metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

(Acetato-κO)(2,5,5,7,9,12,12,14-octa­methyl-1,4,8,11-tetra­aza­cyclo­tetra­decane-κ4N,N′,N′′,N′′′)zinc perchlorate

aDepartment of Chemistry, University of Chittagong, Chittagong 4331, Bangladesh, and bDepartment of Chemistry, University of Malaya, 50603 Kuala Lumpur, Malaysia
*Correspondence e-mail: edward.tiekink@gmail.com

(Received 24 October 2011; accepted 30 October 2011; online 5 November 2011)

The ZnII atom in the cation of the title salt, [Zn(C2H3O2)(C18H40N4)]ClO4, is five-coordinated by the four N atoms of the macrocycle and the O atom of the monodentate acetate ligand. The N4O donor set is based on a trigonal bipyramid with two N atoms occupying axial positions [N—Zn—N = 170.89 (16)°]. The perchlorate anions are associated with the cations via N—H⋯O hydrogen bonds; intra­molecular N—H⋯O(acetate) inter­actions are also observed. The neutral aggregates are connected into an helical chain along the b axis via N—H⋯O(acetate) hydrogen bonds. The perchlorate anion was found to be disordered about a pseudo-threefold axis: the major component of the disorder had a site occupancy factor of 0.692 (11).

Related literature

For background to the synthesis, characterization, kinetic studies and biological activity of 14-membered methyl-substituted tetra­aza­macrocyclic ligands, their N-substituted derivatives and their metal complexes, see: Bembi et al. (1990[Bembi, R., Roy, T. G., Jhanji, A. K. & Maheswari, A. (1990). J. Chem. Soc. Dalton Trans. pp. 3531-3534.]); Roy et al. (2007[Roy, T. G., Hazari, S. K. S., Dey, B. K., Miah, H. A., Olbrich, F. & Rehder, D. (2007). Inorg. Chem. 46, 5372-5380.], 2011[Roy, T. G., Hazari, S. K. S., Dey, B. K., Nath, B. C., Dutta, A., Olbrich, F. & Rehder, D. (2011). Inorg. Chim. Acta, 371, 63-70.]); Hazari et al. (2008[Hazari, S. K. S., Roy, S. K. S., Barua, K. K. & Tiekink, E. R. T. (2008). J. Chem. Crystallogr. 38, 1-8.]). For additional geometric analysis, see: Addison et al. (1984[Addison, A. W., Rao, T. N., Reedijk, J., van Rijn, J. & Verschoor, G. C. (1984). J. Chem. Soc. Dalton Trans. pp. 1349-1356.]).

[Scheme 1]

Experimental

Crystal data
  • [Zn(C2H3O2)(C18H40N4)]ClO4

  • Mr = 536.40

  • Orthorhombic, P b c a

  • a = 17.822 (6) Å

  • b = 12.995 (6) Å

  • c = 22.381 (7) Å

  • V = 5183 (3) Å3

  • Z = 8

  • Mo Kα radiation

  • μ = 1.09 mm−1

  • T = 153 K

  • 0.30 × 0.11 × 0.04 mm

Data collection
  • Rigaku AFC12/SATURN724 diffractometer

  • Absorption correction: multi-scan (ABSCOR; Higashi, 1995[Higashi, T. (1995). ABSCOR. Rigaku Corporation, Tokyo, Japan.]) Tmin = 0.602, Tmax = 1.000

  • 23785 measured reflections

  • 4534 independent reflections

  • 4080 reflections with I > 2σ(I)

  • Rint = 0.069

Refinement
  • R[F2 > 2σ(F2)] = 0.080

  • wR(F2) = 0.183

  • S = 1.29

  • 4534 reflections

  • 320 parameters

  • 22 restraints

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.63 e Å−3

  • Δρmin = −0.48 e Å−3

Table 1
Selected bond lengths (Å)

Zn—O1 1.973 (4)
Zn—N1 2.124 (4)
Zn—N2 2.216 (4)
Zn—N3 2.095 (4)
Zn—N4 2.153 (4)

Table 2
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1n⋯O4 0.88 (4) 2.14 (5) 3.017 (10) 177 (5)
N2—H2n⋯O2i 0.88 (4) 2.60 (4) 3.375 (6) 147 (4)
N3—H3n⋯O5 0.88 (3) 2.42 (3) 3.228 (8) 153 (5)
N4—H4n⋯O2 0.88 (3) 2.25 (3) 2.978 (6) 140 (4)
Symmetry code: (i) [-x+2, y+{\script{1\over 2}}, -z+{\script{3\over 2}}].

Data collection: CrystalClear (Molecular Structure Corporation & Rigaku, 2005[Molecular Structure Corporation & Rigaku (2005). CrystalClear. MSC, The Woodlands, Texas, USA, and Rigaku Corporation, Tokyo, Japan.]); cell refinement: CrystalClear; data reduction: CrystalClear; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]) and DIAMOND (Brandenburg, 2006[Brandenburg, K. (2006). DIAMOND. Crystal Impact GbR, Bonn, Germany.]); software used to prepare material for publication: publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Supporting information


Comment top

In continuation of long-terms studies of the synthesis, characterization and biological activities of methyl substituted tetraazamacrocyclic ligands and their metal complexes (Bembi et al., 1990; Roy et al., 2007; Hazari et al., 2008; Roy et al., 2011), the synthesis and crystal structure of the title complex, (I), was investigated.

The asymmetric unit of (I) comprises a ZnL(O2CMe) cation, Fig. 1, and a disordered perchlorate anion; L = 2,5,5,7,9,12,12,14-octamethyl-1,4,8,11-tetra-azacyclotetradecane. The Zn atom is five-coordinate, Table 1, within an N4O donor set derived from the four N atoms of the macrocyclic ligand and an O atom of a monodentate acetate; the Zn···O2 separation is 3.132 (4) Å. Based on the value of τ = 0.71, compared with the values of t = 0.0 and 1.0 for ideal square pyramidal and trigonal bipyramidal, respectively (Addison et al., 1984), the coordination geometry is distorted trigonal bipyramidal with the N2 and N4 atoms occupying axial positions; N2—Zn—N4 = 170.89 (16)°.

The cations in (I) are connected via weak NH···O(acetate) hydrogen bonds, Table 1, which stabilize supramolecular helical chains along the b axis, Fig. 2; intramolecular NH···O(acetate) hydrogen bonds are also present. The perchlorate anions associate with the chains via N—H···O interactions, also shown in Fig. 2.

Related literature top

For background to the synthesis, characterization, kinetic studies and biological activity of 14-membered methyl-substituted tetraazamacrocyclic ligands, their N-substituted derivatives and their metal complexes, see: Bembi et al. (1990); Roy et al. (2007, 2011); Hazari et al. (2008). For additional geometric analysis, see: Addison et al. (1984).

Experimental top

The title complex, (I), was prepared by the anion exchange reaction of [ZnL(O2CMe)][O2CMe] with perchlorate, where L is 2,5,5,7,9,12,12,14-octamethyl-1,4,8,11-tetra-azacyclotetradecane. Thus, [ZnL(O2CMe)][O2CMe] (0.495 g, 1.0 mmol) was dissolved in hot methanol (40 ml) and sodium perchlorate hexahydrate (0.460 g, 2.0 mmol) added. The reaction mixture was heated for 15 min. During heating a white product separated out. After cooling at room temperature for 30 min, the product, (I), was filtered off, washed with methanol followed by diethyl ether and dried in a desiccator over silica-gel. The yield was about 40%. Anal. Calc for C20H43ClN4O6Zn: C, 44.78; H, 7.46; N, 10.45; Zn, 12.20%. Found: C, 44.63; H, 7.32; N, 10.25; Zn, 12.01%. IR (cm-1): 1599 ν(O2C); 1129, 624 ν(ClO4). Colourless prisms of (I) were obtained from slow evaporation of its methanol solution.

Refinement top

The H-atoms were placed in calculated positions (C—H = 0.98–1.00 Å) and were included in the refinement in the riding model approximation, with Uiso(H) set to 1.2–1.5Uequiv(C). The N—H atoms were located from a difference map and refined with N—H = 0.88±0.01 Å, and with Uiso(H) set to 1.2Uequiv(N). The perchlorate anion was disordered about a pseudo-threefold axis. Two positions were resolved for three O atoms. The Cl—O and O···O distances were constrained to 1.44±0.01 and 2.34±0.01 Å, respectively. From anisotropic refinement, the major component of the disordered residue had a site occupancy factor = 0.692 (11).

Structure description top

In continuation of long-terms studies of the synthesis, characterization and biological activities of methyl substituted tetraazamacrocyclic ligands and their metal complexes (Bembi et al., 1990; Roy et al., 2007; Hazari et al., 2008; Roy et al., 2011), the synthesis and crystal structure of the title complex, (I), was investigated.

The asymmetric unit of (I) comprises a ZnL(O2CMe) cation, Fig. 1, and a disordered perchlorate anion; L = 2,5,5,7,9,12,12,14-octamethyl-1,4,8,11-tetra-azacyclotetradecane. The Zn atom is five-coordinate, Table 1, within an N4O donor set derived from the four N atoms of the macrocyclic ligand and an O atom of a monodentate acetate; the Zn···O2 separation is 3.132 (4) Å. Based on the value of τ = 0.71, compared with the values of t = 0.0 and 1.0 for ideal square pyramidal and trigonal bipyramidal, respectively (Addison et al., 1984), the coordination geometry is distorted trigonal bipyramidal with the N2 and N4 atoms occupying axial positions; N2—Zn—N4 = 170.89 (16)°.

The cations in (I) are connected via weak NH···O(acetate) hydrogen bonds, Table 1, which stabilize supramolecular helical chains along the b axis, Fig. 2; intramolecular NH···O(acetate) hydrogen bonds are also present. The perchlorate anions associate with the chains via N—H···O interactions, also shown in Fig. 2.

For background to the synthesis, characterization, kinetic studies and biological activity of 14-membered methyl-substituted tetraazamacrocyclic ligands, their N-substituted derivatives and their metal complexes, see: Bembi et al. (1990); Roy et al. (2007, 2011); Hazari et al. (2008). For additional geometric analysis, see: Addison et al. (1984).

Computing details top

Data collection: CrystalClear (Molecular Structure Corporation & Rigaku, 2005); cell refinement: CrystalClear (Molecular Structure Corporation & Rigaku, 2005); data reduction: CrystalClear (Molecular Structure Corporation & Rigaku, 2005); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997) and DIAMOND (Brandenburg, 2006); software used to prepare material for publication: publCIF (Westrip, 2010).

Figures top
[Figure 1] Fig. 1. The molecular structure of (I) showing the atom-labelling scheme and displacement ellipsoids at the 50% probability level. The perchlorate counter-ion is omitted.
[Figure 2] Fig. 2. Helical supramolecular chains in (I) sustained by NH···O(acetate) hydrogen bonds (blue dashed lines). Associated with these chains are the perchlorate anions held in place by N—H···O interactions (orange dashed lines).
(Acetato-κO)(2,5,5,7,9,12,12,14-octamethyl-1,4,8,11- tetraazacyclotetradecane-κ4N,N',N'',N''')zinc perchlorate top
Crystal data top
[Zn(C2H3O2)(C18H40N4)]ClO4F(000) = 2288
Mr = 536.40Dx = 1.375 Mg m3
Orthorhombic, PbcaMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ac 2abCell parameters from 7295 reflections
a = 17.822 (6) Åθ = 2.9–30.3°
b = 12.995 (6) ŵ = 1.09 mm1
c = 22.381 (7) ÅT = 153 K
V = 5183 (3) Å3Prism, colourless
Z = 80.30 × 0.11 × 0.04 mm
Data collection top
Rigaku AFC12K/SATURN724
diffractometer
4534 independent reflections
Radiation source: fine-focus sealed tube4080 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.069
ω scansθmax = 25.0°, θmin = 2.8°
Absorption correction: multi-scan
(ABSCOR; Higashi, 1995)
h = 2019
Tmin = 0.602, Tmax = 1.000k = 1215
23785 measured reflectionsl = 2326
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.080Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.183H atoms treated by a mixture of independent and constrained refinement
S = 1.29 w = 1/[σ2(Fo2) + (0.0546P)2 + 10.5654P]
where P = (Fo2 + 2Fc2)/3
4534 reflections(Δ/σ)max = 0.002
320 parametersΔρmax = 0.63 e Å3
22 restraintsΔρmin = 0.48 e Å3
Crystal data top
[Zn(C2H3O2)(C18H40N4)]ClO4V = 5183 (3) Å3
Mr = 536.40Z = 8
Orthorhombic, PbcaMo Kα radiation
a = 17.822 (6) ŵ = 1.09 mm1
b = 12.995 (6) ÅT = 153 K
c = 22.381 (7) Å0.30 × 0.11 × 0.04 mm
Data collection top
Rigaku AFC12K/SATURN724
diffractometer
4534 independent reflections
Absorption correction: multi-scan
(ABSCOR; Higashi, 1995)
4080 reflections with I > 2σ(I)
Tmin = 0.602, Tmax = 1.000Rint = 0.069
23785 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.08022 restraints
wR(F2) = 0.183H atoms treated by a mixture of independent and constrained refinement
S = 1.29 w = 1/[σ2(Fo2) + (0.0546P)2 + 10.5654P]
where P = (Fo2 + 2Fc2)/3
4534 reflectionsΔρmax = 0.63 e Å3
320 parametersΔρmin = 0.48 e Å3
Special details top

Geometry. All s.u.'s (except the s.u. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell s.u.'s are taken into account individually in the estimation of s.u.'s in distances, angles and torsion angles; correlations between s.u.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell s.u.'s is used for estimating s.u.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
Zn1.01476 (3)0.24442 (4)0.65431 (3)0.0345 (2)
O11.0503 (2)0.2678 (3)0.73667 (16)0.0433 (9)
O21.0583 (2)0.1015 (3)0.76154 (16)0.0491 (10)
N11.0563 (2)0.3315 (3)0.58108 (19)0.0335 (9)
H1N1.032 (3)0.304 (4)0.5507 (16)0.040*
N20.9363 (2)0.3757 (3)0.6641 (2)0.0392 (10)
H2N0.952 (3)0.419 (3)0.6913 (19)0.047*
N30.9287 (2)0.1464 (3)0.62552 (19)0.0349 (10)
H3N0.923 (3)0.166 (4)0.5881 (9)0.042*
N41.0846 (2)0.1156 (3)0.63040 (19)0.0351 (10)
H4N1.093 (3)0.086 (4)0.6652 (12)0.042*
C11.0292 (3)0.4397 (4)0.5913 (2)0.0379 (12)
H11.03400.47920.55310.046*
C21.0757 (3)0.4927 (4)0.6390 (3)0.0444 (14)
H2A1.08250.44610.67300.067*
H2B1.04980.55520.65240.067*
H2C1.12480.51110.62250.067*
C30.9465 (3)0.4332 (4)0.6080 (2)0.0404 (13)
H3A0.92590.50350.61260.048*
H3B0.91850.39850.57550.048*
C40.8573 (3)0.3561 (5)0.6842 (3)0.0467 (14)
C50.8056 (4)0.4482 (5)0.6709 (4)0.0645 (19)
H5A0.82900.51150.68560.097*
H5B0.75720.43800.69090.097*
H5C0.79760.45350.62770.097*
C60.8606 (4)0.3452 (5)0.7522 (3)0.0587 (17)
H6A0.89950.29520.76290.088*
H6B0.81190.32140.76700.088*
H6C0.87250.41210.77010.088*
C70.8231 (3)0.2632 (4)0.6516 (3)0.0477 (15)
H7A0.82370.27990.60840.057*
H7B0.76970.25970.66360.057*
C80.8554 (3)0.1523 (4)0.6580 (3)0.0439 (13)
H80.82030.10650.63540.053*
C90.8603 (3)0.1078 (5)0.7196 (3)0.0535 (16)
H9A0.86570.03290.71690.080*
H9B0.81460.12470.74180.080*
H9C0.90390.13680.74030.080*
C100.9591 (3)0.0393 (4)0.6200 (2)0.0369 (12)
H100.96320.00860.66080.044*
C110.9102 (3)0.0302 (4)0.5816 (3)0.0435 (13)
H11A0.86340.04540.60280.065*
H11B0.93700.09450.57340.065*
H11C0.89870.00460.54380.065*
C121.0379 (3)0.0472 (4)0.5929 (2)0.0372 (12)
H12A1.06100.02200.59070.045*
H12B1.03470.07520.55180.045*
C131.1625 (3)0.1373 (4)0.6071 (2)0.0397 (12)
C141.2063 (3)0.1843 (5)0.6585 (3)0.0494 (15)
H14A1.25670.20300.64480.074*
H14B1.21010.13430.69110.074*
H14C1.18020.24610.67280.074*
C151.2013 (3)0.0373 (5)0.5876 (3)0.0500 (15)
H15A1.25390.05150.57780.075*
H15B1.17580.00940.55240.075*
H15C1.19890.01290.62020.075*
C161.1590 (3)0.2100 (4)0.5530 (2)0.0359 (12)
H16A1.12290.18030.52420.043*
H16B1.20890.20890.53360.043*
C171.1374 (3)0.3234 (4)0.5624 (2)0.0352 (12)
H171.16930.35230.59510.042*
C181.1531 (3)0.3833 (4)0.5052 (2)0.0449 (13)
H18A1.20580.37460.49400.067*
H18B1.14260.45640.51180.067*
H18C1.12090.35730.47310.067*
C191.0657 (3)0.1956 (4)0.7740 (2)0.0390 (12)
C201.0900 (4)0.2282 (5)0.8341 (3)0.0555 (16)
H20A1.04630.23190.86060.083*
H20B1.11370.29610.83160.083*
H20C1.12600.17830.85000.083*
Cl0.90070 (8)0.24995 (10)0.45914 (6)0.0454 (4)0.692 (11)
O30.8898 (3)0.2216 (4)0.39872 (16)0.0672 (13)0.692 (11)
O40.9752 (3)0.2296 (10)0.4786 (4)0.102 (4)0.692 (11)
O50.8516 (5)0.1844 (6)0.4969 (3)0.081 (3)0.692 (11)
O60.8776 (6)0.3529 (4)0.4698 (3)0.074 (3)0.692 (11)
Cl10.90070 (8)0.24995 (10)0.45914 (6)0.0454 (4)0.308 (11)
O130.8898 (3)0.2216 (4)0.39872 (16)0.0672 (13)0.308 (11)
O140.9755 (6)0.2979 (15)0.4630 (7)0.102 (4)0.308 (11)
O150.8985 (12)0.1657 (9)0.4985 (5)0.081 (3)0.308 (11)
O160.8483 (9)0.3283 (11)0.4765 (7)0.074 (3)0.308 (11)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Zn0.0378 (4)0.0312 (4)0.0344 (4)0.0006 (3)0.0006 (2)0.0000 (2)
O10.054 (2)0.042 (2)0.034 (2)0.0042 (18)0.0023 (17)0.0004 (17)
O20.071 (3)0.038 (2)0.038 (2)0.006 (2)0.0047 (19)0.0031 (18)
N10.036 (2)0.029 (2)0.035 (2)0.0017 (19)0.0041 (18)0.0017 (18)
N20.039 (3)0.036 (3)0.042 (3)0.003 (2)0.001 (2)0.004 (2)
N30.036 (2)0.032 (2)0.037 (2)0.0009 (18)0.0018 (19)0.0004 (19)
N40.038 (2)0.033 (2)0.034 (2)0.0042 (19)0.0036 (19)0.0014 (19)
C10.053 (3)0.025 (3)0.036 (3)0.004 (2)0.004 (2)0.000 (2)
C20.053 (4)0.033 (3)0.047 (3)0.008 (3)0.012 (3)0.009 (2)
C30.044 (3)0.037 (3)0.041 (3)0.008 (2)0.001 (2)0.005 (2)
C40.044 (3)0.041 (3)0.055 (4)0.000 (3)0.007 (3)0.008 (3)
C50.049 (4)0.045 (4)0.100 (5)0.009 (3)0.005 (4)0.014 (4)
C60.058 (4)0.057 (4)0.060 (4)0.013 (3)0.024 (3)0.017 (3)
C70.034 (3)0.050 (4)0.059 (4)0.000 (3)0.004 (3)0.013 (3)
C80.044 (3)0.034 (3)0.053 (3)0.005 (2)0.006 (3)0.009 (3)
C90.053 (4)0.052 (4)0.056 (4)0.008 (3)0.014 (3)0.005 (3)
C100.044 (3)0.028 (3)0.038 (3)0.001 (2)0.003 (2)0.001 (2)
C110.051 (3)0.032 (3)0.047 (3)0.006 (3)0.005 (3)0.003 (2)
C120.039 (3)0.034 (3)0.038 (3)0.004 (2)0.000 (2)0.005 (2)
C130.037 (3)0.036 (3)0.046 (3)0.005 (2)0.003 (2)0.002 (2)
C140.046 (3)0.054 (4)0.048 (4)0.002 (3)0.006 (3)0.004 (3)
C150.044 (3)0.045 (3)0.061 (4)0.008 (3)0.002 (3)0.002 (3)
C160.034 (3)0.035 (3)0.039 (3)0.001 (2)0.000 (2)0.005 (2)
C170.038 (3)0.035 (3)0.032 (3)0.001 (2)0.000 (2)0.004 (2)
C180.049 (3)0.037 (3)0.049 (3)0.003 (3)0.005 (3)0.002 (3)
C190.038 (3)0.044 (3)0.035 (3)0.002 (2)0.007 (2)0.010 (2)
C200.076 (5)0.046 (4)0.045 (3)0.008 (3)0.006 (3)0.001 (3)
Cl0.0548 (9)0.0363 (7)0.0450 (8)0.0057 (6)0.0117 (6)0.0036 (6)
O30.090 (4)0.066 (3)0.045 (3)0.003 (3)0.022 (2)0.010 (2)
O40.060 (4)0.161 (11)0.085 (6)0.047 (6)0.037 (4)0.066 (7)
O50.103 (8)0.070 (5)0.069 (4)0.023 (5)0.008 (5)0.019 (3)
O60.122 (8)0.025 (4)0.076 (4)0.008 (4)0.001 (4)0.001 (3)
Cl10.0548 (9)0.0363 (7)0.0450 (8)0.0057 (6)0.0117 (6)0.0036 (6)
O130.090 (4)0.066 (3)0.045 (3)0.003 (3)0.022 (2)0.010 (2)
O140.060 (4)0.161 (11)0.085 (6)0.047 (6)0.037 (4)0.066 (7)
O150.103 (8)0.070 (5)0.069 (4)0.023 (5)0.008 (5)0.019 (3)
O160.122 (8)0.025 (4)0.076 (4)0.008 (4)0.001 (4)0.001 (3)
Geometric parameters (Å, º) top
Zn—O11.973 (4)C9—H9A0.9800
Zn—N12.124 (4)C9—H9B0.9800
Zn—N22.216 (4)C9—H9C0.9800
Zn—N32.095 (4)C10—C111.521 (7)
Zn—N42.153 (4)C10—C121.534 (7)
O1—C191.286 (6)C10—H101.0000
O2—C191.261 (7)C11—H11A0.9800
N1—C11.504 (6)C11—H11B0.9800
N1—C171.508 (6)C11—H11C0.9800
N1—H1N0.882 (10)C12—H12A0.9900
N2—C31.473 (7)C12—H12B0.9900
N2—C41.500 (7)C13—C141.518 (8)
N2—H2N0.878 (10)C13—C161.537 (7)
N3—C81.497 (7)C13—C151.535 (8)
N3—C101.499 (6)C14—H14A0.9800
N3—H3N0.879 (10)C14—H14B0.9800
N4—C121.478 (7)C14—H14C0.9800
N4—C131.511 (7)C15—H15A0.9800
N4—H4N0.880 (10)C15—H15B0.9800
C1—C21.518 (7)C15—H15C0.9800
C1—C31.523 (8)C16—C171.537 (7)
C1—H11.0000C16—H16A0.9900
C2—H2A0.9800C16—H16B0.9900
C2—H2B0.9800C17—C181.524 (7)
C2—H2C0.9800C17—H171.0000
C3—H3A0.9900C18—H18A0.9800
C3—H3B0.9900C18—H18B0.9800
C4—C61.528 (9)C18—H18C0.9800
C4—C71.537 (8)C19—C201.476 (8)
C4—C51.540 (8)C20—H20A0.9800
C5—H5A0.9800C20—H20B0.9800
C5—H5B0.9800C20—H20C0.9800
C5—H5C0.9800Cl—O61.420 (5)
C6—H6A0.9800Cl—O31.415 (4)
C6—H6B0.9800Cl—O41.422 (5)
C6—H6C0.9800Cl—O51.484 (5)
C7—C81.559 (8)Cl1—O151.405 (7)
C7—H7A0.9900Cl1—O161.435 (7)
C7—H7B0.9900Cl1—O131.415 (4)
C8—C91.497 (8)Cl1—O141.474 (8)
C8—H81.0000
O1—Zn—N3128.04 (17)C7—C8—H8105.8
O1—Zn—N1121.79 (16)C8—C9—H9A109.5
N3—Zn—N1109.96 (17)C8—C9—H9B109.5
O1—Zn—N499.58 (16)H9A—C9—H9B109.5
N3—Zn—N482.75 (16)C8—C9—H9C109.5
N1—Zn—N491.23 (16)H9A—C9—H9C109.5
O1—Zn—N289.52 (16)H9B—C9—H9C109.5
N3—Zn—N292.08 (17)N3—C10—C11113.0 (4)
N1—Zn—N283.46 (17)N3—C10—C12107.5 (4)
N4—Zn—N2170.89 (16)C11—C10—C12109.9 (4)
C19—O1—Zn124.3 (4)N3—C10—H10108.7
C1—N1—C17114.5 (4)C11—C10—H10108.7
C1—N1—Zn105.6 (3)C12—C10—H10108.7
C17—N1—Zn120.6 (3)C10—C11—H11A109.5
C1—N1—H1N109 (4)C10—C11—H11B109.5
C17—N1—H1N104 (4)H11A—C11—H11B109.5
Zn—N1—H1N102 (4)C10—C11—H11C109.5
C3—N2—C4117.2 (4)H11A—C11—H11C109.5
C3—N2—Zn103.2 (3)H11B—C11—H11C109.5
C4—N2—Zn119.4 (3)N4—C12—C10109.3 (4)
C3—N2—H2N103 (4)N4—C12—H12A109.8
C4—N2—H2N102 (4)C10—C12—H12A109.8
Zn—N2—H2N111 (4)N4—C12—H12B109.8
C8—N3—C10113.7 (4)C10—C12—H12B109.8
C8—N3—Zn117.3 (3)H12A—C12—H12B108.3
C10—N3—Zn109.0 (3)N4—C13—C14106.6 (4)
C8—N3—H3N110 (4)N4—C13—C16110.4 (4)
C10—N3—H3N103 (4)C14—C13—C16111.8 (5)
Zn—N3—H3N102 (4)N4—C13—C15110.7 (4)
C12—N4—C13115.7 (4)C14—C13—C15109.0 (5)
C12—N4—Zn106.5 (3)C16—C13—C15108.4 (4)
C13—N4—Zn118.1 (3)C13—C14—H14A109.5
C12—N4—H4N109 (4)C13—C14—H14B109.5
C13—N4—H4N104 (4)H14A—C14—H14B109.5
Zn—N4—H4N102 (4)C13—C14—H14C109.5
N1—C1—C2110.9 (4)H14A—C14—H14C109.5
N1—C1—C3107.2 (4)H14B—C14—H14C109.5
C2—C1—C3112.4 (4)C13—C15—H15A109.5
N1—C1—H1108.8C13—C15—H15B109.5
C2—C1—H1108.8H15A—C15—H15B109.5
C3—C1—H1108.8C13—C15—H15C109.5
C1—C2—H2A109.5H15A—C15—H15C109.5
C1—C2—H2B109.5H15B—C15—H15C109.5
H2A—C2—H2B109.5C13—C16—C17119.5 (4)
C1—C2—H2C109.5C13—C16—H16A107.5
H2A—C2—H2C109.5C17—C16—H16A107.5
H2B—C2—H2C109.5C13—C16—H16B107.5
N2—C3—C1110.9 (4)C17—C16—H16B107.5
N2—C3—H3A109.5H16A—C16—H16B107.0
C1—C3—H3A109.5N1—C17—C18111.9 (4)
N2—C3—H3B109.5N1—C17—C16110.2 (4)
C1—C3—H3B109.5C18—C17—C16109.2 (4)
H3A—C3—H3B108.1N1—C17—H17108.5
N2—C4—C6106.2 (5)C18—C17—H17108.5
N2—C4—C7111.3 (4)C16—C17—H17108.5
C6—C4—C7114.6 (5)C17—C18—H18A109.5
N2—C4—C5111.8 (5)C17—C18—H18B109.5
C6—C4—C5106.7 (5)H18A—C18—H18B109.5
C7—C4—C5106.3 (5)C17—C18—H18C109.5
C4—C5—H5A109.5H18A—C18—H18C109.5
C4—C5—H5B109.5H18B—C18—H18C109.5
H5A—C5—H5B109.5O2—C19—O1122.8 (5)
C4—C5—H5C109.5O2—C19—C20120.7 (5)
H5A—C5—H5C109.5O1—C19—C20116.4 (5)
H5B—C5—H5C109.5C19—C20—H20A109.5
C4—C6—H6A109.5C19—C20—H20B109.5
C4—C6—H6B109.5H20A—C20—H20B109.5
H6A—C6—H6B109.5C19—C20—H20C109.5
C4—C6—H6C109.5H20A—C20—H20C109.5
H6A—C6—H6C109.5H20B—C20—H20C109.5
H6B—C6—H6C109.5O6—Cl—O3111.5 (4)
C4—C7—C8122.4 (5)O6—Cl—O4113.3 (4)
C4—C7—H7A106.7O3—Cl—O4111.8 (4)
C8—C7—H7A106.7O6—Cl—O5106.0 (4)
C4—C7—H7B106.7O3—Cl—O5108.3 (4)
C8—C7—H7B106.7O4—Cl—O5105.6 (4)
H7A—C7—H7B106.6O15—Cl1—O16111.4 (7)
N3—C8—C9112.1 (5)O15—Cl1—O13113.1 (6)
N3—C8—C7108.9 (4)O16—Cl1—O13110.8 (6)
C9—C8—C7117.6 (5)O15—Cl1—O14108.5 (6)
N3—C8—H8105.8O16—Cl1—O14105.8 (6)
C9—C8—H8105.8O13—Cl1—O14106.9 (6)
N3—Zn—O1—C1948.1 (5)C3—N2—C4—C6153.3 (5)
N1—Zn—O1—C19137.6 (4)Zn—N2—C4—C680.8 (5)
N4—Zn—O1—C1940.2 (4)C3—N2—C4—C781.4 (6)
N2—Zn—O1—C19140.4 (4)Zn—N2—C4—C744.5 (6)
O1—Zn—N1—C166.6 (4)C3—N2—C4—C537.3 (7)
N3—Zn—N1—C1108.6 (3)Zn—N2—C4—C5163.1 (4)
N4—Zn—N1—C1168.7 (3)N2—C4—C7—C863.1 (7)
N2—Zn—N1—C118.7 (3)C6—C4—C7—C857.4 (7)
O1—Zn—N1—C1765.2 (4)C5—C4—C7—C8175.0 (5)
N3—Zn—N1—C17119.6 (4)C10—N3—C8—C957.6 (6)
N4—Zn—N1—C1736.9 (4)Zn—N3—C8—C971.3 (5)
N2—Zn—N1—C17150.5 (4)C10—N3—C8—C7170.5 (4)
O1—Zn—N2—C3134.4 (3)Zn—N3—C8—C760.6 (5)
N3—Zn—N2—C397.6 (3)C4—C7—C8—N371.8 (7)
N1—Zn—N2—C312.3 (3)C4—C7—C8—C957.1 (8)
O1—Zn—N2—C493.4 (4)C8—N3—C10—C1165.2 (6)
N3—Zn—N2—C434.7 (4)Zn—N3—C10—C11161.8 (4)
N1—Zn—N2—C4144.5 (4)C8—N3—C10—C12173.3 (4)
O1—Zn—N3—C848.5 (4)Zn—N3—C10—C1240.3 (5)
N1—Zn—N3—C8126.3 (4)C13—N4—C12—C10175.8 (4)
N4—Zn—N3—C8145.0 (4)Zn—N4—C12—C1042.4 (5)
N2—Zn—N3—C842.5 (4)N3—C10—C12—N456.2 (5)
O1—Zn—N3—C1082.6 (4)C11—C10—C12—N4179.6 (4)
N1—Zn—N3—C10102.6 (3)C12—N4—C13—C14165.8 (4)
N4—Zn—N3—C1013.9 (3)Zn—N4—C13—C1466.3 (5)
N2—Zn—N3—C10173.6 (3)C12—N4—C13—C1672.6 (5)
O1—Zn—N4—C12143.2 (3)Zn—N4—C13—C1655.3 (5)
N3—Zn—N4—C1215.7 (3)C12—N4—C13—C1547.5 (6)
N1—Zn—N4—C1294.3 (3)Zn—N4—C13—C15175.3 (3)
O1—Zn—N4—C1384.7 (4)N4—C13—C16—C1770.6 (6)
N3—Zn—N4—C13147.8 (4)C14—C13—C16—C1747.8 (6)
N1—Zn—N4—C1337.8 (4)C15—C13—C16—C17167.9 (5)
C17—N1—C1—C258.5 (5)C1—N1—C17—C1858.2 (6)
Zn—N1—C1—C276.7 (4)Zn—N1—C17—C18174.0 (3)
C17—N1—C1—C3178.5 (4)C1—N1—C17—C16179.8 (4)
Zn—N1—C1—C346.3 (4)Zn—N1—C17—C1652.3 (5)
C4—N2—C3—C1175.7 (4)C13—C16—C17—N168.1 (6)
Zn—N2—C3—C142.2 (5)C13—C16—C17—C18168.7 (5)
N1—C1—C3—N262.6 (5)Zn—O1—C19—O21.1 (7)
C2—C1—C3—N259.5 (6)Zn—O1—C19—C20178.7 (4)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1n···O40.88 (4)2.14 (5)3.017 (10)177 (5)
N2—H2n···O2i0.88 (4)2.60 (4)3.375 (6)147 (4)
N3—H3n···O50.88 (3)2.42 (3)3.228 (8)153 (5)
N4—H4n···O20.88 (3)2.25 (3)2.978 (6)140 (4)
Symmetry code: (i) x+2, y+1/2, z+3/2.

Experimental details

Crystal data
Chemical formula[Zn(C2H3O2)(C18H40N4)]ClO4
Mr536.40
Crystal system, space groupOrthorhombic, Pbca
Temperature (K)153
a, b, c (Å)17.822 (6), 12.995 (6), 22.381 (7)
V3)5183 (3)
Z8
Radiation typeMo Kα
µ (mm1)1.09
Crystal size (mm)0.30 × 0.11 × 0.04
Data collection
DiffractometerRigaku AFC12K/SATURN724
Absorption correctionMulti-scan
(ABSCOR; Higashi, 1995)
Tmin, Tmax0.602, 1.000
No. of measured, independent and
observed [I > 2σ(I)] reflections
23785, 4534, 4080
Rint0.069
(sin θ/λ)max1)0.595
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.080, 0.183, 1.29
No. of reflections4534
No. of parameters320
No. of restraints22
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
w = 1/[σ2(Fo2) + (0.0546P)2 + 10.5654P]
where P = (Fo2 + 2Fc2)/3
Δρmax, Δρmin (e Å3)0.63, 0.48

Computer programs: CrystalClear (Molecular Structure Corporation & Rigaku, 2005), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 (Farrugia, 1997) and DIAMOND (Brandenburg, 2006), publCIF (Westrip, 2010).

Selected bond lengths (Å) top
Zn—O11.973 (4)Zn—N32.095 (4)
Zn—N12.124 (4)Zn—N42.153 (4)
Zn—N22.216 (4)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1n···O40.88 (4)2.14 (5)3.017 (10)177 (5)
N2—H2n···O2i0.88 (4)2.60 (4)3.375 (6)147 (4)
N3—H3n···O50.88 (3)2.42 (3)3.228 (8)153 (5)
N4—H4n···O20.88 (3)2.25 (3)2.978 (6)140 (4)
Symmetry code: (i) x+2, y+1/2, z+3/2.
 

Footnotes

Additional correspondence author, e-mail: tapashir@yahoo.com.

Acknowledgements

The authors are grateful to the Ministry of National Science, Information & Communication Technology (NSICT), Bangladesh, for the award of a research grant to TGR.

References

First citationAddison, A. W., Rao, T. N., Reedijk, J., van Rijn, J. & Verschoor, G. C. (1984). J. Chem. Soc. Dalton Trans. pp. 1349–1356.  CSD CrossRef Web of Science Google Scholar
First citationBembi, R., Roy, T. G., Jhanji, A. K. & Maheswari, A. (1990). J. Chem. Soc. Dalton Trans. pp. 3531–3534.  CrossRef Web of Science Google Scholar
First citationBrandenburg, K. (2006). DIAMOND. Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationHazari, S. K. S., Roy, S. K. S., Barua, K. K. & Tiekink, E. R. T. (2008). J. Chem. Crystallogr. 38, 1–8.  Web of Science CrossRef CAS Google Scholar
First citationHigashi, T. (1995). ABSCOR. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationMolecular Structure Corporation & Rigaku (2005). CrystalClear. MSC, The Woodlands, Texas, USA, and Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationRoy, T. G., Hazari, S. K. S., Dey, B. K., Miah, H. A., Olbrich, F. & Rehder, D. (2007). Inorg. Chem. 46, 5372–5380.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationRoy, T. G., Hazari, S. K. S., Dey, B. K., Nath, B. C., Dutta, A., Olbrich, F. & Rehder, D. (2011). Inorg. Chim. Acta, 371, 63–70.  CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds