metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

catena-Poly[[lead(II)-μ-N′-[1-(pyridin-2-yl-κN)ethyl­­idene]isonicotino­hydrazidato-κ3N′,O:N1] perchlorate]

aDepartment of Chemistry, Faculty of Science, Tabriz Branch, Islamic Azad University, PO Box 1655, Tabriz, Iran, bDepartment of Chemistry, University of Malaya, 50603 Kuala Lumpur, Malaysia, and cDepartment of Inorganic Chemistry, Faculty of Chemistry, University of Tabriz, PO Box 5166616471, Tabriz, Iran
*Correspondence e-mail: edward.tiekink@gmail.com

(Received 19 October 2011; accepted 5 November 2011; online 9 November 2011)

The PbII atom in the polymeric title compound, {[Pb(C13H11N4O)]ClO4}n, is coordinated by the N′-[1-(pyridin-2-yl-κN)ethyl­idene]isonicotinohydrazidate ligand via its O,N,N′-donors and simultaneously bridged by a neighbouring ligand via the pyridin-2-yl N atom. The resultant supra­molecular chain is a zigzag along the a axis. The stereochemistry of the PbII atom is defined by an N3OE donor set (E = lone pair of electrons), which results in a Ψ-trigonal–bipyramidal coordination with the O and pyridin-2-yl N atoms in axial positions. The dihedral angle between the pyridine rings of the ligand is 6.3 (3)°. The supra­molecular cationic chains are linked into a three-dimensional array via secondary Pb⋯O [3.133 (6) and 3.28 (7) Å] and Pb⋯N [3.028 (4) Å] inter­actions. Weak C—H⋯O inter­actions and aromatic ππ stacking [centroid–centroid separation = 3.693 (2) Å] also occur in the crystal.

Related literature

For the structures of metal complexes containing the N′-[1-(2-pyrid­yl)ethyl­idene]isonicotinohydrazide ligand, see: Maurya et al. (2002[Maurya, M. R., Khurana, S., Zhang, W. & Rehder, D. J. (2002). J. Chem. Soc. Dalton Trans. pp. 3015-3023.]); Abboud et al. (2007[Abboud, K. A., Palenik, R. C., Palenik, G. J. & Wood, R. M. (2007). Inorg. Chim. Acta, 360, 3642-3646.]); Zhang & Liu (2009[Zhang, Y.-Y. & Liu, S.-X. (2009). Acta Cryst. C65, m269-m272.]); Hao et al. (2010[Hao, Z.-Y., Liu, Q.-W., Xu, J., Jia, L. & Li, S.-B. (2010). Chem. Pharm. Bull. 58, 1306-1312.]). For specialized crystallization techniques, see: Harrowfield et al. (1996[Harrowfield, J. M., Miyamae, H., Skelton, B. W., Soudi, A. A. & White, A. H. (1996). Aust. J. Chem. 49, 1165-1169.]).

[Scheme 1]

Experimental

Crystal data
  • [Pb(C13H11N4O)]ClO4

  • Mr = 545.90

  • Monoclinic, P 21 /n

  • a = 10.0620 (6) Å

  • b = 14.4431 (8) Å

  • c = 11.1456 (7) Å

  • β = 99.174 (1)°

  • V = 1599.03 (16) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 10.75 mm−1

  • T = 293 K

  • 0.29 × 0.11 × 0.10 mm

Data collection
  • Bruker SMART CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996[Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.]) Tmin = 0.691, Tmax = 1.000

  • 8396 measured reflections

  • 2811 independent reflections

  • 2392 reflections with I > 2σ(I)

  • Rint = 0.026

Refinement
  • R[F2 > 2σ(F2)] = 0.022

  • wR(F2) = 0.056

  • S = 1.07

  • 2811 reflections

  • 218 parameters

  • H-atom parameters constrained

  • Δρmax = 0.55 e Å−3

  • Δρmin = −0.45 e Å−3

Table 1
Selected bond lengths (Å)

Pb—O1 2.405 (3)
Pb—N1 2.597 (4)
Pb—N2 2.456 (4)
Pb—N4i 2.472 (4)
Symmetry code: (i) [x-{\script{1\over 2}}, -y+{\script{3\over 2}}, z-{\script{1\over 2}}].

Table 2
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C3—H3⋯O3ii 0.93 2.53 3.422 (10) 160
C4—H4⋯O1iii 0.93 2.45 3.277 (7) 148
C10—H10⋯O2iv 0.93 2.57 3.485 (8) 170
Symmetry codes: (ii) [x-{\script{1\over 2}}, -y+{\script{1\over 2}}, z-{\script{1\over 2}}]; (iii) [-x+{\script{1\over 2}}, y-{\script{1\over 2}}, -z+{\script{3\over 2}}]; (iv) -x+1, -y+1, -z+2.

Data collection: SMART (Bruker, 2007[Bruker (2007). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2007[Bruker (2007). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]) and DIAMOND (Brandenburg, 2006[Brandenburg, K. (2006). DIAMOND. Crystal Impact GbR, Bonn, Germany.]); software used to prepare material for publication: publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Supporting information


Comment top

Structural studies of coordination complexes containing the N'-[1-(2-pyridyl)ethylidene]isonicotinohydrazide ligand are rare (Maurya et al., 2002; Abboud et al., 2007; Zhang & Liu, 2009; Hao et al., 2010). In each of these, the ligand coordinates in a tridentate mode with the terminal 4-pyridyl-N atom being non-coordinating. In the title lead(II) complex, (I), all four donor atoms participate in coordination of the Pb atom.

The asymmetric unit of (I), Fig. 1, comprises a Pb atom, a N'-[1-(2-pyridyl)ethylidene]isonicotinohydrazide anion and a perchlorate anion. The N'-[1-(2-pyridyl)ethylidene]isonicotinohydrazide ligand coordinates a lead atom in a tridentate mode, via the N1, N2 and O1 atoms, and simultaneously bridges a symmetry related lead atom via the 4-pyridyl-N4 atom, Table 1.

The resultant N3O donor set plus the lone pair of electrons is based on a trigonal bipyramid with the O1 and N1 atoms in axial positions [O1—Pb—N1 = 126.27 (12)°] and the remaining N atoms [N2—Pb—N4i = 90.17 (13)°] and lone pair in equatorial positions; symmetry operation i: -1/2 + x, 1.5 - y, -1/2 + z. The µ2-bridging mode of the tetradentate N'-[1-(2-pyridyl)ethylidene]isonicotinohydrazide ligand leads to a zigzag chain along the a axis, Fig. 2. The considerable distortions from the ideal geometry arise from the acute chelate angles (O1—Pb—N2 = 64.75 (12)° and N1—Pb—N2 = 63.45 (12)°) as well as the close approach of other donor atoms. Most notable amongst the latter are Pb···O(perchlorate) interactions with the two shortest contacts being Pb···O4ii of 3.133 (6) Å and Pb···O5iii = 3.287 (7) Å for i: -1 + x, y, z and ii: 1 - x, 1 - y, 2 - z. These interactions along with Pb···N3iii contacts of 3.028 (4) Å [iii: 1 - x, 1 - y, 2 - z] generate a three-dimensional architecture, Fig. 3.

Related literature top

For the structures of metal complexes containing the N'-[1-(2-pyridyl)ethylidene]isonicotinohydrazide ligand, see: Maurya et al. (2002); Abboud et al. (2007); Zhang & Liu (2009); Hao et al. (2010). For specialized crystallization techniques, see: Harrowfield et al. (1996).

Experimental top

A solution of methyl 2-pyridyl ketone (10 mmol) in MeOH (25 ml) was added drop wise to a solution of 4-pyridinecarboxylic acid hydrazide (10 mmol) in MeOH (15 ml). The mixture was refluxed for 6 h. The white precipitate was removed by filtration and recrystallized from MeOH solution. Then the ligand (1 mmol) was placed in one arm of a branched tube (Harrowfield et al., 1996) and a mixture of lead(II) acetate (1 mmol) and sodium perchlorate (1 mmol) in the other. Methanol was then added to fill both arms, the tube sealed and the ligand-containing arm immersed in a bath at 333 K, while the other was left at ambient temperature. After 1 week, yellow needles of (I) had deposited in the arm held at ambient temperature. They were then filtered off, washed with acetone and ether, and air dried. Yield: 75%. M.pt.: 506 K

Refinement top

Carbon-bound H-atoms were placed in calculated positions [C—H 0.93–0.96 Å, Uiso(H) = 1.2–1.5Ueq(parent atom)] and were included in the refinement in the riding model approximation.

Structure description top

Structural studies of coordination complexes containing the N'-[1-(2-pyridyl)ethylidene]isonicotinohydrazide ligand are rare (Maurya et al., 2002; Abboud et al., 2007; Zhang & Liu, 2009; Hao et al., 2010). In each of these, the ligand coordinates in a tridentate mode with the terminal 4-pyridyl-N atom being non-coordinating. In the title lead(II) complex, (I), all four donor atoms participate in coordination of the Pb atom.

The asymmetric unit of (I), Fig. 1, comprises a Pb atom, a N'-[1-(2-pyridyl)ethylidene]isonicotinohydrazide anion and a perchlorate anion. The N'-[1-(2-pyridyl)ethylidene]isonicotinohydrazide ligand coordinates a lead atom in a tridentate mode, via the N1, N2 and O1 atoms, and simultaneously bridges a symmetry related lead atom via the 4-pyridyl-N4 atom, Table 1.

The resultant N3O donor set plus the lone pair of electrons is based on a trigonal bipyramid with the O1 and N1 atoms in axial positions [O1—Pb—N1 = 126.27 (12)°] and the remaining N atoms [N2—Pb—N4i = 90.17 (13)°] and lone pair in equatorial positions; symmetry operation i: -1/2 + x, 1.5 - y, -1/2 + z. The µ2-bridging mode of the tetradentate N'-[1-(2-pyridyl)ethylidene]isonicotinohydrazide ligand leads to a zigzag chain along the a axis, Fig. 2. The considerable distortions from the ideal geometry arise from the acute chelate angles (O1—Pb—N2 = 64.75 (12)° and N1—Pb—N2 = 63.45 (12)°) as well as the close approach of other donor atoms. Most notable amongst the latter are Pb···O(perchlorate) interactions with the two shortest contacts being Pb···O4ii of 3.133 (6) Å and Pb···O5iii = 3.287 (7) Å for i: -1 + x, y, z and ii: 1 - x, 1 - y, 2 - z. These interactions along with Pb···N3iii contacts of 3.028 (4) Å [iii: 1 - x, 1 - y, 2 - z] generate a three-dimensional architecture, Fig. 3.

For the structures of metal complexes containing the N'-[1-(2-pyridyl)ethylidene]isonicotinohydrazide ligand, see: Maurya et al. (2002); Abboud et al. (2007); Zhang & Liu (2009); Hao et al. (2010). For specialized crystallization techniques, see: Harrowfield et al. (1996).

Computing details top

Data collection: SMART (Bruker, 2007); cell refinement: SAINT (Bruker, 2007); data reduction: SAINT (Bruker, 2007); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997) and DIAMOND (Brandenburg, 2006); software used to prepare material for publication: publCIF (Westrip, 2010).

Figures top
[Figure 1] Fig. 1. The asymmetric unit of (I) showing displacement ellipsoids at the 35% probability level. The molecular structure has been expanded to indicate the µ2-bridging mode of the tetradentate ligand. Symmetry operation i: -1/2 + x, 1.5 - y, -1/2 + z; ii: 1/2 + x, 1.5 - y, 1/2 + z.
[Figure 2] Fig. 2. A view of the zigzag chain along the a axis in (I).
[Figure 3] Fig. 3. A view in projection down the a axis of the crystal packing in (I). The weaker Pb···O and Pb···N interactions (see text) are shown as black and blue dashed lines, respectively.
catena-Poly[[lead(II)-µ-N'-[1-(pyridin-2- yl-κN)ethylidene]isonicotinohydrazidato- κ3N',O:N1] perchlorate] top
Crystal data top
[Pb(C13H11N4O)]ClO4F(000) = 1024
Mr = 545.90Dx = 2.268 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ynCell parameters from 4195 reflections
a = 10.0620 (6) Åθ = 2.3–25.0°
b = 14.4431 (8) ŵ = 10.75 mm1
c = 11.1456 (7) ÅT = 293 K
β = 99.174 (1)°Needle, yellow
V = 1599.03 (16) Å30.29 × 0.11 × 0.10 mm
Z = 4
Data collection top
Bruker SMART CCD
diffractometer
2811 independent reflections
Radiation source: fine-focus sealed tube2392 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.026
φ and ω scansθmax = 25.0°, θmin = 2.3°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 1111
Tmin = 0.691, Tmax = 1.000k = 1117
8396 measured reflectionsl = 1313
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.022Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.056H-atom parameters constrained
S = 1.07 w = 1/[σ2(Fo2) + (0.0241P)2 + 1.6546P]
where P = (Fo2 + 2Fc2)/3
2811 reflections(Δ/σ)max = 0.001
218 parametersΔρmax = 0.55 e Å3
0 restraintsΔρmin = 0.45 e Å3
Crystal data top
[Pb(C13H11N4O)]ClO4V = 1599.03 (16) Å3
Mr = 545.90Z = 4
Monoclinic, P21/nMo Kα radiation
a = 10.0620 (6) ŵ = 10.75 mm1
b = 14.4431 (8) ÅT = 293 K
c = 11.1456 (7) Å0.29 × 0.11 × 0.10 mm
β = 99.174 (1)°
Data collection top
Bruker SMART CCD
diffractometer
2811 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
2392 reflections with I > 2σ(I)
Tmin = 0.691, Tmax = 1.000Rint = 0.026
8396 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0220 restraints
wR(F2) = 0.056H-atom parameters constrained
S = 1.07Δρmax = 0.55 e Å3
2811 reflectionsΔρmin = 0.45 e Å3
218 parameters
Special details top

Geometry. All s.u.'s (except the s.u. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell s.u.'s are taken into account individually in the estimation of s.u.'s in distances, angles and torsion angles; correlations between s.u.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell s.u.'s is used for estimating s.u.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Pb0.260829 (17)0.509355 (12)0.899845 (16)0.03242 (8)
O10.3478 (3)0.6440 (2)1.0129 (3)0.0444 (9)
N10.3495 (4)0.4394 (3)0.7130 (4)0.0376 (10)
N20.4858 (4)0.5592 (3)0.8673 (3)0.0308 (9)
N30.5527 (4)0.6241 (3)0.9458 (4)0.0350 (10)
N40.6569 (4)0.8756 (3)1.2492 (4)0.0388 (10)
C10.4775 (5)0.4584 (3)0.7001 (4)0.0341 (11)
C20.5405 (6)0.4140 (4)0.6142 (5)0.0435 (13)
H20.62910.42800.60700.052*
C30.4696 (7)0.3487 (4)0.5400 (5)0.0528 (15)
H30.51030.31830.48180.063*
C40.3396 (6)0.3285 (4)0.5516 (5)0.0511 (15)
H40.29070.28430.50210.061*
C50.2827 (6)0.3754 (4)0.6388 (5)0.0465 (13)
H50.19400.36210.64660.056*
C60.5476 (5)0.5291 (3)0.7823 (4)0.0303 (10)
C70.6833 (5)0.5647 (4)0.7653 (5)0.0457 (13)
H7A0.69290.62780.79260.068*
H7B0.69180.56170.68080.068*
H7C0.75210.52750.81170.068*
C80.4712 (5)0.6637 (3)1.0126 (4)0.0310 (11)
C90.5353 (5)0.7392 (3)1.0933 (4)0.0328 (11)
C100.4698 (5)0.7752 (3)1.1837 (5)0.0367 (11)
H100.38480.75411.19320.044*
C110.5342 (5)0.8432 (3)1.2592 (5)0.0389 (12)
H110.49030.86751.31960.047*
C120.7181 (6)0.8406 (4)1.1623 (6)0.0511 (15)
H120.80360.86211.15500.061*
C130.6599 (5)0.7735 (4)1.0819 (5)0.0492 (14)
H130.70480.75181.02070.059*
Cl10.95237 (15)0.36424 (10)0.81424 (16)0.0580 (4)
O20.8284 (6)0.3288 (5)0.7644 (6)0.123 (2)
O31.0468 (7)0.2953 (5)0.8172 (8)0.166 (4)
O40.9936 (6)0.4365 (4)0.7458 (5)0.1034 (19)
O50.9435 (7)0.3990 (5)0.9303 (6)0.136 (3)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Pb0.02641 (11)0.03361 (12)0.03622 (12)0.00167 (8)0.00186 (8)0.00472 (8)
O10.024 (2)0.051 (2)0.058 (2)0.0028 (16)0.0077 (17)0.0170 (18)
N10.038 (2)0.035 (2)0.039 (2)0.0048 (18)0.0035 (19)0.0047 (18)
N20.026 (2)0.028 (2)0.037 (2)0.0003 (16)0.0002 (18)0.0026 (17)
N30.032 (2)0.031 (2)0.040 (2)0.0021 (17)0.0030 (19)0.0055 (18)
N40.033 (2)0.034 (2)0.048 (3)0.0015 (18)0.002 (2)0.0085 (19)
C10.042 (3)0.026 (2)0.033 (3)0.000 (2)0.004 (2)0.003 (2)
C20.050 (3)0.039 (3)0.044 (3)0.005 (2)0.016 (3)0.008 (2)
C30.071 (4)0.043 (3)0.047 (3)0.005 (3)0.018 (3)0.011 (3)
C40.069 (4)0.043 (3)0.038 (3)0.017 (3)0.001 (3)0.013 (3)
C50.038 (3)0.044 (3)0.055 (3)0.012 (2)0.000 (3)0.006 (3)
C60.029 (3)0.029 (2)0.033 (3)0.001 (2)0.003 (2)0.002 (2)
C70.041 (3)0.052 (3)0.046 (3)0.010 (3)0.015 (3)0.008 (3)
C80.030 (3)0.028 (2)0.033 (3)0.0022 (19)0.002 (2)0.0010 (19)
C90.033 (3)0.029 (3)0.034 (3)0.000 (2)0.001 (2)0.004 (2)
C100.030 (3)0.037 (3)0.043 (3)0.000 (2)0.005 (2)0.004 (2)
C110.037 (3)0.040 (3)0.040 (3)0.001 (2)0.008 (2)0.007 (2)
C120.036 (3)0.051 (3)0.070 (4)0.011 (3)0.018 (3)0.023 (3)
C130.040 (3)0.052 (3)0.059 (4)0.011 (3)0.019 (3)0.020 (3)
Cl10.0411 (8)0.0515 (9)0.0836 (12)0.0050 (7)0.0165 (8)0.0117 (8)
O20.070 (4)0.162 (6)0.140 (5)0.055 (4)0.026 (4)0.042 (5)
O30.128 (6)0.143 (6)0.246 (9)0.083 (5)0.084 (6)0.103 (6)
O40.114 (5)0.073 (3)0.132 (5)0.007 (3)0.046 (4)0.040 (3)
O50.134 (6)0.191 (7)0.090 (4)0.061 (5)0.035 (4)0.037 (5)
Geometric parameters (Å, º) top
Pb—O12.405 (3)C4—H40.9300
Pb—N12.597 (4)C5—H50.9300
Pb—N22.456 (4)C6—C71.499 (6)
Pb—N4i2.472 (4)C7—H7A0.9600
O1—C81.274 (5)C7—H7B0.9600
N1—C11.347 (6)C7—H7C0.9600
N1—C51.347 (6)C8—C91.494 (6)
N2—C61.289 (6)C9—C131.372 (7)
N2—N31.383 (5)C9—C101.389 (7)
N3—C81.322 (6)C10—C111.385 (7)
N4—C121.329 (6)C10—H100.9300
N4—C111.341 (6)C11—H110.9300
N4—Pbii2.472 (4)C12—C131.385 (7)
C1—C21.387 (7)C12—H120.9300
C1—C61.475 (7)C13—H130.9300
C2—C31.376 (7)Cl1—O31.372 (6)
C2—H20.9300Cl1—O21.380 (5)
C3—C41.367 (8)Cl1—O41.394 (5)
C3—H30.9300Cl1—O51.404 (6)
C4—C51.381 (7)
O1—Pb—N264.75 (12)N2—C6—C7122.3 (4)
O1—Pb—N4i83.77 (14)C1—C6—C7120.9 (4)
N2—Pb—N4i90.17 (13)C6—C7—H7A109.5
O1—Pb—N1126.27 (12)C6—C7—H7B109.5
N2—Pb—N163.45 (12)H7A—C7—H7B109.5
N4i—Pb—N183.07 (13)C6—C7—H7C109.5
C8—O1—Pb116.9 (3)H7A—C7—H7C109.5
C1—N1—C5117.8 (4)H7B—C7—H7C109.5
C1—N1—Pb117.6 (3)O1—C8—N3126.7 (4)
C5—N1—Pb123.9 (3)O1—C8—C9119.3 (4)
C6—N2—N3116.7 (4)N3—C8—C9114.1 (4)
C6—N2—Pb125.0 (3)C13—C9—C10118.6 (4)
N3—N2—Pb118.2 (3)C13—C9—C8121.4 (4)
C8—N3—N2111.5 (4)C10—C9—C8120.0 (4)
C12—N4—C11117.9 (4)C11—C10—C9118.4 (5)
C12—N4—Pbii123.8 (3)C11—C10—H10120.8
C11—N4—Pbii118.3 (3)C9—C10—H10120.8
N1—C1—C2122.0 (5)N4—C11—C10123.0 (5)
N1—C1—C6116.5 (4)N4—C11—H11118.5
C2—C1—C6121.6 (5)C10—C11—H11118.5
C3—C2—C1118.8 (5)N4—C12—C13122.8 (5)
C3—C2—H2120.6N4—C12—H12118.6
C1—C2—H2120.6C13—C12—H12118.6
C2—C3—C4120.2 (5)C9—C13—C12119.4 (5)
C2—C3—H3119.9C9—C13—H13120.3
C4—C3—H3119.9C12—C13—H13120.3
C3—C4—C5118.2 (5)O3—Cl1—O2108.6 (5)
C3—C4—H4120.9O3—Cl1—O4106.9 (4)
C5—C4—H4120.9O2—Cl1—O4112.7 (4)
N1—C5—C4123.1 (5)O3—Cl1—O5112.5 (5)
N1—C5—H5118.5O2—Cl1—O5108.5 (4)
C4—C5—H5118.5O4—Cl1—O5107.7 (4)
N2—C6—C1116.8 (4)
N2—Pb—O1—C810.2 (3)C3—C4—C5—N10.4 (9)
N4i—Pb—O1—C8103.3 (4)N3—N2—C6—C1178.8 (4)
N1—Pb—O1—C826.7 (4)Pb—N2—C6—C10.9 (6)
O1—Pb—N1—C123.1 (4)N3—N2—C6—C72.2 (7)
N2—Pb—N1—C16.4 (3)Pb—N2—C6—C7178.1 (3)
N4i—Pb—N1—C1100.1 (3)N1—C1—C6—N27.1 (7)
O1—Pb—N1—C5166.7 (4)C2—C1—C6—N2172.7 (4)
N2—Pb—N1—C5176.6 (4)N1—C1—C6—C7171.9 (4)
N4i—Pb—N1—C589.7 (4)C2—C1—C6—C78.2 (7)
O1—Pb—N2—C6167.9 (4)Pb—O1—C8—N38.1 (6)
N4i—Pb—N2—C684.9 (4)Pb—O1—C8—C9172.5 (3)
N1—Pb—N2—C62.7 (3)N2—N3—C8—O13.4 (7)
O1—Pb—N2—N312.4 (3)N2—N3—C8—C9176.0 (4)
N4i—Pb—N2—N395.4 (3)O1—C8—C9—C13169.0 (5)
N1—Pb—N2—N3177.6 (3)N3—C8—C9—C1310.5 (7)
C6—N2—N3—C8167.1 (4)O1—C8—C9—C1012.2 (7)
Pb—N2—N3—C813.1 (5)N3—C8—C9—C10168.3 (4)
C5—N1—C1—C20.4 (7)C13—C9—C10—C110.8 (8)
Pb—N1—C1—C2170.4 (4)C8—C9—C10—C11178.0 (4)
C5—N1—C1—C6179.8 (5)C12—N4—C11—C100.3 (8)
Pb—N1—C1—C69.5 (5)Pbii—N4—C11—C10176.6 (4)
N1—C1—C2—C30.2 (8)C9—C10—C11—N40.2 (8)
C6—C1—C2—C3179.9 (5)C11—N4—C12—C130.7 (9)
C1—C2—C3—C40.2 (9)Pbii—N4—C12—C13177.4 (4)
C2—C3—C4—C50.2 (9)C10—C9—C13—C121.7 (8)
C1—N1—C5—C40.5 (8)C8—C9—C13—C12177.1 (5)
Pb—N1—C5—C4169.7 (4)N4—C12—C13—C91.7 (9)
Symmetry codes: (i) x1/2, y+3/2, z1/2; (ii) x+1/2, y+3/2, z+1/2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C3—H3···O3iii0.932.533.422 (10)160
C4—H4···O1iv0.932.453.277 (7)148
C10—H10···O2v0.932.573.485 (8)170
Symmetry codes: (iii) x1/2, y+1/2, z1/2; (iv) x+1/2, y1/2, z+3/2; (v) x+1, y+1, z+2.

Experimental details

Crystal data
Chemical formula[Pb(C13H11N4O)]ClO4
Mr545.90
Crystal system, space groupMonoclinic, P21/n
Temperature (K)293
a, b, c (Å)10.0620 (6), 14.4431 (8), 11.1456 (7)
β (°) 99.174 (1)
V3)1599.03 (16)
Z4
Radiation typeMo Kα
µ (mm1)10.75
Crystal size (mm)0.29 × 0.11 × 0.10
Data collection
DiffractometerBruker SMART CCD
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.691, 1.000
No. of measured, independent and
observed [I > 2σ(I)] reflections
8396, 2811, 2392
Rint0.026
(sin θ/λ)max1)0.595
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.022, 0.056, 1.07
No. of reflections2811
No. of parameters218
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.55, 0.45

Computer programs: SMART (Bruker, 2007), SAINT (Bruker, 2007), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 (Farrugia, 1997) and DIAMOND (Brandenburg, 2006), publCIF (Westrip, 2010).

Selected bond lengths (Å) top
Pb—O12.405 (3)Pb—N22.456 (4)
Pb—N12.597 (4)Pb—N4i2.472 (4)
Symmetry code: (i) x1/2, y+3/2, z1/2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C3—H3···O3ii0.932.533.422 (10)160
C4—H4···O1iii0.932.453.277 (7)148
C10—H10···O2iv0.932.573.485 (8)170
Symmetry codes: (ii) x1/2, y+1/2, z1/2; (iii) x+1/2, y1/2, z+3/2; (iv) x+1, y+1, z+2.
 

Footnotes

Additional correspondence author, e-mail: shahverdizadeh@iaut.ac.ir.

Acknowledgements

The authors thank the Islamic Azad University for support.

References

First citationAbboud, K. A., Palenik, R. C., Palenik, G. J. & Wood, R. M. (2007). Inorg. Chim. Acta, 360, 3642–3646.  Web of Science CSD CrossRef CAS Google Scholar
First citationBrandenburg, K. (2006). DIAMOND. Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationBruker (2007). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationHao, Z.-Y., Liu, Q.-W., Xu, J., Jia, L. & Li, S.-B. (2010). Chem. Pharm. Bull. 58, 1306–1312.  CSD CrossRef CAS PubMed Google Scholar
First citationHarrowfield, J. M., Miyamae, H., Skelton, B. W., Soudi, A. A. & White, A. H. (1996). Aust. J. Chem. 49, 1165–1169.  CSD CrossRef Web of Science Google Scholar
First citationMaurya, M. R., Khurana, S., Zhang, W. & Rehder, D. J. (2002). J. Chem. Soc. Dalton Trans. pp. 3015–3023.  Web of Science CSD CrossRef Google Scholar
First citationSheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationZhang, Y.-Y. & Liu, S.-X. (2009). Acta Cryst. C65, m269–m272.  Web of Science CSD CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds