metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Tris(aceto­nitrile-κN){2,6-bis­­[(di­phenyl­phosphan­yl)amino]-4-eth­­oxy-1,3,5-triazine-κ3P,N1,P′}iron(II) bis­­(tetra­fluorido­borate) aceto­nitrile disolvate

aInstitute of Applied Synthetic Chemistry, Vienna University of Technology, Getreidemarkt 9/163, A-1060 Vienna, Austria, and bInstitute of Chemical Technology and Analytics, Vienna University of Technology, Getreidemarkt 9/164SC, A-1060 Vienna, Austria
*Correspondence e-mail: kurt.mereiter@tuwien.ac.at

(Received 19 November 2011; accepted 21 November 2011; online 25 November 2011)

In the title compound, [Fe(CH3CN)3(C29H27N5OP2)](BF4)2·2CH3CN, the FeII ion is octa­hedrally coordinated by a meridionally chelating tridentate pincer-type PNP ligand derived from 2,6-diamino-4-eth­oxy-1,3,5-triazine and by three acetonitrile mol­ecules. The four Fe—N bond lengths range from 1.9142 (12) to 1.9579 (11) Å, while the Fe—P bonds are 2.2452 (4) and 2.2506 (4) Å [P—Fe—P = 165.523 (14)°], consistent with FeII in a low-spin state. Unlike related Fe PNP complexes based on 2,6-diamino­pyridine, the BF4 anions are not hydrogen bonded to the two NH groups of the pincer ligand but show instead anion–π inter­actions with the triazine ring and acetonitrile mol­ecules in addition to ten C—H⋯F inter­actions. Most remarkable among these is an anion–π(triazine) inter­action with a short distance of 2.788 (2) Å between one F and the centroid of the π-acidic triazine ring. The corresponding shortest distance between this F atom and a triazine carbon atom is 2.750 (2) Å. The two NH groups of the pincer ligand donate N—H⋯N hydrogen bonds to the triazine N atom of a neighbouring complex and to an uncoordinated acetonitrile mol­ecule. This last mol­ecule is in a side-on head-to-tail association with the second uncoordinated acetonitrile at C⋯N distances of 3.467 (2) and 3.569 (2) Å. In contrast to several related compounds with diamino­pyridine- instead of diamino­triazine-based PNP ligands, the title crystal structure is remarkably well ordered. This suggests that the diamino­triazine moiety exerts notable crystal structure stabilizing effects.

Related literature

For a review on PNP and PCP pincer complexes based on 2,6-diamino­pyridine and 1,3-diamino­benzene, see: Benito-Garagorri & Kirchner (2008[Benito-Garagorri, D. & Kirchner, K. (2008). Acc. Chem. Res. 41, 201-213.]). For the crystal structures of related PNP pincer complexes, see: Benito-Garagorri et al. (2006[Benito-Garagorri, D., Becker, E., Wiedermann, J., Lackner, W., Pollak, M., Mereiter, K., Kisala, J. & Kirchner, K. (2006). Organometallics, 26, 1900-1913.]). For weak hydrogen bonds, see Desiraju & Steiner (1999[Desiraju, G. R. & Steiner, T. (1999). The Weak Hydrogen Bond in Structural Chemistry and Biology. Oxford University Press.]). For anion–π inter­actions, see Gamez et al. (2007[Gamez, P., Mooibroek, T. J., Teat, S. J. & Reedijk, J. (2007). Acc. Chem. Res. 40, 435-444.]); Mooibroek et al. (2008[Mooibroek, T. J., Black, C. A., Gamez, P. & Reedijk, J. (2008). Cryst. Growth Des. 8, 1082-1093.]); Manzano et al. (2008[Manzano, B. R., Jalon, F. A., Ortiz, I. M., Soriano, M. L., Gomez de la Torre, F., Elguero, J., Maestro, M. A., Mereiter, K. & Claridge, T. D. W. (2008). Inorg. Chem. 47, 413-428.]); Quinonero et al. (2010[Quinonero, D., Deya, P. M., Carranza, M. P., Rodriguez, A. M., Jalon, F. A. & Manzano, B. R. (2010). Dalton Trans. 39, 794-806.]); Lu et al. (2009[Lu, J., Jalilov, A. S. & Kochi, J. K. (2009). Acta Cryst. C65, o226-o228.]). For a description of the Cambridge Structural Database, see: Allen (2002[Allen, F. H. (2002). Acta Cryst. B58, 380-388.]).

[Scheme 1]

Experimental

Crystal data
  • [Fe(C2H3N)3(C29H27N5OP2)](BF4)2·2C2H3N

  • Mr = 958.24

  • Triclinic, [P \overline 1]

  • a = 8.8548 (4) Å

  • b = 13.8402 (7) Å

  • c = 20.1352 (10) Å

  • α = 71.399 (2)°

  • β = 82.731 (2)°

  • γ = 72.789 (2)°

  • V = 2232.6 (2) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.49 mm−1

  • T = 100 K

  • 0.58 × 0.36 × 0.30 mm

Data collection
  • Bruker SMART APEX CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2003[Bruker (2003). Programs SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.74, Tmax = 0.86

  • 26262 measured reflections

  • 12688 independent reflections

  • 11076 reflections with I > 2σ(I)

  • Rint = 0.017

Refinement
  • R[F2 > 2σ(F2)] = 0.038

  • wR(F2) = 0.102

  • S = 1.03

  • 12688 reflections

  • 573 parameters

  • H-atom parameters constrained

  • Δρmax = 0.74 e Å−3

  • Δρmin = −0.44 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N4—H4N⋯N9 0.88 2.03 2.892 (2) 168
N5—H5N⋯N3i 0.88 2.12 2.966 (2) 162
C9—H9⋯F7 0.95 2.53 3.276 (2) 135
C12—H12⋯F4 0.95 2.56 3.280 (2) 133
C13—H13⋯F2ii 0.95 2.54 3.464 (2) 164
C21—H21⋯F6 0.95 2.49 3.350 (2) 150
C25—H25⋯F5iii 0.95 2.42 3.365 (2) 174
C26—H26⋯F5i 0.95 2.50 3.144 (2) 125
C29—H29A⋯F3iv 0.98 2.35 3.239 (2) 151
C31—H31A⋯F8 0.98 2.46 3.360 (2) 153
C33—H33B⋯F4 0.98 2.49 3.191 (2) 128
C39—H39B⋯F2v 0.98 2.41 3.259 (3) 144
Symmetry codes: (i) -x+1, -y+1, -z+1; (ii) -x, -y+2, -z; (iii) x-1, y+1, z; (iv) -x+1, -y+2, -z; (v) x+1, y-1, z.

Data collection: SMART (Bruker, 2003[Bruker (2003). Programs SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2003[Bruker (2003). Programs SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]) and Mercury (Macrae et al., 2006[Macrae, C. F., Edgington, P. R., McCabe, P., Pidcock, E., Shields, G. P., Taylor, R., Towler, M. & van de Streek, J. (2006). J. Appl. Cryst. 39, 453-457.]); software used to prepare material for publication: PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]) and publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Supporting information


Comment top

The title compound belongs to a family of transition metal complexes with tridentate PNP pincer ligands in which a central pyridine ring contains two –NH–PR2 substituents in the two ortho-positions (R = alkyl, aryl, alkoxy, aryloxy). Together with the pyridine N atom the two P atoms of the ligand chelate transition metals in meridional geometry and generate thereby robust complexes with interesting properties for applications like homogeneous catalysis (Benito-Garagorri & Kirchner, 2008). Instead of pyridine the title compound is based on 1,3,5-triazine substituted in the 2- and 6-positions by diphenylphosphinoamine groups and in the 4-position by an ethoxy group. Such modifications aim to alter the electronic properties of the PNP ligand and the solubility properties of the resulting complex.

In the title compound, (I), iron is in a distorted octahedral coordination by the PNP ligand and three acetonitrile molecules providing a P2N4 set of donor atoms (Fig. 1) with bond lengths to Fe1 listed in Table 1 and following further features: mean bond length Fe1—N = 1.931 (17) Å, mean bond length Fe1—P = 2.248 (4) Å, cis bond angles from 82.74 (3) to 99.61 (3)°, trans bond angles N1—Fe1—N6 = 177.64 (4)°, N7—Fe1—N8 = 179.78 (5)°, and P1—Fe1—P2 = 165.52 (2)°. These geometric features are similar to those of four related iron(II) PNP tris(acetonitrile) complexes that are based on pyridine and were reported by Benito-Garagorri et al. (2006) [refcodes JEGQAO, JEGQES, JEGQIW, JEGQOC of the Cambridge Structural Database, Version 5.31, with Aug. 2010 updates; Allen, 2002]. The remaining parts of the Fe complex in (I) show normal dimensions. The triazine ring has a mean bond lengths of 1.341 (11) Å and the familiar trigonal distortion with C—N—C bond angles near 114° and N—C—N bond angles in the range 124.0 (1) - 126.9 (1)°. The ethoxy group adopts an angular conformation with torsion angle C2—O1—C34—C35 = 89.2 (2)°.

Whereas the above mentioned related Fe PNP compounds are all plagued by orientation disorder of their BF4- counter anions, the title compound (I) is well ordered with respect to BF4 and the two noncoordinating acetonitrile solvent molecules as well. This is interesting because the BF4 anions normally form N—H···F hydrogen bonds with the distinctly acidic NH groups of the PNP ligands (Benito-Garagorri et al., 2006), while in (I) they do not. As outlined in Fig. 2, the N5—H group in (I) forms a pair of complementary N5—H···N3 hydrogen bonds with a centrosymmetric equivalent of the Fe complex (N5···N3 = 2.966 Å, Table 2), and the N4—H group a hydrogen bond to N9 of a noncoordinating acetonitrile molecule (N4···N9 = 2.892 Å). As indicated by the green dashed lines in Fig. 2, this CH3CN molecule is in close head-to-tail association with the second noncoordinating CH3CN molecule, N9···C38 = 3.569 (2) Å, C36···N10 = 3.467 (2) Å, helping to fix that molecule in the crystal lattice. The two BF4 anions in turn are engaged in C—H···F and anion–π interactions. There are ten C—H···F interactions with C···F distances in the range 3.144 (2) to 3.464 (2) Å (cf. Table 2) of which a part is shown in Fig. 2. These bonds are with six phenyl and four CH3CN hydrogen atoms (Desiraju & Steiner, 1999). Very interesting in (I) is the strong anion–π interaction between the B2F4 anion and the triazine ring, which is a distinctly π–acidic or electron deficient heteroaromat very suitable for such interaction: The distance between F7 and the triazine ring centroid Cg1 (x,y,z = 0.453645 0.475396 0.361507) is D = 2.788 (2) Å and the distance to the triazine mean plane d' = 2.699 (1) Å; hence, F7 is off-centered by 0.700 Å and the incliniation of the D vector to the triazine plane is α = 75.5° (D, d', and α according to the definitions of Mooibroek et al., 2008). The three shortest distances of F7 to ring atoms are N1 3.012 (2), C1 2.750 (2), N2 2.915 (2) Å. Compared with literature data this is among the shortest F–π-interactions reported so far (Gamez et al., 2007; Mooibroek et al., 2008; Manzano et al., 2008, Quinonero et al., 2010; Lu et al., 2009). For instance, Mooibroek et al. (2008) report in their exhaustive CSD date base analysis a mean value of D = 3.060±0.184 Å for eight crystal structures with BF4 anions and 1,3,5-triazines, and a corresponding value of D = 3.076±0.185 Å for 26 cystal structures with PF6 anions. The remaining anion–π interactions in (I) are less pronounced but still of interest although they do not concern aromatic rings rather than acetonitrile CN groups. Referring to the van der Waals radii sums for F···C = 3.17 Å and F···N = 3.02 Å (Mooibroek et al., 2008), the associations F1···C28 = 3.006 (2) Å and F6···C30 = 3.091 (2) Å suggest anion–π(CN) interactions, while F1···C32 = 3.221 (2) Å is slightly above the limit. The corresponding F···N distances are all distinctly larger than the F···C distances and the F···N radii sum.

A packing diagram of the structure is presented in Fig. 3. It gives only the N—H···N hydrogen bonds showing that they link two Fe PNP complexes and two noncoordinating CH3CN molecules into a centrosymmetric dimer. The C—H···F and anion–π interactions link all constituents in a three-dimensional supramolecular fashion. ππ stacking between arene rings is lacking in (I).

Related literature top

For a review on PNP and PCP pincer complexes based on 2,6-diaminopyridine and 1,3-diaminobenzene, see: Benito-Garagorri & Kirchner (2008). For the crystal structures of related PNP pincer complexes, see: Benito-Garagorri et al. (2006). For weak hydrogen bonds, see Desiraju & Steiner (1999). For anion–π interactions, see Gamez et al. (2007); Mooibroek et al. (2008); Manzano et al. (2008); Quinonero et al. (2010); Lu et al. (2009). For a description of the Cambridge Structural Database, see: Allen (2002).

Experimental top

The title compound, (I), was synthesized by a three-step procedure. 2,6-Diamino-4-ethoxy-1,3,5-triazine: 2,6-Diamino-4-chloro-1,3,5-triazine (3.0 g, 20.6 mmol, Sigma-Aldrich) was suspended in 40 ml of EtOH and treated with KOH (1.27 g, 22.7 mmol) and refluxed for 20 h. The hot solution was then filtered and left in the refrigerator overnight. The supernatant was decanted and the resulting white solid was dried under vacuum. Yield: 2.62 g (82%).

N,N'-Bis(diphenylphosphino)-2,6-diamino-4-ethoxy-1,3,5-triazine: Triethylamine (2.69 ml, 19.33 mmol) was added to a solution of 2,6-diamino-4-ethoxy-1,3,5-triazine (1.50 g, 9.67 mmol) in toluene (50 ml). The mixture was cooled to 0 °C and PPh2Cl (3.47 ml,19.33 mmol) was added dropwise. The reaction was allowed to reach room temperature and refluxed overnight. After that, the solution was filtered and the solvent was removed under vacuum to give a white solid which was dried under vacuum. Yield: 4.61 g (92%).

(I): A solution of N,N'-bis(diphenylphosphino)-2,6-diamino-4-ethoxy-1,3,5-triazine (0.60 g, 1.15 mmol) and [Fe(H2O)6](BF4)2 (0.39 g, 1.15 mmol) in acetonitrile (10 ml) was stirred at room temperature for 4 h. Insoluble materials were then removed by filtration and the volume of the solution was reduced to about 2 ml. The solvent was removed under vacuum and the remaining solid washed twice with Et2O. The crude product was purified by flash chromatography (neutral Al2O3, eluent CH3CN). Yield after solvent removal under vacuum: 0.82 g (82%). Orange crystals for X-ray diffraction were obtained by recrystallization from acetonitrile using Et2O as the anti-solvent and the vapour diffusion method.

Refinement top

H atoms were located in a difference Fourier map, placed in calculated positions (N—H = 0.88 Å, C—H = 0.95 - 0.98 Å) and thereafter treated as riding. A torsional parameter was refined for each methyl group. Uiso(H) = 1.2Ueq(C,N) for CH, CH2 and NH groups; Uiso(H) = 1.5Ueq(C) for CH3 groups.

Structure description top

The title compound belongs to a family of transition metal complexes with tridentate PNP pincer ligands in which a central pyridine ring contains two –NH–PR2 substituents in the two ortho-positions (R = alkyl, aryl, alkoxy, aryloxy). Together with the pyridine N atom the two P atoms of the ligand chelate transition metals in meridional geometry and generate thereby robust complexes with interesting properties for applications like homogeneous catalysis (Benito-Garagorri & Kirchner, 2008). Instead of pyridine the title compound is based on 1,3,5-triazine substituted in the 2- and 6-positions by diphenylphosphinoamine groups and in the 4-position by an ethoxy group. Such modifications aim to alter the electronic properties of the PNP ligand and the solubility properties of the resulting complex.

In the title compound, (I), iron is in a distorted octahedral coordination by the PNP ligand and three acetonitrile molecules providing a P2N4 set of donor atoms (Fig. 1) with bond lengths to Fe1 listed in Table 1 and following further features: mean bond length Fe1—N = 1.931 (17) Å, mean bond length Fe1—P = 2.248 (4) Å, cis bond angles from 82.74 (3) to 99.61 (3)°, trans bond angles N1—Fe1—N6 = 177.64 (4)°, N7—Fe1—N8 = 179.78 (5)°, and P1—Fe1—P2 = 165.52 (2)°. These geometric features are similar to those of four related iron(II) PNP tris(acetonitrile) complexes that are based on pyridine and were reported by Benito-Garagorri et al. (2006) [refcodes JEGQAO, JEGQES, JEGQIW, JEGQOC of the Cambridge Structural Database, Version 5.31, with Aug. 2010 updates; Allen, 2002]. The remaining parts of the Fe complex in (I) show normal dimensions. The triazine ring has a mean bond lengths of 1.341 (11) Å and the familiar trigonal distortion with C—N—C bond angles near 114° and N—C—N bond angles in the range 124.0 (1) - 126.9 (1)°. The ethoxy group adopts an angular conformation with torsion angle C2—O1—C34—C35 = 89.2 (2)°.

Whereas the above mentioned related Fe PNP compounds are all plagued by orientation disorder of their BF4- counter anions, the title compound (I) is well ordered with respect to BF4 and the two noncoordinating acetonitrile solvent molecules as well. This is interesting because the BF4 anions normally form N—H···F hydrogen bonds with the distinctly acidic NH groups of the PNP ligands (Benito-Garagorri et al., 2006), while in (I) they do not. As outlined in Fig. 2, the N5—H group in (I) forms a pair of complementary N5—H···N3 hydrogen bonds with a centrosymmetric equivalent of the Fe complex (N5···N3 = 2.966 Å, Table 2), and the N4—H group a hydrogen bond to N9 of a noncoordinating acetonitrile molecule (N4···N9 = 2.892 Å). As indicated by the green dashed lines in Fig. 2, this CH3CN molecule is in close head-to-tail association with the second noncoordinating CH3CN molecule, N9···C38 = 3.569 (2) Å, C36···N10 = 3.467 (2) Å, helping to fix that molecule in the crystal lattice. The two BF4 anions in turn are engaged in C—H···F and anion–π interactions. There are ten C—H···F interactions with C···F distances in the range 3.144 (2) to 3.464 (2) Å (cf. Table 2) of which a part is shown in Fig. 2. These bonds are with six phenyl and four CH3CN hydrogen atoms (Desiraju & Steiner, 1999). Very interesting in (I) is the strong anion–π interaction between the B2F4 anion and the triazine ring, which is a distinctly π–acidic or electron deficient heteroaromat very suitable for such interaction: The distance between F7 and the triazine ring centroid Cg1 (x,y,z = 0.453645 0.475396 0.361507) is D = 2.788 (2) Å and the distance to the triazine mean plane d' = 2.699 (1) Å; hence, F7 is off-centered by 0.700 Å and the incliniation of the D vector to the triazine plane is α = 75.5° (D, d', and α according to the definitions of Mooibroek et al., 2008). The three shortest distances of F7 to ring atoms are N1 3.012 (2), C1 2.750 (2), N2 2.915 (2) Å. Compared with literature data this is among the shortest F–π-interactions reported so far (Gamez et al., 2007; Mooibroek et al., 2008; Manzano et al., 2008, Quinonero et al., 2010; Lu et al., 2009). For instance, Mooibroek et al. (2008) report in their exhaustive CSD date base analysis a mean value of D = 3.060±0.184 Å for eight crystal structures with BF4 anions and 1,3,5-triazines, and a corresponding value of D = 3.076±0.185 Å for 26 cystal structures with PF6 anions. The remaining anion–π interactions in (I) are less pronounced but still of interest although they do not concern aromatic rings rather than acetonitrile CN groups. Referring to the van der Waals radii sums for F···C = 3.17 Å and F···N = 3.02 Å (Mooibroek et al., 2008), the associations F1···C28 = 3.006 (2) Å and F6···C30 = 3.091 (2) Å suggest anion–π(CN) interactions, while F1···C32 = 3.221 (2) Å is slightly above the limit. The corresponding F···N distances are all distinctly larger than the F···C distances and the F···N radii sum.

A packing diagram of the structure is presented in Fig. 3. It gives only the N—H···N hydrogen bonds showing that they link two Fe PNP complexes and two noncoordinating CH3CN molecules into a centrosymmetric dimer. The C—H···F and anion–π interactions link all constituents in a three-dimensional supramolecular fashion. ππ stacking between arene rings is lacking in (I).

For a review on PNP and PCP pincer complexes based on 2,6-diaminopyridine and 1,3-diaminobenzene, see: Benito-Garagorri & Kirchner (2008). For the crystal structures of related PNP pincer complexes, see: Benito-Garagorri et al. (2006). For weak hydrogen bonds, see Desiraju & Steiner (1999). For anion–π interactions, see Gamez et al. (2007); Mooibroek et al. (2008); Manzano et al. (2008); Quinonero et al. (2010); Lu et al. (2009). For a description of the Cambridge Structural Database, see: Allen (2002).

Computing details top

Data collection: SMART (Bruker, 2003); cell refinement: SAINT (Bruker, 2003); data reduction: SAINT (Bruker, 2003); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008) and Mercury (Macrae et al., 2006); software used to prepare material for publication: PLATON (Spek, 2009) and publCIF (Westrip, 2010).

Figures top
[Figure 1] Fig. 1. The asymmetric unit of (I) with displacement ellipsoids at the 50% probability level showing only N—H···N hydrogen bonds as red dashed lines. Symmetry code (i): 1 - x, 1 - y, 1 - z.
[Figure 2] Fig. 2. Selected hydrogen bonds, anion···π interactions, and head-to-tail association two CH3CN in (I) indicated by red, black, and green dashed lines, respectively. Cg is the centroid of the triazine ring. For geometric data of the hydrogen bonds, see Table 2. Other distances (Å) are: F1···C28 3.006 (2), F6···C30 3.091 (2), F7···C1 2.750 (2), F7···N2 2.915 (2), F7···N1 3.012 (2), N9···C38 3.569 (2), C36···N10 3.467 (2). Symmetry code (i): 1 - x, 1 - y, 1 - z.
[Figure 3] Fig. 3. Crystal packing of (I) in a view along the a-axis showing how the N—H···N hydrogen bonds link two Fe complexes and two acetontrile solvate molecules into a finite group. Symmetry code (i): 1 - x, 1 - y, 1 - z.
Tris(acetonitrile-κN){2,6-bis[(diphenylphosphanyl)amino]-4-ethoxy- 1,3,5-triazine-κ3P,N1,P'}iron(II) bis(tetrafluoridoborate) acetonitrile disolvate top
Crystal data top
[Fe(C2H3N)3(C29H27N5OP2)](BF4)2·2C2H3NZ = 2
Mr = 958.24F(000) = 984
Triclinic, P1Dx = 1.425 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 8.8548 (4) ÅCell parameters from 8213 reflections
b = 13.8402 (7) Åθ = 2.5–30.0°
c = 20.1352 (10) ŵ = 0.49 mm1
α = 71.399 (2)°T = 100 K
β = 82.731 (2)°Block, orange
γ = 72.789 (2)°0.58 × 0.36 × 0.30 mm
V = 2232.6 (2) Å3
Data collection top
Bruker SMART APEX CCD
diffractometer
12688 independent reflections
Radiation source: fine-focus sealed tube11076 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.017
ω scansθmax = 30.0°, θmin = 2.5°
Absorption correction: multi-scan
(SADABS; Bruker, 2003)
h = 1212
Tmin = 0.74, Tmax = 0.86k = 1719
26262 measured reflectionsl = 2828
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.038Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.102H-atom parameters constrained
S = 1.03 w = 1/[σ2(Fo2) + (0.0577P)2 + 0.9995P]
where P = (Fo2 + 2Fc2)/3
12688 reflections(Δ/σ)max = 0.002
573 parametersΔρmax = 0.74 e Å3
0 restraintsΔρmin = 0.44 e Å3
Crystal data top
[Fe(C2H3N)3(C29H27N5OP2)](BF4)2·2C2H3Nγ = 72.789 (2)°
Mr = 958.24V = 2232.6 (2) Å3
Triclinic, P1Z = 2
a = 8.8548 (4) ÅMo Kα radiation
b = 13.8402 (7) ŵ = 0.49 mm1
c = 20.1352 (10) ÅT = 100 K
α = 71.399 (2)°0.58 × 0.36 × 0.30 mm
β = 82.731 (2)°
Data collection top
Bruker SMART APEX CCD
diffractometer
12688 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2003)
11076 reflections with I > 2σ(I)
Tmin = 0.74, Tmax = 0.86Rint = 0.017
26262 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0380 restraints
wR(F2) = 0.102H-atom parameters constrained
S = 1.03Δρmax = 0.74 e Å3
12688 reflectionsΔρmin = 0.44 e Å3
573 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Fe10.54460 (2)0.690690 (14)0.254170 (9)0.01419 (5)
P10.53830 (4)0.61385 (3)0.172145 (16)0.01517 (7)
P20.54736 (4)0.72777 (3)0.354940 (17)0.01594 (7)
O10.37867 (13)0.30944 (8)0.44745 (5)0.0222 (2)
N10.49244 (12)0.56374 (8)0.31769 (5)0.01485 (19)
N20.41916 (13)0.40539 (9)0.33384 (6)0.0170 (2)
N30.44824 (13)0.45696 (9)0.43304 (6)0.0180 (2)
N40.47666 (13)0.50736 (9)0.22341 (5)0.0166 (2)
H4N0.45420.46410.20460.020*
N50.50809 (13)0.61675 (9)0.41348 (6)0.0172 (2)
H5N0.50470.60760.45890.021*
N60.59524 (13)0.81386 (9)0.18835 (6)0.0181 (2)
N70.76688 (13)0.62306 (9)0.26069 (6)0.0186 (2)
N80.32155 (13)0.75857 (9)0.24727 (6)0.0174 (2)
C10.46287 (14)0.49058 (10)0.29390 (6)0.0156 (2)
C20.41678 (15)0.39247 (10)0.40219 (7)0.0175 (2)
C30.48238 (14)0.54323 (10)0.38838 (6)0.0158 (2)
C40.72769 (15)0.55979 (11)0.13392 (7)0.0190 (2)
C50.79139 (17)0.63019 (12)0.07949 (8)0.0250 (3)
H50.72920.70050.05940.030*
C60.94560 (19)0.59708 (14)0.05485 (9)0.0343 (4)
H60.98930.64480.01800.041*
C71.0360 (2)0.49401 (16)0.08419 (10)0.0397 (4)
H71.14160.47140.06720.048*
C80.9733 (2)0.42420 (15)0.13793 (11)0.0412 (4)
H81.03550.35370.15750.049*
C90.81891 (18)0.45712 (13)0.16341 (9)0.0304 (3)
H90.77630.40950.20080.036*
C100.41181 (15)0.67008 (10)0.09752 (7)0.0177 (2)
C110.32052 (16)0.77537 (11)0.08017 (7)0.0198 (2)
H110.32320.81880.10800.024*
C120.22525 (16)0.81685 (11)0.02197 (7)0.0225 (3)
H120.16150.88810.01080.027*
C130.22351 (17)0.75411 (12)0.01961 (7)0.0246 (3)
H130.15970.78290.05960.030*
C140.31498 (18)0.64906 (12)0.00290 (7)0.0248 (3)
H140.31320.60630.03130.030*
C150.40884 (17)0.60697 (11)0.05546 (7)0.0217 (3)
H150.47110.53540.06690.026*
C160.72838 (16)0.72989 (11)0.38677 (7)0.0206 (2)
C170.75249 (19)0.82516 (13)0.38679 (8)0.0269 (3)
H170.67290.88990.37090.032*
C180.8950 (2)0.82454 (16)0.41049 (9)0.0363 (4)
H180.91210.88910.41050.044*
C191.0107 (2)0.73052 (17)0.43381 (9)0.0394 (4)
H191.10630.73060.45040.047*
C200.9880 (2)0.63569 (15)0.43311 (9)0.0349 (4)
H201.06870.57140.44850.042*
C210.84664 (18)0.63495 (13)0.40975 (8)0.0262 (3)
H210.83070.57010.40950.031*
C220.39861 (16)0.84083 (10)0.37039 (7)0.0188 (2)
C230.35655 (19)0.93268 (11)0.31328 (8)0.0254 (3)
H230.40410.93340.26820.030*
C240.2454 (2)1.02256 (12)0.32279 (9)0.0301 (3)
H240.21791.08480.28420.036*
C250.17431 (18)1.02166 (12)0.38861 (9)0.0273 (3)
H250.09851.08320.39500.033*
C260.21456 (18)0.93031 (12)0.44505 (8)0.0257 (3)
H260.16520.92940.48990.031*
C270.32680 (16)0.84016 (11)0.43620 (7)0.0213 (2)
H270.35440.77820.47500.026*
C280.62945 (17)0.88174 (11)0.14559 (7)0.0217 (3)
C290.6739 (2)0.96728 (13)0.08967 (8)0.0333 (3)
H29A0.75010.93730.05680.050*
H29B0.72201.00620.11000.050*
H29C0.57951.01560.06470.050*
C300.89967 (17)0.58461 (12)0.26125 (8)0.0247 (3)
C311.07032 (19)0.53667 (16)0.26182 (11)0.0416 (4)
H31A1.09200.45980.27220.062*
H31B1.11570.55240.29780.062*
H31C1.11780.56570.21580.062*
C320.18977 (17)0.79880 (12)0.24244 (7)0.0237 (3)
C330.0217 (2)0.85205 (18)0.23351 (11)0.0480 (5)
H33A0.04040.80490.26270.072*
H33B0.00310.87020.18420.072*
H33C0.00440.91680.24760.072*
C340.33860 (19)0.23392 (12)0.42023 (8)0.0251 (3)
H34A0.28830.27170.37440.030*
H34B0.26210.20100.45310.030*
C350.4844 (2)0.14967 (16)0.41153 (13)0.0453 (5)
H35A0.45610.09990.39320.068*
H35B0.53310.11160.45700.068*
H35C0.55950.18230.37860.068*
B10.1509 (2)1.07050 (13)0.09763 (9)0.0251 (3)
F10.28453 (14)0.99849 (9)0.12992 (8)0.0545 (4)
F20.07067 (14)1.13034 (11)0.14131 (7)0.0484 (3)
F30.19089 (18)1.13810 (10)0.03575 (6)0.0520 (3)
F40.05329 (13)1.01714 (8)0.08354 (6)0.0381 (2)
B20.9016 (2)0.31898 (14)0.36767 (10)0.0294 (3)
F50.89457 (19)0.22855 (9)0.42061 (6)0.0566 (4)
F60.9380 (2)0.39051 (10)0.39354 (7)0.0579 (4)
F70.76148 (14)0.36553 (11)0.33321 (8)0.0555 (3)
F81.01956 (13)0.29184 (9)0.31804 (6)0.0414 (2)
N90.4500 (2)0.34626 (12)0.16629 (8)0.0379 (3)
C360.4224 (2)0.28836 (13)0.14368 (9)0.0306 (3)
C370.3876 (2)0.21599 (16)0.11259 (12)0.0427 (4)
H37A0.41030.14470.14600.064*
H37B0.45340.21460.06980.064*
H37C0.27570.24000.10110.064*
N100.6755 (2)0.04815 (13)0.23086 (9)0.0414 (4)
C380.7314 (2)0.10238 (14)0.24545 (9)0.0329 (3)
C390.8041 (3)0.17130 (19)0.26401 (12)0.0490 (5)
H39A0.72330.23630.26630.073*
H39B0.88590.18930.22850.073*
H39C0.85210.13480.30980.073*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Fe10.01216 (9)0.01347 (9)0.01552 (8)0.00280 (6)0.00222 (6)0.00238 (6)
P10.01333 (14)0.01522 (14)0.01542 (14)0.00266 (11)0.00135 (10)0.00328 (11)
P20.01639 (15)0.01461 (14)0.01681 (14)0.00473 (11)0.00263 (11)0.00341 (11)
O10.0305 (5)0.0196 (5)0.0184 (4)0.0128 (4)0.0006 (4)0.0027 (4)
N10.0135 (5)0.0144 (5)0.0160 (5)0.0027 (4)0.0017 (3)0.0041 (4)
N20.0165 (5)0.0171 (5)0.0178 (5)0.0054 (4)0.0026 (4)0.0039 (4)
N30.0205 (5)0.0172 (5)0.0163 (5)0.0061 (4)0.0021 (4)0.0035 (4)
N40.0187 (5)0.0161 (5)0.0157 (5)0.0055 (4)0.0015 (4)0.0047 (4)
N50.0224 (5)0.0157 (5)0.0141 (4)0.0067 (4)0.0021 (4)0.0030 (4)
N60.0166 (5)0.0181 (5)0.0191 (5)0.0036 (4)0.0031 (4)0.0051 (4)
N70.0179 (5)0.0180 (5)0.0191 (5)0.0054 (4)0.0035 (4)0.0027 (4)
N80.0182 (5)0.0162 (5)0.0169 (5)0.0043 (4)0.0014 (4)0.0039 (4)
C10.0119 (5)0.0162 (5)0.0175 (5)0.0016 (4)0.0033 (4)0.0043 (4)
C20.0160 (5)0.0162 (5)0.0192 (5)0.0048 (4)0.0022 (4)0.0025 (4)
C30.0136 (5)0.0161 (5)0.0170 (5)0.0027 (4)0.0027 (4)0.0043 (4)
C40.0147 (6)0.0213 (6)0.0196 (6)0.0024 (5)0.0001 (4)0.0066 (5)
C50.0201 (6)0.0246 (7)0.0257 (6)0.0045 (5)0.0017 (5)0.0038 (5)
C60.0232 (7)0.0366 (9)0.0357 (8)0.0076 (6)0.0085 (6)0.0050 (7)
C70.0205 (7)0.0434 (10)0.0447 (10)0.0003 (7)0.0094 (6)0.0109 (8)
C80.0260 (8)0.0319 (9)0.0481 (10)0.0067 (6)0.0080 (7)0.0049 (7)
C90.0222 (7)0.0241 (7)0.0340 (8)0.0006 (5)0.0045 (6)0.0024 (6)
C100.0148 (5)0.0186 (6)0.0177 (5)0.0037 (4)0.0021 (4)0.0028 (4)
C110.0187 (6)0.0180 (6)0.0204 (6)0.0042 (5)0.0017 (4)0.0030 (5)
C120.0193 (6)0.0214 (6)0.0213 (6)0.0035 (5)0.0032 (5)0.0001 (5)
C130.0205 (6)0.0303 (7)0.0199 (6)0.0059 (5)0.0053 (5)0.0024 (5)
C140.0246 (7)0.0291 (7)0.0223 (6)0.0061 (5)0.0043 (5)0.0096 (5)
C150.0212 (6)0.0210 (6)0.0215 (6)0.0027 (5)0.0034 (5)0.0061 (5)
C160.0208 (6)0.0246 (6)0.0181 (5)0.0100 (5)0.0034 (4)0.0041 (5)
C170.0311 (8)0.0287 (7)0.0256 (7)0.0168 (6)0.0019 (5)0.0059 (6)
C180.0395 (9)0.0452 (10)0.0345 (8)0.0295 (8)0.0038 (7)0.0083 (7)
C190.0312 (8)0.0605 (12)0.0317 (8)0.0271 (8)0.0087 (6)0.0043 (8)
C200.0238 (7)0.0455 (10)0.0307 (8)0.0093 (7)0.0107 (6)0.0012 (7)
C210.0221 (7)0.0292 (7)0.0254 (6)0.0069 (5)0.0069 (5)0.0034 (5)
C220.0196 (6)0.0158 (5)0.0223 (6)0.0052 (4)0.0033 (4)0.0061 (5)
C230.0305 (7)0.0185 (6)0.0242 (6)0.0045 (5)0.0016 (5)0.0042 (5)
C240.0352 (8)0.0175 (6)0.0330 (8)0.0024 (6)0.0050 (6)0.0042 (6)
C250.0235 (7)0.0211 (6)0.0378 (8)0.0020 (5)0.0040 (6)0.0121 (6)
C260.0229 (7)0.0265 (7)0.0289 (7)0.0049 (5)0.0002 (5)0.0117 (6)
C270.0203 (6)0.0205 (6)0.0229 (6)0.0054 (5)0.0024 (5)0.0059 (5)
C280.0238 (6)0.0191 (6)0.0220 (6)0.0058 (5)0.0006 (5)0.0057 (5)
C290.0493 (10)0.0230 (7)0.0264 (7)0.0169 (7)0.0069 (6)0.0024 (6)
C300.0189 (6)0.0245 (7)0.0287 (7)0.0054 (5)0.0039 (5)0.0043 (5)
C310.0157 (7)0.0446 (10)0.0570 (11)0.0010 (7)0.0057 (7)0.0098 (9)
C320.0206 (6)0.0239 (6)0.0205 (6)0.0027 (5)0.0002 (5)0.0016 (5)
C330.0188 (8)0.0557 (12)0.0434 (10)0.0061 (7)0.0010 (7)0.0049 (9)
C340.0328 (7)0.0229 (7)0.0247 (6)0.0170 (6)0.0021 (5)0.0047 (5)
C350.0432 (10)0.0356 (9)0.0685 (13)0.0085 (8)0.0112 (9)0.0292 (9)
B10.0253 (8)0.0208 (7)0.0277 (7)0.0038 (6)0.0059 (6)0.0054 (6)
F10.0397 (6)0.0273 (5)0.0937 (10)0.0018 (5)0.0371 (6)0.0110 (6)
F20.0350 (6)0.0698 (8)0.0522 (7)0.0098 (6)0.0023 (5)0.0398 (6)
F30.0873 (10)0.0522 (7)0.0275 (5)0.0418 (7)0.0037 (5)0.0080 (5)
F40.0372 (5)0.0315 (5)0.0483 (6)0.0118 (4)0.0163 (4)0.0078 (4)
B20.0302 (9)0.0228 (8)0.0311 (8)0.0014 (6)0.0074 (7)0.0052 (6)
F50.0906 (10)0.0270 (5)0.0376 (6)0.0083 (6)0.0169 (6)0.0043 (5)
F60.0923 (11)0.0402 (7)0.0487 (7)0.0204 (7)0.0164 (7)0.0158 (5)
F70.0288 (6)0.0589 (8)0.0708 (8)0.0107 (5)0.0183 (5)0.0231 (7)
F80.0290 (5)0.0476 (6)0.0451 (6)0.0080 (5)0.0026 (4)0.0139 (5)
N90.0545 (10)0.0293 (7)0.0345 (7)0.0144 (7)0.0054 (6)0.0115 (6)
C360.0304 (8)0.0252 (7)0.0371 (8)0.0069 (6)0.0031 (6)0.0106 (6)
C370.0330 (9)0.0388 (10)0.0683 (13)0.0096 (7)0.0059 (8)0.0308 (9)
N100.0441 (9)0.0342 (8)0.0459 (9)0.0092 (7)0.0028 (7)0.0128 (7)
C380.0322 (8)0.0284 (8)0.0324 (8)0.0019 (6)0.0014 (6)0.0071 (6)
C390.0472 (12)0.0539 (12)0.0558 (12)0.0206 (10)0.0016 (9)0.0248 (10)
Geometric parameters (Å, º) top
Fe1—N11.9579 (11)C18—H180.9500
Fe1—N61.9298 (11)C19—C201.390 (3)
Fe1—N71.9142 (12)C19—H190.9500
Fe1—N81.9211 (11)C20—C211.395 (2)
Fe1—P12.2452 (4)C20—H200.9500
Fe1—P22.2506 (4)C21—H210.9500
P1—N41.7025 (11)C22—C271.3938 (19)
P1—C41.8063 (13)C22—C231.4046 (19)
P1—C101.8116 (13)C23—C241.390 (2)
P2—N51.7113 (11)C23—H230.9500
P2—C221.8075 (14)C24—C251.391 (2)
P2—C161.8113 (14)C24—H240.9500
O1—C21.3222 (15)C25—C261.391 (2)
O1—C341.4673 (17)C25—H250.9500
N1—C11.3495 (16)C26—C271.393 (2)
N1—C31.3564 (16)C26—H260.9500
N2—C21.3284 (16)C27—H270.9500
N2—C11.3315 (16)C28—C291.4620 (19)
N3—C31.3362 (16)C29—H29A0.9800
N3—C21.3434 (17)C29—H29B0.9800
N4—C11.3587 (16)C29—H29C0.9800
N4—H4N0.8800C30—C311.459 (2)
N5—C31.3553 (16)C31—H31A0.9800
N5—H5N0.8800C31—H31B0.9800
N6—C281.1411 (18)C31—H31C0.9800
N7—C301.1380 (19)C32—C331.457 (2)
N8—C321.1361 (19)C33—H33A0.9800
C4—C91.3885 (19)C33—H33B0.9800
C4—C51.3987 (19)C33—H33C0.9800
C5—C61.387 (2)C34—C351.497 (3)
C5—H50.9500C34—H34A0.9900
C6—C71.390 (2)C34—H34B0.9900
C6—H60.9500C35—H35A0.9800
C7—C81.382 (3)C35—H35B0.9800
C7—H70.9500C35—H35C0.9800
C8—C91.394 (2)B1—F31.376 (2)
C8—H80.9500B1—F11.378 (2)
C9—H90.9500B1—F21.387 (2)
C10—C111.3960 (18)B1—F41.395 (2)
C10—C151.4042 (19)B2—F51.373 (2)
C11—C121.3961 (18)B2—F71.377 (2)
C11—H110.9500B2—F61.384 (2)
C12—C131.389 (2)B2—F81.405 (2)
C12—H120.9500N9—C361.134 (2)
C13—C141.394 (2)C36—C371.457 (2)
C13—H130.9500C37—H37A0.9800
C14—C151.3911 (19)C37—H37B0.9800
C14—H140.9500C37—H37C0.9800
C15—H150.9500N10—C381.137 (2)
C16—C171.397 (2)C38—C391.454 (3)
C16—C211.399 (2)C39—H39A0.9800
C17—C181.401 (2)C39—H39B0.9800
C17—H170.9500C39—H39C0.9800
C18—C191.381 (3)
N7—Fe1—N8179.78 (5)C16—C17—H17120.3
N7—Fe1—N688.04 (5)C18—C17—H17120.3
N8—Fe1—N691.87 (5)C19—C18—C17120.32 (16)
N7—Fe1—N192.09 (5)C19—C18—H18119.8
N8—Fe1—N187.99 (4)C17—C18—H18119.8
N6—Fe1—N1177.64 (4)C18—C19—C20120.39 (15)
N7—Fe1—P188.65 (4)C18—C19—H19119.8
N8—Fe1—P191.16 (3)C20—C19—H19119.8
N6—Fe1—P194.65 (3)C19—C20—C21119.99 (16)
N1—Fe1—P183.00 (3)C19—C20—H20120.0
N7—Fe1—P289.37 (4)C21—C20—H20120.0
N8—Fe1—P290.84 (3)C20—C21—C16119.83 (15)
N6—Fe1—P299.61 (3)C20—C21—H21120.1
N1—Fe1—P282.74 (3)C16—C21—H21120.1
P1—Fe1—P2165.523 (14)C27—C22—C23119.57 (13)
N4—P1—C4105.65 (6)C27—C22—P2122.65 (10)
N4—P1—C10105.10 (6)C23—C22—P2117.78 (11)
C4—P1—C10102.57 (6)C24—C23—C22119.99 (14)
N4—P1—Fe199.37 (4)C24—C23—H23120.0
C4—P1—Fe1115.85 (5)C22—C23—H23120.0
C10—P1—Fe1126.17 (5)C23—C24—C25120.26 (14)
N5—P2—C22107.23 (6)C23—C24—H24119.9
N5—P2—C16102.50 (6)C25—C24—H24119.9
C22—P2—C16105.16 (6)C24—C25—C26119.79 (14)
N5—P2—Fe199.62 (4)C24—C25—H25120.1
C22—P2—Fe1118.48 (4)C26—C25—H25120.1
C16—P2—Fe1121.60 (5)C25—C26—C27120.39 (14)
C2—O1—C34118.51 (11)C25—C26—H26119.8
C1—N1—C3115.24 (11)C27—C26—H26119.8
C1—N1—Fe1122.07 (8)C26—C27—C22120.00 (13)
C3—N1—Fe1122.69 (9)C26—C27—H27120.0
C2—N2—C1114.05 (11)C22—C27—H27120.0
C3—N3—C2114.42 (11)N6—C28—C29178.68 (15)
C1—N4—P1118.59 (9)C28—C29—H29A109.5
C1—N4—H4N120.7C28—C29—H29B109.5
P1—N4—H4N120.7H29A—C29—H29B109.5
C3—N5—P2118.55 (9)C28—C29—H29C109.5
C3—N5—H5N120.7H29A—C29—H29C109.5
P2—N5—H5N120.7H29B—C29—H29C109.5
C28—N6—Fe1174.22 (12)N7—C30—C31179.24 (17)
C30—N7—Fe1176.80 (12)C30—C31—H31A109.5
C32—N8—Fe1179.27 (11)C30—C31—H31B109.5
N2—C1—N1125.14 (11)H31A—C31—H31B109.5
N2—C1—N4118.25 (11)C30—C31—H31C109.5
N1—C1—N4116.59 (11)H31A—C31—H31C109.5
O1—C2—N2119.85 (12)H31B—C31—H31C109.5
O1—C2—N3113.21 (11)N8—C32—C33177.90 (16)
N2—C2—N3126.93 (12)C32—C33—H33A109.5
N3—C3—N5119.61 (11)C32—C33—H33B109.5
N3—C3—N1124.04 (11)H33A—C33—H33B109.5
N5—C3—N1116.35 (11)C32—C33—H33C109.5
C9—C4—C5120.05 (13)H33A—C33—H33C109.5
C9—C4—P1122.06 (11)H33B—C33—H33C109.5
C5—C4—P1117.17 (10)O1—C34—C35110.26 (13)
C6—C5—C4119.86 (14)O1—C34—H34A109.6
C6—C5—H5120.1C35—C34—H34A109.6
C4—C5—H5120.1O1—C34—H34B109.6
C5—C6—C7119.87 (15)C35—C34—H34B109.6
C5—C6—H6120.1H34A—C34—H34B108.1
C7—C6—H6120.1C34—C35—H35A109.5
C8—C7—C6120.41 (15)C34—C35—H35B109.5
C8—C7—H7119.8H35A—C35—H35B109.5
C6—C7—H7119.8C34—C35—H35C109.5
C7—C8—C9120.08 (16)H35A—C35—H35C109.5
C7—C8—H8120.0H35B—C35—H35C109.5
C9—C8—H8120.0F3—B1—F1110.60 (15)
C4—C9—C8119.74 (15)F3—B1—F2108.26 (14)
C4—C9—H9120.1F1—B1—F2109.22 (14)
C8—C9—H9120.1F3—B1—F4109.10 (13)
C11—C10—C15119.56 (12)F1—B1—F4109.80 (13)
C11—C10—P1121.28 (10)F2—B1—F4109.85 (14)
C15—C10—P1119.15 (10)F5—B2—F7111.28 (17)
C10—C11—C12120.02 (13)F5—B2—F6110.76 (15)
C10—C11—H11120.0F7—B2—F6109.86 (15)
C12—C11—H11120.0F5—B2—F8108.77 (14)
C13—C12—C11120.11 (13)F7—B2—F8106.97 (14)
C13—C12—H12119.9F6—B2—F8109.10 (16)
C11—C12—H12119.9N9—C36—C37178.3 (2)
C12—C13—C14120.25 (12)C36—C37—H37A109.5
C12—C13—H13119.9C36—C37—H37B109.5
C14—C13—H13119.9H37A—C37—H37B109.5
C15—C14—C13119.90 (13)C36—C37—H37C109.5
C15—C14—H14120.1H37A—C37—H37C109.5
C13—C14—H14120.1H37B—C37—H37C109.5
C14—C15—C10120.16 (13)N10—C38—C39179.6 (2)
C14—C15—H15119.9C38—C39—H39A109.5
C10—C15—H15119.9C38—C39—H39B109.5
C17—C16—C21119.97 (13)H39A—C39—H39B109.5
C17—C16—P2120.80 (11)C38—C39—H39C109.5
C21—C16—P2119.21 (11)H39A—C39—H39C109.5
C16—C17—C18119.50 (16)H39B—C39—H39C109.5
N7—Fe1—P1—N497.16 (5)C1—N1—C3—N30.95 (18)
N8—Fe1—P1—N482.94 (5)Fe1—N1—C3—N3179.47 (9)
N6—Fe1—P1—N4174.91 (5)C1—N1—C3—N5178.57 (11)
N1—Fe1—P1—N44.89 (5)Fe1—N1—C3—N51.02 (16)
P2—Fe1—P1—N414.95 (7)N4—P1—C4—C921.11 (14)
N7—Fe1—P1—C415.41 (6)C10—P1—C4—C9130.97 (13)
N8—Fe1—P1—C4164.49 (6)Fe1—P1—C4—C987.77 (13)
N6—Fe1—P1—C472.52 (6)N4—P1—C4—C5168.62 (11)
N1—Fe1—P1—C4107.68 (6)C10—P1—C4—C558.76 (12)
P2—Fe1—P1—C497.62 (7)Fe1—P1—C4—C582.50 (11)
N7—Fe1—P1—C10146.23 (6)C9—C4—C5—C60.3 (2)
N8—Fe1—P1—C1033.66 (6)P1—C4—C5—C6170.76 (13)
N6—Fe1—P1—C1058.31 (6)C4—C5—C6—C70.2 (3)
N1—Fe1—P1—C10121.50 (6)C5—C6—C7—C80.1 (3)
P2—Fe1—P1—C10131.56 (7)C6—C7—C8—C90.5 (3)
N7—Fe1—P2—N590.44 (5)C5—C4—C9—C80.8 (3)
N8—Fe1—P2—N589.62 (5)P1—C4—C9—C8170.83 (15)
N6—Fe1—P2—N5178.34 (5)C7—C8—C9—C40.9 (3)
N1—Fe1—P2—N51.75 (5)N4—P1—C10—C11122.93 (11)
P1—Fe1—P2—N58.32 (7)C4—P1—C10—C11126.80 (11)
N7—Fe1—P2—C22153.87 (6)Fe1—P1—C10—C118.96 (13)
N8—Fe1—P2—C2226.08 (6)N4—P1—C10—C1558.64 (12)
N6—Fe1—P2—C2265.96 (6)C4—P1—C10—C1551.64 (12)
N1—Fe1—P2—C22113.95 (6)Fe1—P1—C10—C15172.61 (9)
P1—Fe1—P2—C22124.01 (7)C15—C10—C11—C121.0 (2)
N7—Fe1—P2—C1620.79 (6)P1—C10—C11—C12179.40 (10)
N8—Fe1—P2—C16159.16 (6)C10—C11—C12—C131.3 (2)
N6—Fe1—P2—C1667.12 (6)C11—C12—C13—C140.9 (2)
N1—Fe1—P2—C16112.97 (6)C12—C13—C14—C150.2 (2)
P1—Fe1—P2—C16102.91 (8)C13—C14—C15—C100.1 (2)
N7—Fe1—N1—C193.16 (10)C11—C10—C15—C140.3 (2)
N8—Fe1—N1—C186.64 (10)P1—C10—C15—C14178.74 (11)
P1—Fe1—N1—C14.78 (9)N5—P2—C16—C17140.20 (12)
P2—Fe1—N1—C1177.74 (10)C22—P2—C16—C1728.22 (13)
N7—Fe1—N1—C387.28 (10)Fe1—P2—C16—C17110.08 (11)
N8—Fe1—N1—C392.93 (10)N5—P2—C16—C2141.53 (13)
P1—Fe1—N1—C3175.66 (10)C22—P2—C16—C21153.51 (11)
P2—Fe1—N1—C31.82 (9)Fe1—P2—C16—C2168.19 (12)
C4—P1—N4—C1114.59 (10)C21—C16—C17—C180.5 (2)
C10—P1—N4—C1137.37 (10)P2—C16—C17—C18178.79 (12)
Fe1—P1—N4—C15.76 (10)C16—C17—C18—C190.1 (2)
C22—P2—N5—C3122.01 (10)C17—C18—C19—C200.9 (3)
C16—P2—N5—C3127.55 (10)C18—C19—C20—C211.0 (3)
Fe1—P2—N5—C31.97 (10)C19—C20—C21—C160.3 (2)
C2—N2—C1—N14.55 (18)C17—C16—C21—C200.5 (2)
C2—N2—C1—N4176.68 (11)P2—C16—C21—C20178.74 (12)
C3—N1—C1—N23.11 (18)N5—P2—C22—C2729.94 (13)
Fe1—N1—C1—N2176.49 (9)C16—P2—C22—C2778.65 (12)
C3—N1—C1—N4178.10 (10)Fe1—P2—C22—C27141.48 (10)
Fe1—N1—C1—N42.30 (15)N5—P2—C22—C23150.77 (11)
P1—N4—C1—N2178.03 (9)C16—P2—C22—C23100.64 (12)
P1—N4—C1—N13.10 (15)Fe1—P2—C22—C2339.23 (13)
C34—O1—C2—N20.48 (18)C27—C22—C23—C240.8 (2)
C34—O1—C2—N3178.84 (12)P2—C22—C23—C24178.52 (12)
C1—N2—C2—O1178.51 (11)C22—C23—C24—C250.6 (2)
C1—N2—C2—N32.27 (19)C23—C24—C25—C260.1 (2)
C3—N3—C2—O1178.05 (11)C24—C25—C26—C270.7 (2)
C3—N3—C2—N21.2 (2)C25—C26—C27—C220.5 (2)
C2—N3—C3—N5176.61 (12)C23—C22—C27—C260.2 (2)
C2—N3—C3—N12.89 (18)P2—C22—C27—C26179.05 (11)
P2—N5—C3—N3178.61 (9)C2—O1—C34—C3589.18 (17)
P2—N5—C3—N10.93 (16)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N4—H4N···N90.882.032.892 (2)168
N5—H5N···N3i0.882.122.966 (2)162
C9—H9···F70.952.533.276 (2)135
C12—H12···F40.952.563.280 (2)133
C13—H13···F2ii0.952.543.464 (2)164
C21—H21···F60.952.493.350 (2)150
C25—H25···F5iii0.952.423.365 (2)174
C26—H26···F5i0.952.503.144 (2)125
C29—H29A···F3iv0.982.353.239 (2)151
C31—H31A···F80.982.463.360 (2)153
C33—H33B···F40.982.493.191 (2)128
C39—H39B···F2v0.982.413.259 (3)144
Symmetry codes: (i) x+1, y+1, z+1; (ii) x, y+2, z; (iii) x1, y+1, z; (iv) x+1, y+2, z; (v) x+1, y1, z.

Experimental details

Crystal data
Chemical formula[Fe(C2H3N)3(C29H27N5OP2)](BF4)2·2C2H3N
Mr958.24
Crystal system, space groupTriclinic, P1
Temperature (K)100
a, b, c (Å)8.8548 (4), 13.8402 (7), 20.1352 (10)
α, β, γ (°)71.399 (2), 82.731 (2), 72.789 (2)
V3)2232.6 (2)
Z2
Radiation typeMo Kα
µ (mm1)0.49
Crystal size (mm)0.58 × 0.36 × 0.30
Data collection
DiffractometerBruker SMART APEX CCD
Absorption correctionMulti-scan
(SADABS; Bruker, 2003)
Tmin, Tmax0.74, 0.86
No. of measured, independent and
observed [I > 2σ(I)] reflections
26262, 12688, 11076
Rint0.017
(sin θ/λ)max1)0.704
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.038, 0.102, 1.03
No. of reflections12688
No. of parameters573
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.74, 0.44

Computer programs: SMART (Bruker, 2003), SAINT (Bruker, 2003), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008) and Mercury (Macrae et al., 2006), PLATON (Spek, 2009) and publCIF (Westrip, 2010).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N4—H4N···N90.882.032.892 (2)168
N5—H5N···N3i0.882.122.966 (2)162
C9—H9···F70.952.533.276 (2)135
C12—H12···F40.952.563.280 (2)133
C13—H13···F2ii0.952.543.464 (2)164
C21—H21···F60.952.493.350 (2)150
C25—H25···F5iii0.952.423.365 (2)174
C26—H26···F5i0.952.503.144 (2)125
C29—H29A···F3iv0.982.353.239 (2)151
C31—H31A···F80.982.463.360 (2)153
C33—H33B···F40.982.493.191 (2)128
C39—H39B···F2v0.982.413.259 (3)144
Symmetry codes: (i) x+1, y+1, z+1; (ii) x, y+2, z; (iii) x1, y+1, z; (iv) x+1, y+2, z; (v) x+1, y1, z.
 

Acknowledgements

Financial support by the Fonds zur Förderung der wissenschaftlichen Forschung is gratefully acknowledged (project No. P24202).

References

First citationAllen, F. H. (2002). Acta Cryst. B58, 380–388.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationBenito-Garagorri, D., Becker, E., Wiedermann, J., Lackner, W., Pollak, M., Mereiter, K., Kisala, J. & Kirchner, K. (2006). Organometallics, 26, 1900–1913.  Google Scholar
First citationBenito-Garagorri, D. & Kirchner, K. (2008). Acc. Chem. Res. 41, 201–213.  Web of Science PubMed CAS Google Scholar
First citationBruker (2003). Programs SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationDesiraju, G. R. & Steiner, T. (1999). The Weak Hydrogen Bond in Structural Chemistry and Biology. Oxford University Press.  Google Scholar
First citationGamez, P., Mooibroek, T. J., Teat, S. J. & Reedijk, J. (2007). Acc. Chem. Res. 40, 435–444.  Web of Science CrossRef PubMed CAS Google Scholar
First citationLu, J., Jalilov, A. S. & Kochi, J. K. (2009). Acta Cryst. C65, o226–o228.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationMacrae, C. F., Edgington, P. R., McCabe, P., Pidcock, E., Shields, G. P., Taylor, R., Towler, M. & van de Streek, J. (2006). J. Appl. Cryst. 39, 453–457.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationManzano, B. R., Jalon, F. A., Ortiz, I. M., Soriano, M. L., Gomez de la Torre, F., Elguero, J., Maestro, M. A., Mereiter, K. & Claridge, T. D. W. (2008). Inorg. Chem. 47, 413–428.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationMooibroek, T. J., Black, C. A., Gamez, P. & Reedijk, J. (2008). Cryst. Growth Des. 8, 1082–1093.  Web of Science CrossRef CAS Google Scholar
First citationQuinonero, D., Deya, P. M., Carranza, M. P., Rodriguez, A. M., Jalon, F. A. & Manzano, B. R. (2010). Dalton Trans. 39, 794–806.  Web of Science CAS PubMed Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds