl)dimethanone [1,8-bis(4-fluorobenzoyl)-2,7-dimethoxynaphthalene] (Watanabe, Nagasawa et al., 2010), 1,8-bis(4-methylbenzoyl)-2,7-dimethoxynaphthalene (Muto et al., 2010), and {8-[4-(bromomethyl)benzoyl]-2,7-dimethoxynaphthalen-1-yl}[4-(bromomethyl)phenyl]methanone [1,8-bis(4-bromomethylbenzoyl)-2,7-dimethoxynaphthalene] (Sasagawa et al., 2011). The aroyl groups in these compounds are perpendicularly attached to the naphthalene rings and oriented in opposite directions. On the other hand, X-ray structure of 2,7-dimethoxy-1,8-bis(4-phenoxybenzoyl)naphthalene (Hijikata et al., 2010) having the aroyl groups oriented in the same directions has been also revealed. As a part of our ongoing studies on the molecular structures of this kind of homologous molecules, the X-ray crystal structure of title compound, 1,8-diaroylnaphthalene bearing butoxy groups, is discussed in this article.

The molecular structure of the title compound is displayed in Fig 1. The molecule of (I) lies on a crystallographic 2-fold axis so that the asymmetric unit contains one-half of the molecule. Thus, two 4-butoxybenzoyl groups are situated in anti orientation and are twisted away from the attached naphthalene ring. The dihedral angle between the best planes of the 4-butoxyphenyl groups and the naphthalene ring system is 71.70 (4)°.

The dihedral between the naphthalene ring system and the bridging carbonyl C—C(O)—C plane is 77.60 (5)° [C5—C6—C8—O2 torsion angle = -77.75 (12)°], far larger than that [8.64 (5)°; C12—C10—C8—O2 torsion angle = 8.33 (14)°] between the phenyl group and the bridging carbonyl group.

In the crystal, molecules are arranged into (0 1 0) layers via C-H···π interactions (Fig. 2).

For electrophilic aromatic aroylation of the naphthalene core, see: Okamoto & Yonezawa (2009); Okamoto et al. (2011). For the structures of closely related compounds, see: Hijikata et al. (2010); Muto et al. (2010); Nakaema et al. (2008); Watanabe et al. (2010); Sasagawa et al. (2011).

Computing details top

Data collection: PROCESS-AUTO (Rigaku, 1998); cell refinement: PROCESS-AUTO (Rigaku, 1998); data reduction: CrystalStructure (Rigaku, 2010); program(s) used to solve structure: SIR2004 (Burla et al., 2005); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEPIII (Burnett & Johnson, 1996); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. Molecular structure with displacement ellipsoids drawn at the 50% probability level. The symbol "_2" refers to symmetry code: -x+1, y, -z+1/2.
[Figure 2] Fig. 2. Intermolecular C-H···π interactions (dashed lines). Cg is the centroid of the C9–C14 ring [symmetry code: (ii) -x+3/2, -y+1/2, z-1/2].
[8-(4-Butoxybenzoyl)-2,7-dimethoxynaphthalen-1-yl](4-butoxyphenyl)methanone top
Crystal data top
C34H36O6F(000) = 1152
Mr = 540.63Dx = 1.228 Mg m3
Orthorhombic, PbcnCu Kα radiation, λ = 1.54187 Å
Hall symbol: -P 2n 2abCell parameters from 47089 reflections
a = 11.0930 (2) Åθ = 3.4–68.2°
b = 20.0537 (3) ŵ = 0.67 mm1
c = 13.1409 (2) ÅT = 193 K
V = 2923.26 (8) Å3Block, colorless
Z = 40.60 × 0.40 × 0.20 mm
Data collection top
Rigaku R-AXIS RAPID
diffractometer
2679 independent reflections
Radiation source: fine-focus sealed tube2542 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.028
Detector resolution: 10.000 pixels mm-1θmax = 68.2°, θmin = 4.4°
ω scansh = 1313
Absorption correction: numerical
(NUMABS; Higashi, 1999)
k = 2424
Tmin = 0.689, Tmax = 0.878l = 1515
50625 measured reflections
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.037H-atom parameters constrained
wR(F2) = 0.105 w = 1/[σ2(Fo2) + (0.0608P)2 + 0.5804P]
where P = (Fo2 + 2Fc2)/3
S = 1.04(Δ/σ)max < 0.001
2679 reflectionsΔρmax = 0.27 e Å3
185 parametersΔρmin = 0.16 e Å3
0 restraintsExtinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.0027 (2)
Crystal data top
C34H36O6V = 2923.26 (8) Å3
Mr = 540.63Z = 4
Orthorhombic, PbcnCu Kα radiation
a = 11.0930 (2) ŵ = 0.67 mm1
b = 20.0537 (3) ÅT = 193 K
c = 13.1409 (2) Å0.60 × 0.40 × 0.20 mm
Data collection top
Rigaku R-AXIS RAPID
diffractometer
2679 independent reflections
Absorption correction: numerical
(NUMABS; Higashi, 1999)
2542 reflections with I > 2σ(I)
Tmin = 0.689, Tmax = 0.878Rint = 0.028
50625 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0370 restraints
wR(F2) = 0.105H-atom parameters constrained
S = 1.04Δρmax = 0.27 e Å3
2679 reflectionsΔρmin = 0.16 e Å3
185 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.75396 (7)0.21648 (4)0.08148 (6)0.0440 (2)
O20.54194 (7)0.32529 (4)0.13838 (6)0.0393 (2)
O30.98869 (7)0.41391 (4)0.40338 (6)0.0393 (2)
C10.58364 (10)0.07697 (5)0.18871 (8)0.0412 (3)
H10.58100.02960.18710.049*
C20.66800 (10)0.10911 (6)0.13181 (9)0.0413 (3)
H20.72270.08470.09060.050*
C30.50000.11152 (7)0.25000.0353 (3)
C40.67285 (10)0.17957 (5)0.13508 (8)0.0357 (3)
C50.50000.18316 (7)0.25000.0301 (3)
C60.59200 (9)0.21598 (5)0.19277 (7)0.0308 (2)
C70.85144 (11)0.18354 (7)0.03189 (10)0.0516 (3)
H7A0.81960.15270.01930.062*
H7B0.89870.15860.08220.062*
H7C0.90310.21670.00130.062*
C80.60813 (9)0.29099 (5)0.19033 (7)0.0304 (2)
C90.79477 (9)0.28188 (5)0.29938 (8)0.0343 (3)
H90.78880.23470.29650.041*
C100.70756 (9)0.32031 (5)0.25103 (7)0.0303 (2)
C110.89010 (10)0.31051 (5)0.35162 (8)0.0361 (3)
H110.94890.28330.38370.043*
C120.71586 (9)0.38984 (5)0.25911 (8)0.0339 (3)
H120.65610.41710.22830.041*
C130.89867 (9)0.37990 (5)0.35653 (8)0.0335 (2)
C140.80960 (10)0.41894 (5)0.31120 (8)0.0356 (3)
H140.81370.46610.31640.043*
C151.08084 (9)0.37643 (5)0.45496 (8)0.0372 (3)
H15A1.11860.34430.40750.045*
H15B1.04540.35120.51240.045*
C161.17371 (10)0.42488 (6)0.49380 (9)0.0426 (3)
H16A1.13320.46000.53420.051*
H16B1.21410.44660.43540.051*
C171.26786 (11)0.39032 (8)0.55954 (10)0.0554 (4)
H17A1.23010.37670.62460.067*
H17B1.29550.34940.52440.067*
C181.37590 (14)0.43398 (11)0.58200 (19)0.0991 (8)
H18A1.42700.41220.63290.119*
H18B1.34840.47710.60830.119*
H18C1.42220.44090.51940.119*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0409 (4)0.0484 (5)0.0426 (4)0.0008 (3)0.0116 (3)0.0090 (3)
O20.0404 (4)0.0392 (4)0.0384 (4)0.0020 (3)0.0056 (3)0.0044 (3)
O30.0378 (4)0.0335 (4)0.0464 (5)0.0054 (3)0.0045 (3)0.0031 (3)
C10.0504 (7)0.0292 (5)0.0441 (6)0.0062 (4)0.0142 (5)0.0048 (4)
C20.0433 (6)0.0391 (6)0.0415 (6)0.0099 (5)0.0049 (5)0.0110 (5)
C30.0404 (8)0.0297 (7)0.0357 (7)0.0000.0121 (6)0.000
C40.0349 (6)0.0395 (6)0.0326 (5)0.0017 (4)0.0035 (4)0.0062 (4)
C50.0314 (7)0.0305 (7)0.0285 (7)0.0000.0068 (5)0.000
C60.0313 (5)0.0319 (5)0.0292 (5)0.0001 (4)0.0045 (4)0.0031 (4)
C70.0383 (6)0.0677 (8)0.0489 (7)0.0064 (6)0.0056 (5)0.0180 (6)
C80.0309 (5)0.0337 (5)0.0266 (5)0.0006 (4)0.0048 (4)0.0007 (4)
C90.0373 (5)0.0274 (5)0.0381 (6)0.0016 (4)0.0001 (4)0.0000 (4)
C100.0315 (5)0.0310 (5)0.0285 (5)0.0015 (4)0.0046 (4)0.0011 (4)
C110.0351 (5)0.0326 (5)0.0406 (6)0.0006 (4)0.0039 (4)0.0012 (4)
C120.0359 (5)0.0316 (5)0.0341 (5)0.0012 (4)0.0024 (4)0.0030 (4)
C130.0336 (5)0.0338 (5)0.0331 (5)0.0054 (4)0.0037 (4)0.0029 (4)
C140.0407 (6)0.0270 (5)0.0392 (6)0.0026 (4)0.0038 (4)0.0005 (4)
C150.0344 (5)0.0382 (6)0.0392 (6)0.0016 (4)0.0018 (4)0.0031 (4)
C160.0382 (6)0.0439 (6)0.0456 (6)0.0028 (5)0.0004 (5)0.0104 (5)
C170.0433 (7)0.0710 (9)0.0520 (7)0.0103 (6)0.0045 (6)0.0159 (6)
C180.0470 (8)0.1050 (14)0.1453 (18)0.0234 (9)0.0338 (10)0.0661 (13)
Geometric parameters (Å, º) top
O1—C41.3615 (13)C9—C101.3906 (14)
O1—C71.4249 (13)C9—H90.9500
O2—C81.2159 (12)C10—C121.4012 (14)
O3—C131.3570 (12)C11—C131.3963 (14)
O3—C151.4384 (13)C11—H110.9500
C1—C21.3602 (16)C12—C141.3750 (15)
C1—C31.4106 (13)C12—H120.9500
C1—H10.9500C13—C141.3942 (15)
C2—C41.4146 (16)C14—H140.9500
C2—H20.9500C15—C161.5052 (15)
C3—C1i1.4106 (13)C15—H15A0.9900
C3—C51.437 (2)C15—H15B0.9900
C4—C61.3828 (14)C16—C171.5222 (17)
C5—C61.4284 (12)C16—H16A0.9900
C5—C6i1.4284 (12)C16—H16B0.9900
C6—C81.5151 (14)C17—C181.513 (2)
C7—H7A0.9800C17—H17A0.9900
C7—H7B0.9800C17—H17B0.9900
C7—H7C0.9800C18—H18A0.9800
C8—C101.4828 (14)C18—H18B0.9800
C9—C111.3853 (14)C18—H18C0.9800
C4—O1—C7119.09 (10)C9—C11—H11120.4
C13—O3—C15118.31 (8)C13—C11—H11120.4
C2—C1—C3122.25 (10)C14—C12—C10120.65 (10)
C2—C1—H1118.9C14—C12—H12119.7
C3—C1—H1118.9C10—C12—H12119.7
C1—C2—C4118.87 (10)O3—C13—C14115.67 (9)
C1—C2—H2120.6O3—C13—C11124.88 (10)
C4—C2—H2120.6C14—C13—C11119.45 (9)
C1i—C3—C1121.15 (13)C12—C14—C13120.68 (9)
C1i—C3—C5119.42 (7)C12—C14—H14119.7
C1—C3—C5119.42 (7)C13—C14—H14119.7
O1—C4—C6115.16 (9)O3—C15—C16108.00 (9)
O1—C4—C2123.54 (10)O3—C15—H15A110.1
C6—C4—C2121.29 (10)C16—C15—H15A110.1
C6—C5—C6i125.13 (13)O3—C15—H15B110.1
C6—C5—C3117.44 (6)C16—C15—H15B110.1
C6i—C5—C3117.44 (6)H15A—C15—H15B108.4
C4—C6—C5120.58 (10)C15—C16—C17111.61 (10)
C4—C6—C8115.85 (9)C15—C16—H16A109.3
C5—C6—C8123.57 (9)C17—C16—H16A109.3
O1—C7—H7A109.5C15—C16—H16B109.3
O1—C7—H7B109.5C17—C16—H16B109.3
H7A—C7—H7B109.5H16A—C16—H16B108.0
O1—C7—H7C109.5C18—C17—C16113.00 (14)
H7A—C7—H7C109.5C18—C17—H17A109.0
H7B—C7—H7C109.5C16—C17—H17A109.0
O2—C8—C10121.79 (9)C18—C17—H17B109.0
O2—C8—C6120.15 (9)C16—C17—H17B109.0
C10—C8—C6118.05 (8)H17A—C17—H17B107.8
C11—C9—C10121.85 (9)C17—C18—H18A109.5
C11—C9—H9119.1C17—C18—H18B109.5
C10—C9—H9119.1H18A—C18—H18B109.5
C9—C10—C12118.11 (9)C17—C18—H18C109.5
C9—C10—C8122.92 (9)H18A—C18—H18C109.5
C12—C10—C8118.97 (9)H18B—C18—H18C109.5
C9—C11—C13119.21 (10)
C3—C1—C2—C40.70 (15)C4—C6—C8—C1076.66 (11)
C2—C1—C3—C1i177.57 (11)C5—C6—C8—C10103.44 (10)
C2—C1—C3—C52.43 (11)C11—C9—C10—C122.11 (15)
C7—O1—C4—C6170.91 (9)C11—C9—C10—C8176.85 (9)
C7—O1—C4—C210.34 (15)O2—C8—C10—C9170.62 (9)
C1—C2—C4—O1179.73 (9)C6—C8—C10—C98.16 (14)
C1—C2—C4—C61.59 (16)O2—C8—C10—C128.33 (14)
C1i—C3—C5—C6175.43 (7)C6—C8—C10—C12172.88 (9)
C1—C3—C5—C64.57 (7)C10—C9—C11—C130.42 (16)
C1i—C3—C5—C6i4.57 (7)C9—C10—C12—C141.70 (15)
C1—C3—C5—C6i175.43 (7)C8—C10—C12—C14177.30 (9)
O1—C4—C6—C5178.06 (7)C15—O3—C13—C14177.64 (9)
C2—C4—C6—C50.73 (14)C15—O3—C13—C112.08 (14)
O1—C4—C6—C81.84 (13)C9—C11—C13—O3178.58 (9)
C2—C4—C6—C8179.37 (9)C9—C11—C13—C141.70 (15)
C6i—C5—C6—C4176.24 (10)C10—C12—C14—C130.38 (15)
C3—C5—C6—C43.76 (10)O3—C13—C14—C12178.15 (9)
C6i—C5—C6—C83.65 (7)C11—C13—C14—C122.11 (15)
C3—C5—C6—C8176.35 (7)C13—O3—C15—C16176.09 (9)
C4—C6—C8—O2102.15 (11)O3—C15—C16—C17173.78 (9)
C5—C6—C8—O277.75 (12)C15—C16—C17—C18168.20 (12)
Symmetry code: (i) x+1, y, z+1/2.
Hydrogen-bond geometry (Å, º) top
Cg is the centroid of the C9–C14 ring.
D—H···AD—HH···AD···AD—H···A
C7—H7A···Cgii0.982.683.5056 (14)142
Symmetry code: (ii) x+3/2, y+1/2, z1/2.

Experimental details

Crystal data
Chemical formulaC34H36O6
Mr540.63
Crystal system, space groupOrthorhombic, Pbcn
Temperature (K)193
a, b, c (Å)11.0930 (2), 20.0537 (3), 13.1409 (2)
V3)2923.26 (8)
Z4
Radiation typeCu Kα
µ (mm1)0.67
Crystal size (mm)0.60 × 0.40 × 0.20
Data collection
DiffractometerRigaku R-AXIS RAPID
Absorption correctionNumerical
(NUMABS; Higashi, 1999)
Tmin, Tmax0.689, 0.878
No. of measured, independent and
observed [I > 2σ(I)] reflections
50625, 2679, 2542
Rint0.028
(sin θ/λ)max1)0.602
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.037, 0.105, 1.04
No. of reflections2679
No. of parameters185
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.27, 0.16

Computer programs: PROCESS-AUTO (Rigaku, 1998), CrystalStructure (Rigaku, 2010), SIR2004 (Burla et al., 2005), SHELXL97 (Sheldrick, 2008), ORTEPIII (Burnett & Johnson, 1996).

Hydrogen-bond geometry (Å, º) top
Cg is the centroid of the C9–C14 ring.
D—H···AD—HH···AD···AD—H···A
C7—H7A···Cgi0.982.683.5056 (14)142
Symmetry code: (i) x+3/2, y+1/2, z1/2.
 

Acknowledgements

The authors express their gratitude to Master Daichi Hijikata, Department of Organic and Polymer Materials Chemistry, Graduate School, Tokyo University of Agriculture & Technology, and Professor Keiichi Noguchi, Instrumentation Analysis Center, Tokyo University of Agriculture and Technology, for their technical advice.

References

First citationBurla, M. C., Caliandro, R., Camalli, M., Carrozzini, B., Cascarano, G. L., De Caro, L., Giacovazzo, C., Polidori, G. & Spagna, R. (2005). J. Appl. Cryst. 38, 381–388.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationBurnett, M. N. & Johnson, C. K. (1996). ORTEPIII. Report ORNL-6895. Oak Ridge National Laboratory, Tennessee, USA.  Google Scholar
First citationHigashi, T. (1999). NUMABS. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationHijikata, D., Takada, T., Nagasawa, A., Okamoto, A. & Yonezawa, N. (2010). Acta Cryst. E66, o2902–o2903.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationMuto, T., Kato, Y., Nagasawa, A., Okamoto, A. & Yonezawa, N. (2010). Acta Cryst. E66, o2752.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationNakaema, K., Watanabe, S., Okamoto, A., Noguchi, K. & Yonezawa, N. (2008). Acta Cryst. E64, o807.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationOkamoto, A., Mitsui, R., Oike, H. & Yonezawa, N. (2011). Chem. Lett. 40, 1283-1284.  Web of Science CrossRef CAS Google Scholar
First citationOkamoto, A. & Yonezawa, N. (2009). Chem. Lett. 38, 914–915.  Web of Science CrossRef CAS Google Scholar
First citationRigaku (1998). PROCESS-AUTO. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationRigaku (2010). CrystalStructure. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationSasagawa, K., Hijikata, D., Okamoto, A., Oike, H. & Yonezawa, N. (2011). Acta Cryst. E67, o2119.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWatanabe, S., Nagasawa, A., Okamoto, A., Noguchi, K. & Yonezawa, N. (2010). Acta Cryst. E66, o329.  Web of Science CSD CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds