organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

(2E)-1-(2,5-Di­methyl­thio­phen-3-yl)-3-(3-nitro­phen­yl)prop-2-en-1-one

aDepartment of Chemistry, Faculty of Science, King Abdulaziz University, Jeddah 21589, PO Box 80203, Saudi Arabia, bThe Center of Excellence for Advanced Materials Reesrch, King Abdulaziz University, Jeddah 21589, PO Box 80203, Saudi Arabia, and cDepartment of Physics, University of Sargodha, Sargodha, Pakistan
*Correspondence e-mail: dmntahir_uos@yahoo.com

(Received 9 November 2011; accepted 11 November 2011; online 16 November 2011)

In the title compound, C15H13NO3S, the benzene ring and the five-membered heterocyclic ring are oriented at a dihedral angle of 12.00 (6)°. In the crystal, C—H⋯O inter­actions generate two types of cyclic motifs, R22(14) and R22(26), connecting the mol­ecules into tapes extending along [101]. In addition, there are ππ stacking inter­actions between the benzene and thio­phene rings with centroid-centroid distances of 3.7263 (14) and 3.7487 (14) Å.

Related literature

For the synthesis of similar compounds, see: Asiri & Khan (2010[Asiri, A. M. & Khan, S. A. (2010). Molbank, M687.], 2011[Asiri, A. M. & Khan, S. A. (2011). Molecules, 16, 523-531.]); Kalirajan et al. (2009[Kalirajan, R., Sivakumar, S. U., Jubie, S., Gowramma, B. & Suresh, B. (2009). Intl J. ChemTech Res. 1, 27-34.]); Patil et al. (2009[Patil, C. B., Mahajan, S. K. & Katti, S. A. (2009). J. Pharm. Sci. Res. 1, 11-22.]); Sarojini et al. (2006[Sarojini, B. K., Narayana, B., Ashalatha, B. V., Indira, J. K. G. & Lobo, K. G. (2006). J. Cryst. Growth, 295, 54-59.]). For related structures and background references, see: Asiri et al. (2010a[Asiri, A. M., Khan, S. A. & Tahir, M. N. (2010a). Acta Cryst. E66, o2358.],b[Asiri, A. M., Khan, S. A. & Tahir, M. N. (2010b). Acta Cryst. E66, o2404.]). For graph-set notation, see: Bernstein et al. (1995[Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555-1573.]).

[Scheme 1]

Experimental

Crystal data
  • C15H13NO3S

  • Mr = 287.32

  • Monoclinic, P 21 /c

  • a = 7.3802 (5) Å

  • b = 13.7973 (9) Å

  • c = 13.4638 (8) Å

  • β = 96.997 (3)°

  • V = 1360.77 (15) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.24 mm−1

  • T = 296 K

  • 0.25 × 0.22 × 0.20 mm

Data collection
  • Bruker KAPPA APEXII CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2005[Bruker (2005). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.945, Tmax = 0.955

  • 10732 measured reflections

  • 2466 independent reflections

  • 1493 reflections with I > 2σ(I)

  • Rint = 0.051

Refinement
  • R[F2 > 2σ(F2)] = 0.047

  • wR(F2) = 0.117

  • S = 1.03

  • 2466 reflections

  • 183 parameters

  • H-atom parameters constrained

  • Δρmax = 0.17 e Å−3

  • Δρmin = −0.25 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C6—H6⋯O3i 0.93 2.46 3.373 (3) 168
C15—H15B⋯O2ii 0.96 2.59 3.339 (4) 135
Symmetry codes: (i) -x, -y, -z; (ii) -x+1, -y, -z+1.

Data collection: APEX2 (Bruker, 2009[Bruker (2009). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2009[Bruker (2009). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]) and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]); software used to prepare material for publication: WinGX (Farrugia, 1999[Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.]) and PLATON.

Supporting information


Comment top

Claisen–Schmidt reaction is one of the most important reactions for the formation of α, β-unsaturated ketone by condensation between acetophenone and benzaldehyde (Asiri & Khan, 2010). The reaction is catalysed by bases, acids (Patil et al., 2009). It is widely used in the synthesis of important intermediates (Asiri & Khan, 2011) or end-products, pharmaceuticals (Kalirajan et al., 2009). It is also used in the field of matrial sciences such as photoelectronics, photophotonics, photodynamic therapy, electrochemical sensing, optical limiting, langmuir film and photoinitiated polymerization (Sarojini et al., 2006). The title compound (I), (Fig. 1) has been synthesized as a pharmaceutical intermediate. Similar structures to (I) have been published earlier (Asiri et al., 2010a,b and refereces therein).

In (I), the group A (C1—C6), the central propenone B (C7—C9/O3) and the group C (C10—C15/S1) are planar with r. m. s. deviation of 0.003, 0.012 and 0.008 Å, respectively. The dihedral angles between A/B, A/C and B/C are 9.88 (14), 12.00 (6) and 16.09 (12)°, respectively. The nitro group D (O1/N1/O2) is oriented at a dihedral angle of 8.4 (3)° with relation to the benzene ring A. The title compound consists of dimers due to intermolecular H-bonds of C—H···O type, where O-atom is of carbonyl and H-atom is of the nitrophenyl group. This H-bondings form a R22(14) (Fig. 2) ring motif (Bernstein et al., 1995). The same type of H-bonding between methyl and nitro groups consolidate the molecules in the form of one-dimensional polymers with R22(26) ring motifs and extending along the [1 0 1] direction. Moreover there are π···π stacking interactions between the benzene and thiophene rings with centroid-centroid distances of 3.7263 (14)–3.7487 (14) Å.

Related literature top

For the synthesis of similar compounds, see: Asiri & Khan (2010, 2011); Kalirajan et al. (2009); Patil et al. (2009); Sarojini et al. (2006). For related structures and background references, see: Asiri et al. (2010a,b). For graph-set notation, see: Bernstein et al. (1995).

Experimental top

A solution of 3-acetyl-2,5-dimethythiophene (0.38 g, 2.5 mmol) and 3-nitro-benzaldehyde (0.37 g, 2.5 mmol) in ethanolic solution of NaOH (3.0 g in 10 ml of methanol) was stirred for 16 h at room temperature. The solution was poured into ice cold water of pH=2 (pH adjusted by HCl). The solid separated was filtered and crystallized from methanol:chloroform to affoard light yellow prisms of (I).

Yield: 78%; m.p. 403–404 K.

IR (KBr) νmax cm-1: 3012 (Ar—H), 2926 (C—H), 1628 (CO), 1568 (CC).

1H NMR (DMSO-d6) (δ/p.p.m.): 8.47 (d, J = 1.8 Hz), 8.23 (d, J = 1.2 Hz), 7.73 (d, CCH, J = 15.6 Hz), 7.40 (d, CHC, J = 15.6 Hz), 7.89(d, J=7.2 Hz), 7.61 (d, J = 7.8 Hz), 7.27 (s, Ar—H), 2.72 (s, CH3), 2.39 (s, CH3).

Refinement top

The H atoms were positioned geometrically (C–H = 0.93–0.96 Å) and refined as riding with Uiso(H) = xUeq(C), where x = 1.5 for methyl and x = 1.2 for aryl H-atoms.

Structure description top

Claisen–Schmidt reaction is one of the most important reactions for the formation of α, β-unsaturated ketone by condensation between acetophenone and benzaldehyde (Asiri & Khan, 2010). The reaction is catalysed by bases, acids (Patil et al., 2009). It is widely used in the synthesis of important intermediates (Asiri & Khan, 2011) or end-products, pharmaceuticals (Kalirajan et al., 2009). It is also used in the field of matrial sciences such as photoelectronics, photophotonics, photodynamic therapy, electrochemical sensing, optical limiting, langmuir film and photoinitiated polymerization (Sarojini et al., 2006). The title compound (I), (Fig. 1) has been synthesized as a pharmaceutical intermediate. Similar structures to (I) have been published earlier (Asiri et al., 2010a,b and refereces therein).

In (I), the group A (C1—C6), the central propenone B (C7—C9/O3) and the group C (C10—C15/S1) are planar with r. m. s. deviation of 0.003, 0.012 and 0.008 Å, respectively. The dihedral angles between A/B, A/C and B/C are 9.88 (14), 12.00 (6) and 16.09 (12)°, respectively. The nitro group D (O1/N1/O2) is oriented at a dihedral angle of 8.4 (3)° with relation to the benzene ring A. The title compound consists of dimers due to intermolecular H-bonds of C—H···O type, where O-atom is of carbonyl and H-atom is of the nitrophenyl group. This H-bondings form a R22(14) (Fig. 2) ring motif (Bernstein et al., 1995). The same type of H-bonding between methyl and nitro groups consolidate the molecules in the form of one-dimensional polymers with R22(26) ring motifs and extending along the [1 0 1] direction. Moreover there are π···π stacking interactions between the benzene and thiophene rings with centroid-centroid distances of 3.7263 (14)–3.7487 (14) Å.

For the synthesis of similar compounds, see: Asiri & Khan (2010, 2011); Kalirajan et al. (2009); Patil et al. (2009); Sarojini et al. (2006). For related structures and background references, see: Asiri et al. (2010a,b). For graph-set notation, see: Bernstein et al. (1995).

Computing details top

Data collection: APEX2 (Bruker, 2009); cell refinement: SAINT (Bruker, 2009); data reduction: SAINT (Bruker, 2009); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997) and PLATON (Spek, 2009); software used to prepare material for publication: WinGX (Farrugia, 1999) and PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. View of the title molecule with displacement ellipsoids drawn at the 50% probability level. H-atoms are shown as small spheres of arbitrary radii.
[Figure 2] Fig. 2. The partial packing (PLATON; Spek, 2009) showing the [1 0 1] tapes via R22(14) and R22(26) hydrogen-bond motifs.
(2E)-1-(2,5-Dimethylthiophen-3-yl)-3-(3-nitrophenyl)prop-2-en-1-one top
Crystal data top
C15H13NO3SF(000) = 600
Mr = 287.32Dx = 1.402 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 1493 reflections
a = 7.3802 (5) Åθ = 2.1–25.3°
b = 13.7973 (9) ŵ = 0.24 mm1
c = 13.4638 (8) ÅT = 296 K
β = 96.997 (3)°Prism, yellow
V = 1360.77 (15) Å30.25 × 0.22 × 0.20 mm
Z = 4
Data collection top
Bruker KAPPA APEXII CCD
diffractometer
2466 independent reflections
Radiation source: fine-focus sealed tube1493 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.051
Detector resolution: 8.10 pixels mm-1θmax = 25.3°, θmin = 2.1°
ω scansh = 88
Absorption correction: multi-scan
(SADABS; Bruker, 2005)
k = 1316
Tmin = 0.945, Tmax = 0.955l = 1616
10732 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.047Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.117H-atom parameters constrained
S = 1.03 w = 1/[σ2(Fo2) + (0.0498P)2 + 0.0228P]
where P = (Fo2 + 2Fc2)/3
2466 reflections(Δ/σ)max < 0.001
183 parametersΔρmax = 0.17 e Å3
0 restraintsΔρmin = 0.25 e Å3
Crystal data top
C15H13NO3SV = 1360.77 (15) Å3
Mr = 287.32Z = 4
Monoclinic, P21/cMo Kα radiation
a = 7.3802 (5) ŵ = 0.24 mm1
b = 13.7973 (9) ÅT = 296 K
c = 13.4638 (8) Å0.25 × 0.22 × 0.20 mm
β = 96.997 (3)°
Data collection top
Bruker KAPPA APEXII CCD
diffractometer
2466 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2005)
1493 reflections with I > 2σ(I)
Tmin = 0.945, Tmax = 0.955Rint = 0.051
10732 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0470 restraints
wR(F2) = 0.117H-atom parameters constrained
S = 1.03Δρmax = 0.17 e Å3
2466 reflectionsΔρmin = 0.25 e Å3
183 parameters
Special details top

Geometry. Bond distances, angles etc. have been calculated using the rounded fractional coordinates. All su's are estimated from the variances of the (full) variance-covariance matrix. The cell e.s.d.'s are taken into account in the estimation of distances, angles and torsion angles

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
S10.21173 (10)0.46796 (5)0.18440 (5)0.0520 (3)
O10.4422 (3)0.10573 (18)0.51656 (15)0.0876 (10)
O20.5017 (3)0.25617 (17)0.49723 (15)0.0892 (10)
O30.0404 (3)0.17111 (14)0.06130 (14)0.0744 (8)
N10.4392 (3)0.1786 (2)0.46575 (18)0.0607 (10)
C10.2331 (3)0.07879 (19)0.22025 (18)0.0413 (9)
C20.3105 (3)0.08450 (19)0.32014 (17)0.0431 (9)
C30.3587 (3)0.17332 (19)0.36030 (18)0.0444 (9)
C40.3343 (4)0.2574 (2)0.3066 (2)0.0577 (11)
C50.2586 (4)0.2528 (2)0.2088 (2)0.0618 (11)
C60.2074 (4)0.1642 (2)0.1663 (2)0.0530 (10)
C70.1775 (3)0.01281 (19)0.17143 (19)0.0457 (10)
C80.2028 (4)0.10257 (19)0.20395 (18)0.0490 (10)
C90.1319 (4)0.1860 (2)0.14180 (18)0.0491 (10)
C100.1748 (3)0.28475 (18)0.17826 (18)0.0419 (9)
C110.1514 (3)0.36459 (18)0.11758 (18)0.0438 (9)
C120.0882 (4)0.3718 (2)0.00750 (18)0.0616 (11)
C130.2414 (3)0.31061 (19)0.27906 (17)0.0439 (9)
C140.2659 (3)0.40587 (19)0.29503 (17)0.0433 (9)
C150.3299 (4)0.4582 (2)0.39024 (19)0.0597 (11)
H20.329100.028700.358790.0517*
H40.368450.316700.336080.0691*
H50.241650.309110.170940.0742*
H60.154590.161880.100040.0636*
H70.114640.006980.107530.0548*
H80.266070.113620.266960.0588*
H12A0.042830.370680.003220.0925*
H12B0.135380.318000.026580.0925*
H12C0.131520.431280.018060.0925*
H130.265680.264830.329620.0527*
H15A0.452010.481320.388080.0894*
H15B0.328000.414790.445810.0894*
H15C0.250520.512150.397900.0894*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S10.0670 (5)0.0373 (4)0.0511 (4)0.0052 (4)0.0043 (3)0.0067 (3)
O10.132 (2)0.0787 (18)0.0482 (13)0.0074 (15)0.0048 (13)0.0029 (13)
O20.120 (2)0.0730 (16)0.0699 (16)0.0207 (15)0.0078 (14)0.0294 (13)
O30.1077 (17)0.0512 (13)0.0544 (12)0.0006 (12)0.0302 (12)0.0031 (10)
N10.0710 (17)0.0627 (19)0.0483 (16)0.0049 (15)0.0073 (12)0.0161 (15)
C10.0439 (16)0.0344 (15)0.0453 (15)0.0035 (13)0.0037 (12)0.0001 (13)
C20.0515 (17)0.0361 (16)0.0420 (15)0.0013 (13)0.0067 (12)0.0021 (13)
C30.0471 (17)0.0411 (17)0.0445 (15)0.0004 (14)0.0036 (12)0.0072 (14)
C40.067 (2)0.0354 (17)0.069 (2)0.0034 (15)0.0018 (16)0.0096 (16)
C50.079 (2)0.0352 (17)0.068 (2)0.0013 (16)0.0044 (17)0.0073 (15)
C60.0605 (19)0.0453 (18)0.0500 (16)0.0025 (15)0.0066 (14)0.0031 (15)
C70.0500 (17)0.0423 (18)0.0429 (16)0.0023 (14)0.0016 (12)0.0036 (13)
C80.0639 (19)0.0420 (18)0.0384 (15)0.0004 (14)0.0047 (13)0.0029 (13)
C90.0582 (18)0.0476 (18)0.0396 (15)0.0023 (14)0.0015 (14)0.0062 (14)
C100.0518 (17)0.0342 (16)0.0382 (14)0.0054 (12)0.0003 (12)0.0064 (12)
C110.0500 (17)0.0415 (16)0.0396 (14)0.0085 (13)0.0038 (12)0.0040 (13)
C120.084 (2)0.0536 (19)0.0449 (16)0.0124 (16)0.0011 (15)0.0121 (14)
C130.0527 (17)0.0402 (17)0.0376 (15)0.0000 (13)0.0006 (12)0.0106 (12)
C140.0451 (16)0.0408 (17)0.0432 (15)0.0011 (13)0.0023 (12)0.0023 (13)
C150.073 (2)0.0519 (19)0.0524 (17)0.0011 (16)0.0008 (15)0.0062 (14)
Geometric parameters (Å, º) top
S1—C111.716 (3)C10—C131.431 (3)
S1—C141.723 (2)C11—C121.502 (3)
O1—N11.215 (4)C13—C141.341 (4)
O2—N11.221 (4)C14—C151.497 (4)
O3—C91.223 (3)C2—H20.9300
N1—C31.473 (3)C4—H40.9300
C1—C21.398 (3)C5—H50.9300
C1—C61.385 (4)C6—H60.9300
C1—C71.460 (4)C7—H70.9300
C2—C31.369 (4)C8—H80.9300
C3—C41.367 (4)C12—H12A0.9600
C4—C51.368 (4)C12—H12B0.9600
C5—C61.383 (4)C12—H12C0.9600
C7—C81.319 (4)C13—H130.9300
C8—C91.481 (4)C15—H15A0.9600
C9—C101.470 (4)C15—H15B0.9600
C10—C111.370 (3)C15—H15C0.9600
C11—S1—C1493.33 (12)C13—C14—C15129.3 (2)
O1—N1—O2123.4 (2)C1—C2—H2120.00
O1—N1—C3118.7 (2)C3—C2—H2120.00
O2—N1—C3118.0 (2)C3—C4—H4121.00
C2—C1—C6118.1 (2)C5—C4—H4121.00
C2—C1—C7122.8 (2)C4—C5—H5120.00
C6—C1—C7119.2 (2)C6—C5—H5120.00
C1—C2—C3119.1 (2)C1—C6—H6119.00
N1—C3—C2118.7 (2)C5—C6—H6119.00
N1—C3—C4118.7 (2)C1—C7—H7115.00
C2—C3—C4122.7 (2)C8—C7—H7115.00
C3—C4—C5118.8 (3)C7—C8—H8119.00
C4—C5—C6119.9 (3)C9—C8—H8119.00
C1—C6—C5121.5 (2)C11—C12—H12A109.00
C1—C7—C8130.0 (2)C11—C12—H12B109.00
C7—C8—C9121.1 (2)C11—C12—H12C109.00
O3—C9—C8119.3 (2)H12A—C12—H12B109.00
O3—C9—C10121.7 (2)H12A—C12—H12C109.00
C8—C9—C10119.0 (2)H12B—C12—H12C109.00
C9—C10—C11122.7 (2)C10—C13—H13123.00
C9—C10—C13125.7 (2)C14—C13—H13123.00
C11—C10—C13111.7 (2)C14—C15—H15A110.00
S1—C11—C10110.48 (18)C14—C15—H15B109.00
S1—C11—C12119.47 (19)C14—C15—H15C109.00
C10—C11—C12130.0 (2)H15A—C15—H15B110.00
C10—C13—C14114.9 (2)H15A—C15—H15C109.00
S1—C14—C13109.66 (18)H15B—C15—H15C109.00
S1—C14—C15121.10 (19)
C14—S1—C11—C100.85 (19)C3—C4—C5—C60.4 (4)
C14—S1—C11—C12179.6 (2)C4—C5—C6—C10.9 (4)
C11—S1—C14—C131.22 (19)C1—C7—C8—C9179.2 (2)
C11—S1—C14—C15178.9 (2)C7—C8—C9—O33.8 (4)
O1—N1—C3—C27.8 (3)C7—C8—C9—C10175.7 (2)
O1—N1—C3—C4171.9 (2)O3—C9—C10—C1114.6 (4)
O2—N1—C3—C2171.3 (2)O3—C9—C10—C13164.2 (3)
O2—N1—C3—C49.0 (3)C8—C9—C10—C11164.9 (2)
C6—C1—C2—C30.5 (3)C8—C9—C10—C1316.3 (4)
C7—C1—C2—C3179.9 (2)C9—C10—C11—S1179.2 (2)
C2—C1—C6—C50.9 (4)C9—C10—C11—C122.3 (4)
C7—C1—C6—C5179.6 (2)C13—C10—C11—S10.3 (2)
C2—C1—C7—C87.4 (4)C13—C10—C11—C12178.8 (2)
C6—C1—C7—C8173.2 (3)C9—C10—C13—C14178.2 (2)
C1—C2—C3—N1179.7 (2)C11—C10—C13—C140.7 (3)
C1—C2—C3—C40.0 (4)C10—C13—C14—S11.3 (3)
N1—C3—C4—C5179.6 (2)C10—C13—C14—C15178.9 (2)
C2—C3—C4—C50.0 (4)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C6—H6···O3i0.932.463.373 (3)168
C15—H15B···O2ii0.962.593.339 (4)135
Symmetry codes: (i) x, y, z; (ii) x+1, y, z+1.

Experimental details

Crystal data
Chemical formulaC15H13NO3S
Mr287.32
Crystal system, space groupMonoclinic, P21/c
Temperature (K)296
a, b, c (Å)7.3802 (5), 13.7973 (9), 13.4638 (8)
β (°) 96.997 (3)
V3)1360.77 (15)
Z4
Radiation typeMo Kα
µ (mm1)0.24
Crystal size (mm)0.25 × 0.22 × 0.20
Data collection
DiffractometerBruker KAPPA APEXII CCD
Absorption correctionMulti-scan
(SADABS; Bruker, 2005)
Tmin, Tmax0.945, 0.955
No. of measured, independent and
observed [I > 2σ(I)] reflections
10732, 2466, 1493
Rint0.051
(sin θ/λ)max1)0.600
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.047, 0.117, 1.03
No. of reflections2466
No. of parameters183
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.17, 0.25

Computer programs: APEX2 (Bruker, 2009), SAINT (Bruker, 2009), SAINT (Bruker, 2009), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 for Windows (Farrugia, 1997) and PLATON (Spek, 2009), WinGX (Farrugia, 1999) and PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C6—H6···O3i0.932.463.373 (3)168
C15—H15B···O2ii0.962.593.339 (4)135
Symmetry codes: (i) x, y, z; (ii) x+1, y, z+1.
 

Acknowledgements

The authors would like to thank the Chemistry Department, King Abdulaziz University, Jeddah, Saudi Arabia, for providing research facilities.

References

First citationAsiri, A. M. & Khan, S. A. (2010). Molbank, M687.  CrossRef Google Scholar
First citationAsiri, A. M. & Khan, S. A. (2011). Molecules, 16, 523–531.  Web of Science CrossRef CAS PubMed Google Scholar
First citationAsiri, A. M., Khan, S. A. & Tahir, M. N. (2010a). Acta Cryst. E66, o2358.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationAsiri, A. M., Khan, S. A. & Tahir, M. N. (2010b). Acta Cryst. E66, o2404.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationBernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573.  CrossRef CAS Web of Science Google Scholar
First citationBruker (2005). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBruker (2009). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationFarrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838.  CrossRef CAS IUCr Journals Google Scholar
First citationKalirajan, R., Sivakumar, S. U., Jubie, S., Gowramma, B. & Suresh, B. (2009). Intl J. ChemTech Res. 1, 27–34.  CAS Google Scholar
First citationPatil, C. B., Mahajan, S. K. & Katti, S. A. (2009). J. Pharm. Sci. Res. 1, 11–22.  CAS Google Scholar
First citationSarojini, B. K., Narayana, B., Ashalatha, B. V., Indira, J. K. G. & Lobo, K. G. (2006). J. Cryst. Growth, 295, 54–59.  CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds