metal-organic compounds
catena-Poly[[[(pyridine-κN)copper(II)]-μ-3-{1-[(2-aminoethyl)imino]ethyl}-6-methyl-2-oxo-2H-pyran-4-olato-κ4N,N,O4:O2] perchlorate]
aLaboratoire d'Electrochimie, d'Ingénierie Moléculaire et de Catalyse Redox (LEIMCR), Faculté des Sciences de l'Ingénieur, Université Farhat Abbas, Sétif 19000, Algeria, and bUnité de Recherche de Chimie de l'Environnement et Moléculaire Structurale, CHEMS, Université Mentouri–Constantine, 25000 Algeria
*Correspondence e-mail: bouacida_sofiane@yahoo.fr
In the title compound, {[Cu(C10H13N2O3)(C5H5N)]ClO4}n, the CuII atom has an N3O2 coordination sphere. The complex contains two different ligands, viz. a pyridine molecule and a Schiff base molecule, resulting from the condensation of ethylenodiamine with dehydroacetic acid. The CuII atom exhibits a square-pyramidal geometry: three of the four donors of the pyramid base belong to the Schiff base ligand (an N atom from the amine group, a second N atom from the imine group and the O atom of the pyranone residue) and the fourth donor is the pyridine N atom. The coordination around the metal ion is completed by a longer axial bond to the pyranone O atom of an adjacent Schiff base, so forming a one-dimensional polymer. The complex has a +1 charge that is compensated by a perchlorate ion. The crystal packing, which can be described as alternating chains of cations and tetrahedral perchlorate anions along the a axis, is stabilized by intermolecular N—H⋯O, C—H⋯O and C—H⋯N hydrogen-bonding interactions.
Related literature
For the synthesis of similar compounds: El-Abbassi et al. (1987); Fettouhi et al. (1996); El-Kihel et al. (1999); Tan & Kok-Peng Ang (1988); Djerrari et al. (2002); El-Kubaisi & Ismail (1994); Danilova et al. (2003); Munde et al. (2010). For their applications, see: Maiti et al. (1988); Mohan et al. (1981); Das & Livingstoone (1976); Moutet & Ali Ourari (1997); Ourari et al. (2008).
Experimental
Crystal data
|
Data collection
|
Refinement
|
|
Data collection: COLLECT (Nonius, 1998); cell SCALEPACK (Otwinowski & Minor, 1997); data reduction: DENZO (Otwinowski & Minor, 1997) and SCALEPACK; program(s) used to solve structure: SIR2002 (Burla et al., 2005); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997) and DIAMOND (Brandenburg & Berndt, 2001); software used to prepare material for publication: WinGX (Farrugia, 1999).
Supporting information
https://doi.org/10.1107/S1600536811046411/go2033sup1.cif
contains datablocks global, I. DOI:Structure factors: contains datablock I. DOI: https://doi.org/10.1107/S1600536811046411/go2033Isup2.hkl
This complex was obtained by mixing stoechiometric quantities of dehydroacetic acid 0.168 g (1 mMol) with copper perchlorate 0.373 g (1 mMol) in methanol. To this mixture was added an excess of pyridine and then 0.060 g (1 mMol) of ethylenediamine dissolved as well in methanol. After two hours of reaction, a mallow precipitate was observed which is immediately recovered by filtration. It was copiously washed with methanol. Its suitable single-crystal was so obtained by slow evaporation from the filtrate.
The remaining H atoms were localized on Fourier maps but introduced in calculated positions and treated as riding on their parent atoms (C and N) with C—H = 0.96 Å (methyl), 0.97Å (methylene) or 0.93 Å (aromatic) and N—H = 0.90 Å with Uiso(H) = 1.2Ueq(C and N) or Uiso(H) = 1.5Ueq(methyl).
The dehydroacetic acid is a row material which is involved in the synthesis of the most
(El-Abbassi et al., 1987; Fettouhi et al., 1996; El-Kihel et al., 1999) and the chelating agents such as the These ligands are also currently applied in coordination chemistry for the synthesis of Schiff base complexes of transition metals (Tan et al., 1988; El-Kubaisi et al., 1994; Munde et al., 2010). Additionally, it was often shown that the resulting from this molecule exhibit some therapeutic activities (Das et al., 1976; Mohan et al., 1981; Maiti et al., 1988) useful for the human diseases while the Schiff base complexes obtained from its ligands showed an important particularly in the oxidation reactions as those carried out according the model (Moutet et al., 1997; Ourari et al., 2008). Thus, we have attempted to synthesize the Schiff base half-units in order to use them as starting materials to obtain unsymmetrical tetradentate Schiff base complexes according the Danilova method's (Danilova et al., 2003). So, we describe here the formation of a new copper Schiff base complex from dehydroacetic acid, ethylenediamine, copper perchlorate and pyridine in methanolic solution. This complex was formed in one pot with only one azomethine (–CH=N–) group yielding an unreacted amino group of ethylenediamine leading to an acceptable yield 68%. In this case, it can noted that the ring of the dehydroacetic acid seems to be not open during the reaction as it was reported in the literature (Djerrari et al., 2002) in presence of agents such as the pyridinic derivatives. This behavior may be due to an inhibition of the nucleophilic effect of the pyridine since the reaction was conducted in methanolic solution at room temperature and without reflux. Finally, the resulting compound was confirmed by crystallographic studies as further discussed.The asymetric unit of ionic structure of (I), and the atomic numbering used, is illustrated in Fig. 1. The CuII ion is five coordinated in a square-pyramidal geometry by three N atoms of pyridine,imine and amine group and two O atom of pyranone moiety. The bond lengths for co-ordination CuII sphere is ranging from 1.974 (2) to 2.049 (2) Å for Cu-N distances and Cu-O = 1.914 (2) Å and 1.914 (2) Å (Table 2).
The crystal packing in the title structure can be described by alterning chains of cations and tetrahedral anions of perchlorate along the c axis (Fig. 2). It is stabilized by intermolecular N—H···O, C—H···O and C—H···N hydrogen bonding (Table 1). These interactions link the molecules within the layers and also link the layers together and reinforcing the cohesion of the ionic structure.
For the synthesis of similar compounds: El-Abbassi et al. (1987); Fettouhi et al. (1996); El-Kihel et al. (1999); Tan & Kok-Peng Ang (1988); Djerrari et al. (2002); El-Kubaisi & Ismail (1994); Danilova et al. (2003); Munde et al. (2010). For their applications, see: Maiti et al. (1988); Mohan et al. (1981); Das & Livingstoone (1976); Moutet & Ali Ourari (1997); Ourari et al. (2008).
Data collection: COLLECT (Nonius, 1998); cell
SCALEPACK (Otwinowski & Minor, 1997); data reduction: DENZO and SCALEPACK (Otwinowski & Minor, 1997); program(s) used to solve structure: SIR2002 (Burla et al., 2005); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997) and DIAMOND (Brandenburg & Berndt, 2001); software used to prepare material for publication: WinGX (Farrugia, 1999).[Cu(C10H13N2O3)(C5H5N)]ClO4 | Dx = 1.636 Mg m−3 |
Mr = 451.32 | Mo Kα radiation, λ = 0.71073 Å |
Orthorhombic, Pcab | Cell parameters from 4212 reflections |
a = 8.8090 (2) Å | θ = 1.0–26.4° |
b = 19.9017 (4) Å | µ = 1.38 mm−1 |
c = 20.9053 (5) Å | T = 295 K |
V = 3664.99 (14) Å3 | Plate, black |
Z = 8 | 0.12 × 0.11 × 0.05 mm |
F(000) = 1848 |
Nonius KappaCCD diffractometer | 2619 reflections with I > 2σ(I) |
Radiation source: Enraf Nonius FR590 | Rint = 0.022 |
Graphite monochromator | θmax = 26.4°, θmin = 3.1° |
Detector resolution: 9 pixels mm-1 | h = 0→10 |
CCD rotation images, thick slices scans | k = 0→24 |
7008 measured reflections | l = 0→26 |
3731 independent reflections |
Refinement on F2 | Primary atom site location: structure-invariant direct methods |
Least-squares matrix: full | Secondary atom site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.040 | Hydrogen site location: inferred from neighbouring sites |
wR(F2) = 0.121 | H-atom parameters constrained |
S = 1.03 | w = 1/[σ2(Fo2) + (0.0723P)2 + 0.807P] where P = (Fo2 + 2Fc2)/3 |
3731 reflections | (Δ/σ)max = 0.001 |
246 parameters | Δρmax = 0.45 e Å−3 |
0 restraints | Δρmin = −0.49 e Å−3 |
[Cu(C10H13N2O3)(C5H5N)]ClO4 | V = 3664.99 (14) Å3 |
Mr = 451.32 | Z = 8 |
Orthorhombic, Pcab | Mo Kα radiation |
a = 8.8090 (2) Å | µ = 1.38 mm−1 |
b = 19.9017 (4) Å | T = 295 K |
c = 20.9053 (5) Å | 0.12 × 0.11 × 0.05 mm |
Nonius KappaCCD diffractometer | 2619 reflections with I > 2σ(I) |
7008 measured reflections | Rint = 0.022 |
3731 independent reflections |
R[F2 > 2σ(F2)] = 0.040 | 0 restraints |
wR(F2) = 0.121 | H-atom parameters constrained |
S = 1.03 | Δρmax = 0.45 e Å−3 |
3731 reflections | Δρmin = −0.49 e Å−3 |
246 parameters |
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. |
x | y | z | Uiso*/Ueq | ||
C1 | 0.2273 (4) | 0.02862 (16) | 0.45790 (16) | 0.0517 (8) | |
H1 | 0.1798 | 0.0658 | 0.4399 | 0.062* | |
C2 | 0.3060 (4) | −0.01413 (18) | 0.41827 (18) | 0.0600 (9) | |
H2 | 0.311 | −0.0058 | 0.3746 | 0.072* | |
C3 | 0.3770 (4) | −0.06940 (19) | 0.4441 (2) | 0.0600 (9) | |
H3 | 0.4319 | −0.0988 | 0.4183 | 0.072* | |
C4 | 0.3652 (4) | −0.08009 (18) | 0.5081 (2) | 0.0630 (10) | |
H4 | 0.4119 | −0.1171 | 0.5268 | 0.076* | |
C5 | 0.2830 (4) | −0.03545 (16) | 0.54523 (18) | 0.0560 (8) | |
H5 | 0.2742 | −0.0439 | 0.5888 | 0.067* | |
C6 | 0.1257 (4) | 0.09736 (17) | 0.71225 (16) | 0.0559 (9) | |
H6A | 0.1883 | 0.137 | 0.7179 | 0.067* | |
H6B | 0.1258 | 0.0722 | 0.752 | 0.067* | |
C7 | −0.0333 (4) | 0.11746 (18) | 0.69521 (16) | 0.0567 (9) | |
H7A | −0.1003 | 0.0789 | 0.6975 | 0.068* | |
H7B | −0.0699 | 0.1514 | 0.7247 | 0.068* | |
C8 | −0.2344 (4) | 0.22163 (17) | 0.65805 (17) | 0.0576 (9) | |
H8A | −0.2762 | 0.1859 | 0.6834 | 0.086* | |
H8B | −0.3139 | 0.2426 | 0.6338 | 0.086* | |
H8C | −0.1879 | 0.2543 | 0.6856 | 0.086* | |
C9 | −0.1166 (3) | 0.19342 (14) | 0.61287 (14) | 0.0398 (6) | |
C10 | −0.1085 (3) | 0.21966 (14) | 0.54728 (14) | 0.0380 (6) | |
C11 | −0.1603 (3) | 0.28666 (15) | 0.53460 (15) | 0.0430 (7) | |
C12 | −0.1244 (4) | 0.26748 (18) | 0.42205 (14) | 0.0508 (8) | |
C13 | −0.1460 (6) | 0.3012 (2) | 0.3588 (2) | 0.0908 (15) | |
H13A | −0.0797 | 0.3394 | 0.3559 | 0.136* | |
H13B | −0.2495 | 0.3158 | 0.3549 | 0.136* | |
H13C | −0.1228 | 0.2702 | 0.3251 | 0.136* | |
C14 | −0.0700 (4) | 0.20627 (18) | 0.43217 (15) | 0.0562 (9) | |
H14 | −0.0417 | 0.1798 | 0.3975 | 0.067* | |
C15 | −0.0541 (3) | 0.18023 (15) | 0.49603 (14) | 0.0423 (7) | |
N1 | 0.2158 (3) | 0.01933 (12) | 0.52137 (12) | 0.0432 (6) | |
N2 | 0.1869 (3) | 0.05540 (13) | 0.65998 (12) | 0.0532 (7) | |
H2A | 0.1582 | 0.0124 | 0.6655 | 0.064* | |
H2B | 0.289 | 0.057 | 0.6602 | 0.064* | |
N3 | −0.0300 (3) | 0.14435 (12) | 0.62977 (12) | 0.0429 (6) | |
O1 | 0.0066 (2) | 0.12212 (10) | 0.50150 (10) | 0.0491 (5) | |
O2 | −0.1684 (3) | 0.30769 (10) | 0.47159 (11) | 0.0541 (6) | |
O3 | −0.1950 (3) | 0.33001 (10) | 0.57362 (11) | 0.0519 (6) | |
O11 | −0.1778 (3) | 0.09728 (16) | 0.29504 (16) | 0.0869 (9) | |
O21 | 0.0241 (4) | 0.16739 (14) | 0.26635 (16) | 0.0868 (9) | |
O31 | −0.0210 (4) | 0.06891 (19) | 0.21098 (16) | 0.1067 (11) | |
O41 | 0.0701 (4) | 0.06507 (16) | 0.31535 (17) | 0.0910 (10) | |
Cl1 | −0.02517 (10) | 0.09943 (4) | 0.27165 (4) | 0.0553 (2) | |
Cu1 | 0.10791 (4) | 0.089862 (17) | 0.576431 (17) | 0.03931 (14) |
U11 | U22 | U33 | U12 | U13 | U23 | |
C1 | 0.057 (2) | 0.0475 (18) | 0.0504 (19) | 0.0085 (15) | 0.0026 (16) | −0.0018 (15) |
C2 | 0.065 (2) | 0.062 (2) | 0.053 (2) | 0.0106 (18) | 0.0082 (17) | −0.0093 (16) |
C3 | 0.054 (2) | 0.057 (2) | 0.069 (2) | 0.0124 (16) | 0.0062 (17) | −0.0149 (19) |
C4 | 0.063 (2) | 0.0489 (19) | 0.078 (3) | 0.0197 (16) | −0.0030 (19) | −0.0071 (18) |
C5 | 0.064 (2) | 0.0480 (18) | 0.056 (2) | 0.0109 (16) | −0.0041 (17) | −0.0006 (16) |
C6 | 0.075 (2) | 0.0528 (19) | 0.0397 (18) | 0.0080 (17) | −0.0046 (16) | 0.0028 (14) |
C7 | 0.070 (2) | 0.062 (2) | 0.0386 (18) | 0.0066 (17) | 0.0109 (16) | 0.0073 (16) |
C8 | 0.065 (2) | 0.0550 (19) | 0.053 (2) | 0.0112 (17) | 0.0181 (17) | 0.0024 (16) |
C9 | 0.0388 (15) | 0.0399 (15) | 0.0406 (16) | −0.0040 (12) | 0.0029 (12) | −0.0041 (12) |
C10 | 0.0381 (15) | 0.0365 (14) | 0.0392 (15) | 0.0007 (12) | −0.0003 (12) | 0.0003 (12) |
C11 | 0.0422 (16) | 0.0434 (16) | 0.0434 (17) | −0.0011 (13) | 0.0003 (13) | 0.0008 (13) |
C12 | 0.062 (2) | 0.0546 (19) | 0.0354 (17) | 0.0125 (15) | 0.0016 (14) | 0.0023 (14) |
C13 | 0.123 (4) | 0.094 (3) | 0.055 (3) | 0.040 (3) | 0.002 (2) | 0.021 (2) |
C14 | 0.073 (2) | 0.061 (2) | 0.0352 (17) | 0.0186 (17) | −0.0016 (15) | −0.0023 (14) |
C15 | 0.0423 (16) | 0.0458 (16) | 0.0387 (16) | 0.0055 (13) | −0.0009 (12) | −0.0036 (13) |
N1 | 0.0465 (14) | 0.0377 (12) | 0.0456 (15) | 0.0032 (10) | −0.0024 (11) | −0.0017 (11) |
N2 | 0.0679 (18) | 0.0489 (15) | 0.0428 (15) | 0.0100 (13) | −0.0001 (13) | 0.0044 (12) |
N3 | 0.0466 (15) | 0.0428 (13) | 0.0394 (14) | 0.0003 (11) | 0.0031 (11) | 0.0037 (11) |
O1 | 0.0591 (13) | 0.0467 (12) | 0.0415 (12) | 0.0163 (10) | −0.0048 (10) | −0.0058 (9) |
O2 | 0.0671 (14) | 0.0458 (12) | 0.0494 (13) | 0.0110 (11) | 0.0009 (11) | 0.0060 (10) |
O3 | 0.0640 (14) | 0.0388 (11) | 0.0528 (13) | 0.0068 (10) | 0.0018 (11) | −0.0062 (10) |
O11 | 0.0555 (15) | 0.116 (2) | 0.089 (2) | −0.0077 (16) | 0.0063 (16) | 0.0173 (18) |
O21 | 0.093 (2) | 0.0626 (17) | 0.105 (2) | −0.0126 (16) | −0.0017 (18) | 0.0161 (16) |
O31 | 0.109 (3) | 0.145 (3) | 0.067 (2) | −0.022 (2) | −0.0035 (19) | −0.038 (2) |
O41 | 0.088 (2) | 0.091 (2) | 0.094 (2) | 0.0057 (18) | −0.0299 (18) | 0.0290 (18) |
Cl1 | 0.0575 (5) | 0.0638 (5) | 0.0447 (5) | −0.0077 (4) | −0.0079 (4) | 0.0055 (4) |
Cu1 | 0.0458 (2) | 0.0370 (2) | 0.0352 (2) | 0.00416 (15) | 0.00067 (15) | 0.00081 (14) |
C1—N1 | 1.344 (4) | C10—C11 | 1.434 (4) |
C1—C2 | 1.375 (4) | C11—O3 | 1.226 (4) |
C1—H1 | 0.93 | C11—O2 | 1.384 (4) |
C2—C3 | 1.376 (5) | C12—C14 | 1.326 (5) |
C2—H2 | 0.93 | C12—O2 | 1.365 (4) |
C3—C4 | 1.358 (6) | C12—C13 | 1.495 (5) |
C3—H3 | 0.93 | C13—H13A | 0.96 |
C4—C5 | 1.385 (5) | C13—H13B | 0.96 |
C4—H4 | 0.93 | C13—H13C | 0.96 |
C5—N1 | 1.337 (4) | C14—C15 | 1.439 (4) |
C5—H5 | 0.93 | C14—H14 | 0.93 |
C6—N2 | 1.477 (4) | C15—O1 | 1.279 (4) |
C6—C7 | 1.499 (5) | N1—Cu1 | 2.049 (2) |
C6—H6A | 0.97 | N2—Cu1 | 2.001 (3) |
C6—H6B | 0.97 | N2—H2A | 0.9 |
C7—N3 | 1.469 (4) | N2—H2B | 0.9 |
C7—H7A | 0.97 | N3—Cu1 | 1.974 (2) |
C7—H7B | 0.97 | O1—Cu1 | 1.914 (2) |
C8—C9 | 1.512 (4) | O3—Cu1i | 2.358 (2) |
C8—H8A | 0.96 | O11—Cl1 | 1.431 (3) |
C8—H8B | 0.96 | O21—Cl1 | 1.425 (3) |
C8—H8C | 0.96 | O31—Cl1 | 1.407 (3) |
C9—N3 | 1.288 (4) | O41—Cl1 | 1.417 (3) |
C9—C10 | 1.469 (4) | Cu1—O3ii | 2.358 (2) |
C10—C15 | 1.412 (4) | ||
N1—C1—C2 | 123.2 (3) | O2—C12—C13 | 111.8 (3) |
N1—C1—H1 | 118.4 | C12—C13—H13A | 109.5 |
C2—C1—H1 | 118.4 | C12—C13—H13B | 109.5 |
C1—C2—C3 | 119.2 (4) | H13A—C13—H13B | 109.5 |
C1—C2—H2 | 120.4 | C12—C13—H13C | 109.5 |
C3—C2—H2 | 120.4 | H13A—C13—H13C | 109.5 |
C4—C3—C2 | 118.5 (3) | H13B—C13—H13C | 109.5 |
C4—C3—H3 | 120.8 | C12—C14—C15 | 120.9 (3) |
C2—C3—H3 | 120.8 | C12—C14—H14 | 119.5 |
C3—C4—C5 | 119.5 (3) | C15—C14—H14 | 119.5 |
C3—C4—H4 | 120.3 | O1—C15—C10 | 125.2 (3) |
C5—C4—H4 | 120.3 | O1—C15—C14 | 116.7 (3) |
N1—C5—C4 | 123.1 (3) | C10—C15—C14 | 118.1 (3) |
N1—C5—H5 | 118.5 | C5—N1—C1 | 116.6 (3) |
C4—C5—H5 | 118.5 | C5—N1—Cu1 | 123.7 (2) |
N2—C6—C7 | 108.4 (3) | C1—N1—Cu1 | 119.7 (2) |
N2—C6—H6A | 110 | C6—N2—Cu1 | 108.96 (19) |
C7—C6—H6A | 110 | C6—N2—H2A | 109.9 |
N2—C6—H6B | 110 | Cu1—N2—H2A | 109.9 |
C7—C6—H6B | 110 | C6—N2—H2B | 109.9 |
H6A—C6—H6B | 108.4 | Cu1—N2—H2B | 109.9 |
N3—C7—C6 | 107.5 (3) | H2A—N2—H2B | 108.3 |
N3—C7—H7A | 110.2 | C9—N3—C7 | 121.3 (3) |
C6—C7—H7A | 110.2 | C9—N3—Cu1 | 128.7 (2) |
N3—C7—H7B | 110.2 | C7—N3—Cu1 | 109.75 (19) |
C6—C7—H7B | 110.2 | C15—O1—Cu1 | 124.85 (19) |
H7A—C7—H7B | 108.5 | C12—O2—C11 | 122.0 (2) |
C9—C8—H8A | 109.5 | C11—O3—Cu1i | 132.6 (2) |
C9—C8—H8B | 109.5 | O31—Cl1—O41 | 110.9 (2) |
H8A—C8—H8B | 109.5 | O31—Cl1—O21 | 109.4 (2) |
C9—C8—H8C | 109.5 | O41—Cl1—O21 | 109.14 (19) |
H8A—C8—H8C | 109.5 | O31—Cl1—O11 | 108.7 (2) |
H8B—C8—H8C | 109.5 | O41—Cl1—O11 | 108.8 (2) |
N3—C9—C10 | 119.8 (3) | O21—Cl1—O11 | 109.94 (19) |
N3—C9—C8 | 121.1 (3) | O1—Cu1—N3 | 89.50 (9) |
C10—C9—C8 | 119.0 (3) | O1—Cu1—N2 | 172.52 (11) |
C15—C10—C11 | 119.0 (3) | N3—Cu1—N2 | 84.80 (10) |
C15—C10—C9 | 121.8 (3) | O1—Cu1—N1 | 89.20 (9) |
C11—C10—C9 | 119.2 (3) | N3—Cu1—N1 | 168.32 (10) |
O3—C11—O2 | 114.0 (3) | N2—Cu1—N1 | 95.41 (10) |
O3—C11—C10 | 127.6 (3) | O1—Cu1—O3ii | 95.50 (9) |
O2—C11—C10 | 118.3 (3) | N3—Cu1—O3ii | 95.48 (9) |
C14—C12—O2 | 121.4 (3) | N2—Cu1—O3ii | 89.86 (10) |
C14—C12—C13 | 126.9 (3) | N1—Cu1—O3ii | 96.20 (9) |
N1—C1—C2—C3 | 0.0 (5) | C6—C7—N3—Cu1 | 39.9 (3) |
C1—C2—C3—C4 | 0.8 (6) | C10—C15—O1—Cu1 | −25.3 (4) |
C2—C3—C4—C5 | −0.1 (6) | C14—C15—O1—Cu1 | 155.8 (2) |
C3—C4—C5—N1 | −1.3 (6) | C14—C12—O2—C11 | −0.7 (5) |
N2—C6—C7—N3 | −49.7 (4) | C13—C12—O2—C11 | 179.3 (3) |
N3—C9—C10—C15 | 23.6 (4) | O3—C11—O2—C12 | 175.7 (3) |
C8—C9—C10—C15 | −152.3 (3) | C10—C11—O2—C12 | −2.1 (4) |
N3—C9—C10—C11 | −157.8 (3) | O2—C11—O3—Cu1i | 42.7 (4) |
C8—C9—C10—C11 | 26.3 (4) | C10—C11—O3—Cu1i | −139.8 (3) |
C15—C10—C11—O3 | −171.4 (3) | C15—O1—Cu1—N3 | 31.6 (3) |
C9—C10—C11—O3 | 10.0 (5) | C15—O1—Cu1—N1 | −160.0 (3) |
C15—C10—C11—O2 | 6.1 (4) | C15—O1—Cu1—O3ii | −63.8 (3) |
C9—C10—C11—O2 | −172.5 (2) | C9—N3—Cu1—O1 | −16.1 (3) |
O2—C12—C14—C15 | −0.6 (6) | C7—N3—Cu1—O1 | 158.9 (2) |
C13—C12—C14—C15 | 179.5 (4) | C9—N3—Cu1—N2 | 168.7 (3) |
C11—C10—C15—O1 | 173.9 (3) | C7—N3—Cu1—N2 | −16.2 (2) |
C9—C10—C15—O1 | −7.5 (5) | C9—N3—Cu1—N1 | −99.8 (5) |
C11—C10—C15—C14 | −7.2 (4) | C7—N3—Cu1—N1 | 75.3 (6) |
C9—C10—C15—C14 | 171.3 (3) | C9—N3—Cu1—O3ii | 79.4 (3) |
C12—C14—C15—O1 | −176.5 (3) | C7—N3—Cu1—O3ii | −105.6 (2) |
C12—C14—C15—C10 | 4.6 (5) | C6—N2—Cu1—N3 | −11.2 (2) |
C4—C5—N1—C1 | 2.0 (5) | C6—N2—Cu1—N1 | −179.5 (2) |
C4—C5—N1—Cu1 | −175.0 (3) | C6—N2—Cu1—O3ii | 84.3 (2) |
C2—C1—N1—C5 | −1.3 (5) | C5—N1—Cu1—O1 | −162.4 (3) |
C2—C1—N1—Cu1 | 175.8 (3) | C1—N1—Cu1—O1 | 20.7 (2) |
C7—C6—N2—Cu1 | 36.0 (3) | C5—N1—Cu1—N3 | −78.7 (6) |
C10—C9—N3—C7 | 179.1 (3) | C1—N1—Cu1—N3 | 104.4 (5) |
C8—C9—N3—C7 | −5.1 (4) | C5—N1—Cu1—N2 | 11.7 (3) |
C10—C9—N3—Cu1 | −6.4 (4) | C1—N1—Cu1—N2 | −165.2 (2) |
C8—C9—N3—Cu1 | 169.4 (2) | C5—N1—Cu1—O3ii | 102.2 (3) |
C6—C7—N3—C9 | −144.6 (3) | C1—N1—Cu1—O3ii | −74.7 (2) |
Symmetry codes: (i) x−1/2, −y+1/2, z; (ii) x+1/2, −y+1/2, z. |
D—H···A | D—H | H···A | D···A | D—H···A |
N2—H2A···O11iii | 0.90 | 2.34 | 3.182 (4) | 156 |
N2—H2A···O41iii | 0.90 | 2.57 | 3.338 (4) | 144 |
N2—H2B···O31iv | 0.90 | 2.31 | 3.142 (4) | 153 |
C1—H1···O1 | 0.93 | 2.29 | 2.842 (4) | 118 |
C5—H5···N2 | 0.93 | 2.59 | 3.121 (4) | 117 |
C8—H8B···O3 | 0.96 | 2.39 | 2.809 (4) | 106 |
Symmetry codes: (iii) −x, −y, −z+1; (iv) −x+1/2, y, z+1/2. |
Experimental details
Crystal data | |
Chemical formula | [Cu(C10H13N2O3)(C5H5N)]ClO4 |
Mr | 451.32 |
Crystal system, space group | Orthorhombic, Pcab |
Temperature (K) | 295 |
a, b, c (Å) | 8.8090 (2), 19.9017 (4), 20.9053 (5) |
V (Å3) | 3664.99 (14) |
Z | 8 |
Radiation type | Mo Kα |
µ (mm−1) | 1.38 |
Crystal size (mm) | 0.12 × 0.11 × 0.05 |
Data collection | |
Diffractometer | Nonius KappaCCD |
Absorption correction | – |
No. of measured, independent and observed [I > 2σ(I)] reflections | 7008, 3731, 2619 |
Rint | 0.022 |
(sin θ/λ)max (Å−1) | 0.625 |
Refinement | |
R[F2 > 2σ(F2)], wR(F2), S | 0.040, 0.121, 1.03 |
No. of reflections | 3731 |
No. of parameters | 246 |
H-atom treatment | H-atom parameters constrained |
Δρmax, Δρmin (e Å−3) | 0.45, −0.49 |
Computer programs: COLLECT (Nonius, 1998), DENZO and SCALEPACK (Otwinowski & Minor, 1997), SIR2002 (Burla et al., 2005), SHELXL97 (Sheldrick, 2008), ORTEP-3 for Windows (Farrugia, 1997) and DIAMOND (Brandenburg & Berndt, 2001), WinGX (Farrugia, 1999).
N1—Cu1 | 2.049 (2) | O1—Cu1 | 1.914 (2) |
N2—Cu1 | 2.001 (3) | O3—Cu1i | 2.358 (2) |
N3—Cu1 | 1.974 (2) |
Symmetry code: (i) x−1/2, −y+1/2, z. |
D—H···A | D—H | H···A | D···A | D—H···A |
N2—H2A···O11ii | 0.9000 | 2.3400 | 3.182 (4) | 156.00 |
N2—H2A···O41ii | 0.9000 | 2.5700 | 3.338 (4) | 144.00 |
N2—H2B···O31iii | 0.9000 | 2.3100 | 3.142 (4) | 153.00 |
C1—H1···O1 | 0.9300 | 2.2900 | 2.842 (4) | 118.00 |
C5—H5···N2 | 0.9300 | 2.5900 | 3.121 (4) | 117.00 |
C8—H8B···O3 | 0.9600 | 2.3900 | 2.809 (4) | 106.00 |
Symmetry codes: (ii) −x, −y, −z+1; (iii) −x+1/2, y, z+1/2. |
Acknowledgements
The authors thank the Algerian Ministère de l'Enseignement Supérieur et de la Recherche Scientifique for financial support and Professor L. Ouahab (Laboratoire des Sciences Chimiques, Rennes1, France) for helpful discussions.
References
Brandenburg, K. & Berndt, M. (2001). DIAMOND. Crystal Impact, Bonn, Germany. Google Scholar
Burla, M. C., Caliandro, R., Camalli, M., Carrozzini, B., Cascarano, G. L., De Caro, L., Giacovazzo, C., Polidori, G. & Spagna, R. (2005). J. Appl. Cryst. 38, 381–388. Web of Science CrossRef CAS IUCr Journals Google Scholar
Danilova, T. I., Rosenberg, D. I., Vorontsov, V., Starikova, Z. A. & Hopf, H. (2003). Tetrahedron Asymmetry, 14, 1375–1383. Web of Science CSD CrossRef CAS Google Scholar
Das, M. & Livingstoone, S. E. (1976). Inorg. Chim. Acta, 19, 5–10. CrossRef CAS Web of Science Google Scholar
Djerrari, B., Essassi, E. M. J., Fifani, J. & Carrigues, B. (2002). C. R. Chim. 5, 177–183. Web of Science CrossRef CAS Google Scholar
El-Abbassi, M. E. M., Essassi, E. M. & Fifani, J. (1987). Tetrahedron Lett. 28, 1389–1392. CAS Google Scholar
El-Kihel, A., Benchidmi, M., Essassi, E. M. & Bougout, R. D. (1999). Synth. Commun. 29, 2435–2444. CAS Google Scholar
El-Kubaisi, A. & Ismail, K. Z. (1994). Can. J. Chem. 72, 1785–1788. Google Scholar
Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565. CrossRef IUCr Journals Google Scholar
Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838. CrossRef CAS IUCr Journals Google Scholar
Fettouhi, M., Boukhari, A., El Otmani, B. & Essassi, E. M. (1996). Acta Cryst. C52, 1031–1032. CSD CrossRef CAS Web of Science IUCr Journals Google Scholar
Maiti, A., Guha, A. K. & Ghosh, S. (1988). J. Inorg. Biochem. 33, 57–65. CrossRef CAS PubMed Web of Science Google Scholar
Mohan, M., Agarwal, A. & Jha, N. K. (1981). J. Inorg. Biochem. 34, 41–54. CrossRef Web of Science Google Scholar
Moutet, J. C. & Ali Ourari, A. (1997). Electrochim. Acta, 42, 2525–2531. CrossRef CAS Web of Science Google Scholar
Munde, A. A., Jagdale, A. N., Jahdav, S. M. & Chondhekar, T. K. (2010). J. Serb. Chem. Soc. 75, 349–359. Web of Science CrossRef CAS Google Scholar
Nonius (1998). KappaCCD Reference Manual. Nonius BV, Delft, The Netherlands. Google Scholar
Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307–326. New York: Academic Press. Google Scholar
Ourari, A., Baameur, L., Bouet, G. & Khan, A. M. (2008). Electrochem. Commun. 10, 1736–1739. Web of Science CrossRef CAS Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Tan, S. F. & Kok-Peng Ang, K. P. (1988). Transition Met. Chem. 13, 64–68. CrossRef CAS Web of Science Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.
The dehydroacetic acid is a row material which is involved in the synthesis of the most heterocyclic compounds (El-Abbassi et al., 1987; Fettouhi et al., 1996; El-Kihel et al., 1999) and the chelating agents such as the Schiff bases. These ligands are also currently applied in coordination chemistry for the synthesis of Schiff base complexes of transition metals (Tan et al., 1988; El-Kubaisi et al., 1994; Munde et al., 2010). Additionally, it was often shown that the heterocyclic compounds resulting from this molecule exhibit some therapeutic activities (Das et al., 1976; Mohan et al., 1981; Maiti et al., 1988) useful for the human diseases while the Schiff base complexes obtained from its ligands showed an important catalytic activity particularly in the oxidation reactions as those carried out according the cytochrome P450 model (Moutet et al., 1997; Ourari et al., 2008). Thus, we have attempted to synthesize the Schiff base half-units in order to use them as starting materials to obtain unsymmetrical tetradentate Schiff base complexes according the Danilova method's (Danilova et al., 2003). So, we describe here the formation of a new copper Schiff base complex from dehydroacetic acid, ethylenediamine, copper perchlorate and pyridine in methanolic solution. This complex was formed in one pot with only one azomethine (–CH=N–) group yielding an unreacted amino group of ethylenediamine leading to an acceptable yield 68%. In this case, it can noted that the ring of the dehydroacetic acid seems to be not open during the reaction as it was reported in the literature (Djerrari et al., 2002) in presence of nucleophile agents such as the pyridinic derivatives. This behavior may be due to an inhibition of the nucleophilic effect of the pyridine since the reaction was conducted in methanolic solution at room temperature and without reflux. Finally, the resulting compound was confirmed by crystallographic studies as further discussed.
The asymetric unit of ionic structure of (I), and the atomic numbering used, is illustrated in Fig. 1. The CuII ion is five coordinated in a square-pyramidal geometry by three N atoms of pyridine,imine and amine group and two O atom of pyranone moiety. The bond lengths for co-ordination CuII sphere is ranging from 1.974 (2) to 2.049 (2) Å for Cu-N distances and Cu-O = 1.914 (2) Å and 1.914 (2) Å (Table 2).
The crystal packing in the title structure can be described by alterning chains of cations and tetrahedral anions of perchlorate along the c axis (Fig. 2). It is stabilized by intermolecular N—H···O, C—H···O and C—H···N hydrogen bonding (Table 1). These interactions link the molecules within the layers and also link the layers together and reinforcing the cohesion of the ionic structure.