organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

2-(2-Meth­­oxy­phen­­oxy)-3-nitro­pyridine

aDepartment of Chemistry, University of Malaya, 50603 Kuala Lumpur, Malaysia, and bChemistry Department, Faculty of Science, King Abdulaziz University, PO Box 80203 Jeddah, Saudi Arabia
*Correspondence e-mail: edward.tiekink@gmail.com

(Received 24 October 2011; accepted 28 October 2011; online 5 November 2011)

In the title compound, C12H10N2O4, the pyridine and benzene rings are almost orthogonal, forming a dihedral angle of 86.63 (6)°. Each of the nitro [O—N—C—C torsion angle = −6.45 (19)°] and meth­oxy [C—O—C—C torsion angle = 179.69 (11)°] groups is almost coplanar with the ring to which it is connected. Mol­ecules are consolidated in the crystal structure via C—H⋯O inter­actions, forming a three-dimensional network.

Related literature

For the structure of a related nitro-pyridine derivative, see: Nasir et al. (2010[Nasir, S. B., Abdullah, Z., Fairuz, Z. A., Ng, S. W. & Tiekink, E. R. T. (2010). Acta Cryst. E66, o2428.]).

[Scheme 1]

Experimental

Crystal data
  • C12H10N2O4

  • Mr = 246.22

  • Monoclinic, P 21 /n

  • a = 7.5017 (7) Å

  • b = 7.1542 (6) Å

  • c = 20.6369 (18) Å

  • β = 91.878 (1)°

  • V = 1106.96 (17) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.11 mm−1

  • T = 100 K

  • 0.35 × 0.30 × 0.20 mm

Data collection
  • Bruker SMART APEX CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996[Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.]) Tmin = 0.961, Tmax = 0.978

  • 10026 measured reflections

  • 2551 independent reflections

  • 2103 reflections with I > 2σ(I)

  • Rint = 0.029

Refinement
  • R[F2 > 2σ(F2)] = 0.037

  • wR(F2) = 0.103

  • S = 1.03

  • 2551 reflections

  • 164 parameters

  • H-atom parameters constrained

  • Δρmax = 0.25 e Å−3

  • Δρmin = −0.25 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C3—H3⋯O2i 0.95 2.58 3.4085 (17) 146
C9—H9⋯O4ii 0.95 2.55 3.2659 (16) 132
C12—H12a⋯O3iii 0.98 2.52 3.3560 (18) 143
Symmetry codes: (i) -x+1, -y+1, -z; (ii) [x+{\script{1\over 2}}, -y+{\script{1\over 2}}, z+{\script{1\over 2}}]; (iii) x+1, y, z.

Data collection: APEX2 (Bruker, 2009[Bruker (2009). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2009[Bruker (2009). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]) and DIAMOND (Brandenburg, 2006[Brandenburg, K. (2006). DIAMOND. Crystal Impact GbR, Bonn, Germany.]); software used to prepare material for publication: publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Supporting information


Comment top

As a continuation of synthetic and structural studies of nitro-pyridine derivatives (Nasir et al., 2010), the title compound, (I), was investigated, Fig. 1. The dihedral angle formed between the pyridine and benzene rings is 86.63 (6)°, indicating an almost orthogonal relationship. Each of the nitro [the O3—N2—C2—C1 torsion angle is -6.45 (19)°] and methoxy [the C12—O2—C11—C6 torsion angle is 179.69 (11)°] groups is co-planar with the ring to which it is attached. Molecules are stabilized in the three-dimensional crystal structure by C—H···O interactions, Table 1. Globally, the nitro-pyridine residues pack into layers in the ab plane with the benzene rings projecting to either side, Fig.2.

Related literature top

For the structure of a related nitro-pyridine derivative, see: Nasir et al. (2010).

Experimental top

o-Methoxyphenol (2.5 g, 20 mmol) and sodium hydroxide (0.80 g, 20 mmol) were dissolved in water (50 ml) and to the solution was added 2-chloro-3-nitropyridine (3.17 g, 20 mmol) dissolved in THF (50 ml). The mixture was heated for 4 h. Water was added and the organic phase extracted with chloroform. The chloroform solution was dried over sodium sulfate and evaporation of the solvent yielded colourless blocks.

Refinement top

Hydrogen atoms were placed at calculated positions (C—H 0.95–0.98 Å) and were treated as riding on their parent carbon atoms, with U(H) set to 1.2–1.5 times Ueq(C).

Structure description top

As a continuation of synthetic and structural studies of nitro-pyridine derivatives (Nasir et al., 2010), the title compound, (I), was investigated, Fig. 1. The dihedral angle formed between the pyridine and benzene rings is 86.63 (6)°, indicating an almost orthogonal relationship. Each of the nitro [the O3—N2—C2—C1 torsion angle is -6.45 (19)°] and methoxy [the C12—O2—C11—C6 torsion angle is 179.69 (11)°] groups is co-planar with the ring to which it is attached. Molecules are stabilized in the three-dimensional crystal structure by C—H···O interactions, Table 1. Globally, the nitro-pyridine residues pack into layers in the ab plane with the benzene rings projecting to either side, Fig.2.

For the structure of a related nitro-pyridine derivative, see: Nasir et al. (2010).

Computing details top

Data collection: APEX2 (Bruker, 2009); cell refinement: SAINT (Bruker, 2009); data reduction: SAINT (Bruker, 2009); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997) and DIAMOND (Brandenburg, 2006); software used to prepare material for publication: publCIF (Westrip, 2010).

Figures top
[Figure 1] Fig. 1. The molecular structure of (I) showing displacement ellipsoids at the 50% probability level.
[Figure 2] Fig. 2. Unit-cell contents for (I) shown in projection down the a axis. The C—H···O interactions are shown as orange dashed lines.
2-(2-Methoxyphenoxy)-3-nitropyridine top
Crystal data top
C12H10N2O4F(000) = 512
Mr = 246.22Dx = 1.477 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ynCell parameters from 3556 reflections
a = 7.5017 (7) Åθ = 2.9–28.2°
b = 7.1542 (6) ŵ = 0.11 mm1
c = 20.6369 (18) ÅT = 100 K
β = 91.878 (1)°Block, colourless
V = 1106.96 (17) Å30.35 × 0.30 × 0.20 mm
Z = 4
Data collection top
Bruker SMART APEX CCD
diffractometer
2551 independent reflections
Radiation source: fine-focus sealed tube2103 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.029
ω scansθmax = 27.5°, θmin = 2.0°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 99
Tmin = 0.961, Tmax = 0.978k = 99
10026 measured reflectionsl = 2326
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.037Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.103H-atom parameters constrained
S = 1.03 w = 1/[σ2(Fo2) + (0.053P)2 + 0.3772P]
where P = (Fo2 + 2Fc2)/3
2551 reflections(Δ/σ)max < 0.001
164 parametersΔρmax = 0.25 e Å3
0 restraintsΔρmin = 0.25 e Å3
Crystal data top
C12H10N2O4V = 1106.96 (17) Å3
Mr = 246.22Z = 4
Monoclinic, P21/nMo Kα radiation
a = 7.5017 (7) ŵ = 0.11 mm1
b = 7.1542 (6) ÅT = 100 K
c = 20.6369 (18) Å0.35 × 0.30 × 0.20 mm
β = 91.878 (1)°
Data collection top
Bruker SMART APEX CCD
diffractometer
2551 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
2103 reflections with I > 2σ(I)
Tmin = 0.961, Tmax = 0.978Rint = 0.029
10026 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0370 restraints
wR(F2) = 0.103H-atom parameters constrained
S = 1.03Δρmax = 0.25 e Å3
2551 reflectionsΔρmin = 0.25 e Å3
164 parameters
Special details top

Geometry. All s.u.'s (except the s.u. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell s.u.'s are taken into account individually in the estimation of s.u.'s in distances, angles and torsion angles; correlations between s.u.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell s.u.'s is used for estimating s.u.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.36667 (12)0.22735 (12)0.12197 (4)0.0182 (2)
O20.71311 (12)0.13613 (14)0.12236 (4)0.0206 (2)
O30.20311 (15)0.16998 (15)0.01073 (5)0.0316 (3)
O40.12030 (15)0.40621 (16)0.04768 (5)0.0323 (3)
N10.47657 (14)0.52273 (15)0.13850 (5)0.0190 (2)
N20.20013 (15)0.33758 (17)0.00044 (5)0.0207 (3)
C10.38285 (16)0.40572 (17)0.10136 (6)0.0150 (3)
C20.29836 (16)0.46433 (18)0.04319 (6)0.0171 (3)
C30.30952 (18)0.6508 (2)0.02541 (7)0.0235 (3)
H30.25190.69390.01350.028*
C40.4052 (2)0.7729 (2)0.06477 (7)0.0262 (3)
H40.41400.90170.05410.031*
C50.48791 (18)0.70151 (19)0.12028 (7)0.0236 (3)
H50.55680.78420.14700.028*
C60.45474 (17)0.18151 (17)0.18111 (6)0.0165 (3)
C70.35938 (17)0.17835 (18)0.23680 (6)0.0198 (3)
H70.23820.21700.23600.024*
C80.44250 (18)0.11778 (19)0.29441 (7)0.0217 (3)
H80.37870.11620.33340.026*
C90.61791 (18)0.06017 (18)0.29447 (6)0.0196 (3)
H90.67360.01690.33370.024*
C100.71438 (17)0.06438 (17)0.23835 (6)0.0179 (3)
H100.83540.02500.23920.022*
C110.63311 (17)0.12668 (17)0.18063 (6)0.0160 (3)
C120.89664 (19)0.0810 (2)0.12152 (7)0.0250 (3)
H12A0.93840.08820.07710.038*
H12B0.90880.04770.13740.038*
H12C0.96830.16460.14950.038*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0237 (5)0.0134 (4)0.0169 (5)0.0025 (4)0.0074 (4)0.0026 (3)
O20.0236 (5)0.0230 (5)0.0152 (5)0.0025 (4)0.0015 (4)0.0007 (4)
O30.0442 (6)0.0264 (6)0.0235 (6)0.0106 (5)0.0096 (5)0.0015 (4)
O40.0353 (6)0.0440 (7)0.0170 (5)0.0105 (5)0.0087 (4)0.0004 (5)
N10.0201 (5)0.0141 (5)0.0226 (6)0.0003 (4)0.0027 (4)0.0002 (4)
N20.0199 (5)0.0292 (7)0.0129 (5)0.0011 (5)0.0003 (4)0.0006 (5)
C10.0153 (6)0.0132 (6)0.0165 (6)0.0011 (4)0.0009 (5)0.0009 (5)
C20.0167 (6)0.0196 (7)0.0149 (6)0.0013 (5)0.0006 (5)0.0009 (5)
C30.0247 (7)0.0230 (7)0.0230 (7)0.0054 (5)0.0025 (5)0.0084 (6)
C40.0311 (7)0.0146 (6)0.0332 (8)0.0021 (5)0.0042 (6)0.0075 (6)
C50.0244 (7)0.0144 (6)0.0318 (8)0.0016 (5)0.0009 (6)0.0009 (6)
C60.0222 (6)0.0105 (6)0.0162 (6)0.0025 (5)0.0060 (5)0.0009 (5)
C70.0194 (6)0.0181 (6)0.0216 (7)0.0023 (5)0.0020 (5)0.0006 (5)
C80.0253 (7)0.0216 (7)0.0182 (7)0.0050 (5)0.0004 (5)0.0020 (5)
C90.0272 (7)0.0156 (6)0.0156 (6)0.0040 (5)0.0055 (5)0.0027 (5)
C100.0219 (6)0.0126 (6)0.0189 (7)0.0003 (5)0.0041 (5)0.0004 (5)
C110.0233 (6)0.0096 (6)0.0151 (6)0.0019 (5)0.0018 (5)0.0002 (5)
C120.0243 (7)0.0282 (8)0.0226 (7)0.0043 (6)0.0004 (5)0.0000 (6)
Geometric parameters (Å, º) top
O1—C11.3518 (15)C5—H50.9500
O1—C61.4075 (14)C6—C71.3735 (18)
O2—C111.3630 (15)C6—C111.3947 (18)
O2—C121.4329 (16)C7—C81.3934 (18)
O3—N21.2211 (16)C7—H70.9500
O4—N21.2295 (14)C8—C91.3788 (19)
N1—C11.3217 (16)C8—H80.9500
N1—C51.3367 (17)C9—C101.3860 (19)
N2—C21.4604 (17)C9—H90.9500
C1—C21.4031 (17)C10—C111.3935 (17)
C2—C31.3871 (19)C10—H100.9500
C3—C41.378 (2)C12—H12A0.9800
C3—H30.9500C12—H12B0.9800
C4—C51.383 (2)C12—H12C0.9800
C4—H40.9500
C1—O1—C6116.64 (9)C11—C6—O1118.84 (11)
C11—O2—C12116.62 (10)C6—C7—C8119.22 (12)
C1—N1—C5118.72 (12)C6—C7—H7120.4
O3—N2—O4123.18 (12)C8—C7—H7120.4
O3—N2—C2119.18 (11)C9—C8—C7119.61 (12)
O4—N2—C2117.63 (12)C9—C8—H8120.2
N1—C1—O1117.84 (11)C7—C8—H8120.2
N1—C1—C2121.57 (12)C8—C9—C10121.14 (12)
O1—C1—C2120.57 (11)C8—C9—H9119.4
C3—C2—C1118.97 (12)C10—C9—H9119.4
C3—C2—N2117.89 (11)C9—C10—C11119.70 (12)
C1—C2—N2123.14 (11)C9—C10—H10120.1
C4—C3—C2119.24 (13)C11—C10—H10120.1
C4—C3—H3120.4O2—C11—C10125.24 (12)
C2—C3—H3120.4O2—C11—C6116.28 (11)
C3—C4—C5117.71 (13)C10—C11—C6118.47 (12)
C3—C4—H4121.1O2—C12—H12A109.5
C5—C4—H4121.1O2—C12—H12B109.5
N1—C5—C4123.76 (13)H12A—C12—H12B109.5
N1—C5—H5118.1O2—C12—H12C109.5
C4—C5—H5118.1H12A—C12—H12C109.5
C7—C6—C11121.84 (11)H12B—C12—H12C109.5
C7—C6—O1119.13 (11)
C5—N1—C1—O1177.26 (11)C3—C4—C5—N11.7 (2)
C5—N1—C1—C21.09 (19)C1—O1—C6—C798.47 (13)
C6—O1—C1—N11.12 (16)C1—O1—C6—C1186.40 (14)
C6—O1—C1—C2179.48 (11)C11—C6—C7—C80.36 (19)
N1—C1—C2—C31.92 (19)O1—C6—C7—C8174.62 (11)
O1—C1—C2—C3176.38 (11)C6—C7—C8—C90.73 (19)
N1—C1—C2—N2177.31 (11)C7—C8—C9—C101.1 (2)
O1—C1—C2—N24.40 (18)C8—C9—C10—C110.40 (19)
O3—N2—C2—C3172.79 (12)C12—O2—C11—C101.44 (18)
O4—N2—C2—C36.00 (17)C12—O2—C11—C6179.69 (11)
O3—N2—C2—C16.45 (19)C9—C10—C11—O2179.52 (11)
O4—N2—C2—C1174.76 (12)C9—C10—C11—C60.68 (18)
C1—C2—C3—C40.92 (19)C7—C6—C11—O2179.99 (11)
N2—C2—C3—C4178.35 (12)O1—C6—C11—O25.02 (16)
C2—C3—C4—C50.8 (2)C7—C6—C11—C101.06 (18)
C1—N1—C5—C40.8 (2)O1—C6—C11—C10173.93 (11)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C3—H3···O2i0.952.583.4085 (17)146
C9—H9···O4ii0.952.553.2659 (16)132
C12—H12a···O3iii0.982.523.3560 (18)143
Symmetry codes: (i) x+1, y+1, z; (ii) x+1/2, y+1/2, z+1/2; (iii) x+1, y, z.

Experimental details

Crystal data
Chemical formulaC12H10N2O4
Mr246.22
Crystal system, space groupMonoclinic, P21/n
Temperature (K)100
a, b, c (Å)7.5017 (7), 7.1542 (6), 20.6369 (18)
β (°) 91.878 (1)
V3)1106.96 (17)
Z4
Radiation typeMo Kα
µ (mm1)0.11
Crystal size (mm)0.35 × 0.30 × 0.20
Data collection
DiffractometerBruker SMART APEX CCD
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.961, 0.978
No. of measured, independent and
observed [I > 2σ(I)] reflections
10026, 2551, 2103
Rint0.029
(sin θ/λ)max1)0.650
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.037, 0.103, 1.03
No. of reflections2551
No. of parameters164
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.25, 0.25

Computer programs: APEX2 (Bruker, 2009), SAINT (Bruker, 2009), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 (Farrugia, 1997) and DIAMOND (Brandenburg, 2006), publCIF (Westrip, 2010).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C3—H3···O2i0.952.583.4085 (17)146
C9—H9···O4ii0.952.553.2659 (16)132
C12—H12a···O3iii0.982.523.3560 (18)143
Symmetry codes: (i) x+1, y+1, z; (ii) x+1/2, y+1/2, z+1/2; (iii) x+1, y, z.
 

Footnotes

Additional correspondence author, e-mail: zana@um.edu.my.

Acknowledgements

We thank the University of Malaya (grant No. FP001/2010 A) for supporting this study.

References

First citationBrandenburg, K. (2006). DIAMOND. Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationBruker (2009). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationNasir, S. B., Abdullah, Z., Fairuz, Z. A., Ng, S. W. & Tiekink, E. R. T. (2010). Acta Cryst. E66, o2428.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds