metal-organic compounds
Bis{1,2-bis[bis(3-methoxypropyl)phosphanyl]ethane-κ2P,P′}dichloridoosmium(II)
aDepartment of Chemistry, 1253 University of Oregon, Eugene, Oregon 97403-1253, USA
*Correspondence e-mail: dtyler@uoregon.edu
In the centrosymmetric title compound, [OsCl2(C18H40O4P2)2], the OsII atom adopts a trans-OsCl2P4 geometry, arising from its coordination by two chelating diphosphane ligands and two chloride ions. One of the methoxy side chains of the ligand is disordered over two orientations in a 0.700 (6):0.300 (6) ratio.
Related literature
For background to transition-metal dihydride complexes, see: Egbert et al. (2007); Heinekey et al. (2004); Miller et al. (2002); Szymczak & Tyler (2007); Szymczak et al. (2006).
Experimental
Crystal data
|
Refinement
|
|
Data collection: SMART (Bruker, 2000); cell SAINT (Bruker, 2000); data reduction: SAINT (Bruker, 2000); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).
Supporting information
https://doi.org/10.1107/S1600536811048926/hb6479sup1.cif
contains datablocks I, global. DOI:Structure factors: contains datablock I. DOI: https://doi.org/10.1107/S1600536811048926/hb6479Isup2.hkl
To a flask containing [OsCl6][NEt4]2 (0.9114 g, 1.374 mmol) and NaBPh4 (1.890 g, 5.523 mmol) was added a solution of DMeOPrPE (2.11 g, 5.524 mmol) in methanol (300 ml) followed by ethanol (365 ml). After heating to reflux for 16 h, the solution was deep purple with a white precipitate, and the solution was kept at reflux. After 4 days, the solution was clear yellow with a white solid on the flask walls. The solvent was removed and the residue was extracted with hot hexanes (3 x 30 ml) and diethyl ether (3 x 30 ml), leaving a yellow oil. Upon letting the oil stand for 24 h, yellow crystals of trans-[Os(DMeOPrPE)2Cl2] developed. Yield: 0.862 g (61%); {1H} 31P NMR: d 8.6.
The structure was solved using
and refined with anisotropic thermal parameters for non-H atoms. H atoms were positioned geometrically and refined in a rigid group model, C—H = 1.2Ueq(C) and 1.5Ueq(C), respectively for –CH2 and –CH3 groups. In the molecule there are eight -(CH2)3OCH3 terminal groups which are flexible and thermal parameters for atoms in these groups are significantly elongated. One of the –CH2OCH3 groups, C(17)O(4) C(18), is disordered over two positions in the ratio 0.700/0.300. Restrictions have been used in the of this group; the typical values of the –CH2—CH2–, –CH2—O– and –O—CH3 bonds (1.524, 1.426 and 1.416 Å, respectively) have been used in the as the targets for corresponding bond lengths.A consequence of the large d-orbitals in third-row transition metals is increased overlap to antibonding orbitals of ligands such as CO and H2. Accordingly, when most third-row transition metal complexes are reacted with H2, the product is often a dihydride complex (Egbert et al., 2007; Szymczak & Tyler, 2007). However, when the d-orbitals are not sufficiently electron rich to promote a complete oxidative-addition product, an arrested η2-H2 ligand. We hypothesized that small changes to the environment around the H2 ligand could potentially be correlated with small energetic fluctuations, such as those that are typical of weak intermolecular forces such as hydrogen bonding.
can result. The "arrested" intermediates belong to an unusual class of dihydrogen complexes with a bond distance between 1.1 Å and 1.5 Å (Heinekey et al., 2004). The H-H bond in these complexes sits in an unusually flat surface, and the H-H bond distance is consequently very sensitive to changes in the environment around the coordinatedSeveral osmium dihydrogen complexes have previously been shown to have H-H bond distances in the elongated regime (1.1 - 1.5 Å). For our study of hydrogen bonding of water to the H2 ligand, we sought therefore to study hydrogen bonding to the H2 ligand in the water-soluble trans-Os(DMeOPrPE)2(H2)H+ complex. (DMeOPrPE is the water-soluble, bidentate phosphine ligand 1,2-bis(bis(methoxypropyl)phosphanyl)ethane.) In prior work, we synthesized trans-Fe(DMeOPrPE)2(H2)H+ and trans-Ru(DMeOPrPE)2(H2)H+ by reaction of the trans-M(DMeOPrPE)2Cl2 complexes with H2 (Miller et al., 2002, Szymczak et al., 2006). In order to synthesize the analogous H2 complex of Os, we synthesized the trans-Os(DMeOPrPE)2Cl2 complex reported here.
The structure shows an octahedral coordination environment around osmium with trans-chloride ligands (Fig. 1). Crystallization of the osmium congener allowed a direct comparison of trans-M(DMeOPrPE)2Cl2 complexes down the group 8 triad (Table 1). The M-L bonds were found to increase substantially from iron to ruthenium with minimal elongation from ruthenium to osmium. This minimal change in going from ruthenium to osmium is consistent with a lanthanide contraction of the atomic radius.
For background to transition-metal dihydride complexes, see: Egbert et al. (2007); Heinekey et al. (2004); Miller et al. (2002); Szymczak et al. (2006, 2007).
Data collection: SMART (Bruker, 2000); cell
SAINT (Bruker, 2000); data reduction: SAINT (Bruker, 2000); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).Fig. 1. The structure of (I) with 50% probability displacement ellipsoids [Symmetry code (A): -x,-y,-z]. Only one position of the disordered C17/O4/C18 group is shown for clarity. |
[OsCl2(C18H40O4P2)2] | F(000) = 1060 |
Mr = 1025.98 | Dx = 1.459 Mg m−3 |
Monoclinic, P21/n | Mo Kα radiation, λ = 0.71073 Å |
Hall symbol: -P 2yn | Cell parameters from 8415 reflections |
a = 12.667 (3) Å | θ = 2.3–26.7° |
b = 10.321 (2) Å | µ = 3.03 mm−1 |
c = 18.754 (4) Å | T = 173 K |
β = 107.779 (3)° | Plate, yellow |
V = 2335.0 (9) Å3 | 0.14 × 0.10 × 0.04 mm |
Z = 2 |
Bruker APEX CCD diffractometer | 5333 independent reflections |
Radiation source: fine-focus sealed tube | 4423 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.032 |
phi and ω scans | θmax = 27.5°, θmin = 1.7° |
Absorption correction: multi-scan (SADABS; Sheldrick, 1995) | h = −16→16 |
Tmin = 0.677, Tmax = 0.889 | k = −13→13 |
25950 measured reflections | l = −23→24 |
Refinement on F2 | Primary atom site location: structure-invariant direct methods |
Least-squares matrix: full | Secondary atom site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.024 | Hydrogen site location: inferred from neighbouring sites |
wR(F2) = 0.058 | H-atom parameters constrained |
S = 1.04 | w = 1/[σ2(Fo2) + (0.028P)2 + 0.9782P] where P = (Fo2 + 2Fc2)/3 |
5333 reflections | (Δ/σ)max < 0.001 |
251 parameters | Δρmax = 0.87 e Å−3 |
5 restraints | Δρmin = −0.51 e Å−3 |
[OsCl2(C18H40O4P2)2] | V = 2335.0 (9) Å3 |
Mr = 1025.98 | Z = 2 |
Monoclinic, P21/n | Mo Kα radiation |
a = 12.667 (3) Å | µ = 3.03 mm−1 |
b = 10.321 (2) Å | T = 173 K |
c = 18.754 (4) Å | 0.14 × 0.10 × 0.04 mm |
β = 107.779 (3)° |
Bruker APEX CCD diffractometer | 5333 independent reflections |
Absorption correction: multi-scan (SADABS; Sheldrick, 1995) | 4423 reflections with I > 2σ(I) |
Tmin = 0.677, Tmax = 0.889 | Rint = 0.032 |
25950 measured reflections |
R[F2 > 2σ(F2)] = 0.024 | 5 restraints |
wR(F2) = 0.058 | H-atom parameters constrained |
S = 1.04 | Δρmax = 0.87 e Å−3 |
5333 reflections | Δρmin = −0.51 e Å−3 |
251 parameters |
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. |
x | y | z | Uiso*/Ueq | Occ. (<1) | |
Os1 | 0.5000 | 0.5000 | 0.0000 | 0.02110 (5) | |
Cl1 | 0.31396 (6) | 0.41077 (7) | −0.05728 (4) | 0.03191 (16) | |
P1 | 0.57375 (6) | 0.32518 (7) | −0.04887 (4) | 0.02556 (15) | |
P2 | 0.53170 (6) | 0.36384 (7) | 0.10408 (4) | 0.02567 (15) | |
O1 | 0.9493 (2) | 0.2799 (3) | −0.02252 (14) | 0.0575 (7) | |
O2 | 0.5043 (2) | 0.1314 (3) | −0.27322 (14) | 0.0666 (8) | |
O3 | 0.5690 (2) | 0.4496 (3) | 0.35068 (13) | 0.0512 (6) | |
C1 | 0.5965 (3) | 0.1882 (3) | 0.01729 (16) | 0.0354 (7) | |
H1A | 0.5270 | 0.1384 | 0.0089 | 0.043* | |
H1B | 0.6539 | 0.1295 | 0.0096 | 0.043* | |
C2 | 0.6341 (3) | 0.2421 (3) | 0.09683 (16) | 0.0352 (7) | |
H2A | 0.7082 | 0.2823 | 0.1076 | 0.042* | |
H2B | 0.6386 | 0.1715 | 0.1334 | 0.042* | |
C3 | 0.7111 (2) | 0.3487 (3) | −0.05918 (18) | 0.0355 (7) | |
H3A | 0.7085 | 0.4293 | −0.0883 | 0.043* | |
H3B | 0.7632 | 0.3645 | −0.0086 | 0.043* | |
C4 | 0.7620 (3) | 0.2440 (3) | −0.09552 (18) | 0.0397 (7) | |
H4A | 0.7657 | 0.1617 | −0.0677 | 0.048* | |
H4B | 0.7141 | 0.2298 | −0.1475 | 0.048* | |
C5 | 0.8773 (3) | 0.2810 (4) | −0.09625 (19) | 0.0457 (8) | |
H5A | 0.9035 | 0.2188 | −0.1273 | 0.055* | |
H5B | 0.8759 | 0.3685 | −0.1182 | 0.055* | |
C6 | 1.0568 (3) | 0.3250 (5) | −0.0175 (2) | 0.0691 (12) | |
H6A | 1.1037 | 0.3219 | 0.0348 | 0.104* | |
H6B | 1.0521 | 0.4144 | −0.0358 | 0.104* | |
H6C | 1.0889 | 0.2699 | −0.0481 | 0.104* | |
C7 | 0.4913 (3) | 0.2555 (3) | −0.13885 (17) | 0.0336 (7) | |
H7A | 0.4127 | 0.2782 | −0.1465 | 0.040* | |
H7B | 0.5140 | 0.2990 | −0.1789 | 0.040* | |
C8 | 0.4975 (3) | 0.1093 (3) | −0.15003 (18) | 0.0410 (8) | |
H8A | 0.5761 | 0.0816 | −0.1339 | 0.049* | |
H8B | 0.4593 | 0.0638 | −0.1185 | 0.049* | |
C9 | 0.4444 (3) | 0.0725 (3) | −0.23097 (19) | 0.0455 (8) | |
H9A | 0.4455 | −0.0228 | −0.2367 | 0.055* | |
H9B | 0.3664 | 0.1021 | −0.2481 | 0.055* | |
C10 | 0.4635 (4) | 0.1030 (6) | −0.3488 (2) | 0.0944 (18) | |
H10A | 0.5089 | 0.1464 | −0.3755 | 0.142* | |
H10B | 0.3867 | 0.1333 | −0.3683 | 0.142* | |
H10C | 0.4659 | 0.0091 | −0.3560 | 0.142* | |
C11 | 0.5917 (2) | 0.4287 (3) | 0.19857 (16) | 0.0303 (6) | |
H11A | 0.6554 | 0.4842 | 0.1984 | 0.036* | |
H11B | 0.5356 | 0.4853 | 0.2097 | 0.036* | |
C12 | 0.6318 (3) | 0.3317 (3) | 0.26298 (17) | 0.0381 (7) | |
H12A | 0.5718 | 0.2690 | 0.2608 | 0.046* | |
H12B | 0.6959 | 0.2829 | 0.2571 | 0.046* | |
C13 | 0.6655 (3) | 0.3987 (3) | 0.33861 (18) | 0.0437 (8) | |
H13A | 0.7016 | 0.3361 | 0.3786 | 0.052* | |
H13B | 0.7187 | 0.4693 | 0.3393 | 0.052* | |
C14 | 0.5931 (5) | 0.5225 (4) | 0.4180 (3) | 0.0833 (16) | |
H14A | 0.5240 | 0.5559 | 0.4241 | 0.125* | |
H14B | 0.6419 | 0.5950 | 0.4157 | 0.125* | |
H14C | 0.6301 | 0.4667 | 0.4606 | 0.125* | |
C15 | 0.4218 (3) | 0.2540 (3) | 0.11326 (17) | 0.0374 (7) | |
H15A | 0.3810 | 0.2211 | 0.0628 | 0.045* | |
H15B | 0.4577 | 0.1787 | 0.1438 | 0.045* | |
C16 | 0.3385 (3) | 0.3093 (3) | 0.1475 (2) | 0.0509 (9) | |
H16A | 0.2935 | 0.3763 | 0.1140 | 0.061* | |
H16B | 0.3777 | 0.3508 | 0.1960 | 0.061* | |
C17 | 0.2609 (4) | 0.2002 (6) | 0.1602 (3) | 0.0890 (18) | 0.700 (6) |
H17A | 0.1975 | 0.2396 | 0.1727 | 0.107* | 0.700 (6) |
H17B | 0.2313 | 0.1495 | 0.1136 | 0.107* | 0.700 (6) |
O4 | 0.3138 (3) | 0.1245 (3) | 0.2135 (2) | 0.0515 (12) | 0.700 (6) |
C18 | 0.2400 (6) | 0.0305 (5) | 0.2282 (4) | 0.0579 (17) | 0.700 (6) |
H18A | 0.2813 | −0.0264 | 0.2690 | 0.087* | 0.700 (6) |
H18B | 0.2072 | −0.0213 | 0.1830 | 0.087* | 0.700 (6) |
H18C | 0.1812 | 0.0747 | 0.2426 | 0.087* | 0.700 (6) |
C17A | 0.2609 (4) | 0.2002 (6) | 0.1602 (3) | 0.0890 (18) | 0.300 (6) |
H17C | 0.2140 | 0.1721 | 0.1101 | 0.107* | 0.300 (6) |
H17D | 0.3090 | 0.1257 | 0.1825 | 0.107* | 0.300 (6) |
O4A | 0.2061 (9) | 0.2156 (9) | 0.1940 (6) | 0.072 (4) | 0.300 (6) |
C18A | 0.1540 (15) | 0.0978 (17) | 0.2088 (10) | 0.098 (7) | 0.300 (6) |
H18D | 0.1048 | 0.1184 | 0.2387 | 0.146* | 0.300 (6) |
H18E | 0.2112 | 0.0368 | 0.2364 | 0.146* | 0.300 (6) |
H18F | 0.1106 | 0.0586 | 0.1612 | 0.146* | 0.300 (6) |
U11 | U22 | U33 | U12 | U13 | U23 | |
Os1 | 0.02079 (8) | 0.01550 (8) | 0.02816 (8) | −0.00026 (6) | 0.00918 (6) | 0.00023 (6) |
Cl1 | 0.0249 (3) | 0.0302 (4) | 0.0410 (4) | −0.0056 (3) | 0.0105 (3) | −0.0045 (3) |
P1 | 0.0281 (4) | 0.0187 (3) | 0.0315 (4) | 0.0028 (3) | 0.0115 (3) | 0.0000 (3) |
P2 | 0.0300 (4) | 0.0183 (3) | 0.0300 (4) | 0.0004 (3) | 0.0112 (3) | 0.0013 (3) |
O1 | 0.0332 (13) | 0.091 (2) | 0.0499 (15) | 0.0038 (14) | 0.0149 (11) | 0.0043 (14) |
O2 | 0.080 (2) | 0.078 (2) | 0.0400 (14) | −0.0198 (16) | 0.0150 (14) | −0.0137 (14) |
O3 | 0.0617 (17) | 0.0534 (14) | 0.0407 (14) | −0.0105 (13) | 0.0189 (12) | −0.0129 (12) |
C1 | 0.0489 (19) | 0.0217 (15) | 0.0398 (17) | 0.0087 (13) | 0.0196 (15) | 0.0028 (13) |
C2 | 0.0464 (18) | 0.0263 (15) | 0.0345 (16) | 0.0116 (13) | 0.0146 (14) | 0.0071 (12) |
C3 | 0.0338 (16) | 0.0309 (16) | 0.0464 (18) | 0.0029 (13) | 0.0188 (14) | −0.0018 (14) |
C4 | 0.0377 (18) | 0.0457 (19) | 0.0392 (18) | 0.0094 (15) | 0.0169 (15) | −0.0033 (15) |
C5 | 0.0375 (18) | 0.060 (2) | 0.047 (2) | 0.0101 (16) | 0.0230 (16) | −0.0002 (17) |
C6 | 0.036 (2) | 0.097 (4) | 0.074 (3) | 0.004 (2) | 0.016 (2) | −0.002 (3) |
C7 | 0.0354 (17) | 0.0254 (15) | 0.0382 (17) | 0.0027 (12) | 0.0088 (14) | −0.0059 (13) |
C8 | 0.057 (2) | 0.0219 (16) | 0.0427 (18) | −0.0017 (14) | 0.0134 (16) | −0.0029 (13) |
C9 | 0.051 (2) | 0.0304 (18) | 0.050 (2) | −0.0037 (15) | 0.0078 (17) | −0.0116 (15) |
C10 | 0.074 (3) | 0.160 (6) | 0.044 (3) | 0.007 (3) | 0.011 (2) | −0.018 (3) |
C11 | 0.0334 (16) | 0.0243 (16) | 0.0323 (15) | 0.0008 (12) | 0.0086 (13) | 0.0014 (12) |
C12 | 0.0465 (19) | 0.0299 (17) | 0.0347 (16) | 0.0052 (14) | 0.0074 (14) | 0.0044 (13) |
C13 | 0.051 (2) | 0.0391 (19) | 0.0338 (17) | −0.0034 (16) | 0.0019 (15) | 0.0051 (14) |
C14 | 0.115 (5) | 0.076 (3) | 0.061 (3) | −0.019 (3) | 0.031 (3) | −0.033 (2) |
C15 | 0.0468 (19) | 0.0304 (17) | 0.0363 (17) | −0.0084 (14) | 0.0148 (15) | 0.0023 (13) |
C16 | 0.046 (2) | 0.048 (2) | 0.065 (2) | −0.0052 (17) | 0.0256 (18) | 0.0135 (18) |
C17 | 0.080 (3) | 0.128 (5) | 0.076 (3) | 0.005 (3) | 0.048 (3) | 0.044 (3) |
O4 | 0.041 (2) | 0.058 (2) | 0.056 (2) | −0.0074 (17) | 0.0166 (17) | 0.0144 (18) |
C18 | 0.059 (4) | 0.047 (3) | 0.080 (4) | −0.018 (3) | 0.042 (4) | 0.005 (3) |
C17A | 0.080 (3) | 0.128 (5) | 0.076 (3) | 0.005 (3) | 0.048 (3) | 0.044 (3) |
O4A | 0.077 (7) | 0.062 (6) | 0.077 (7) | −0.007 (5) | 0.024 (6) | 0.012 (5) |
C18A | 0.076 (12) | 0.099 (14) | 0.105 (13) | −0.061 (11) | 0.009 (10) | 0.042 (11) |
Os1—P2 | 2.3383 (8) | C8—C9 | 1.509 (4) |
Os1—P2i | 2.3383 (8) | C8—H8A | 0.9900 |
Os1—P1i | 2.3434 (8) | C8—H8B | 0.9900 |
Os1—P1 | 2.3434 (8) | C9—H9A | 0.9900 |
Os1—Cl1 | 2.4515 (8) | C9—H9B | 0.9900 |
Os1—Cl1i | 2.4515 (8) | C10—H10A | 0.9800 |
P1—C3 | 1.825 (3) | C10—H10B | 0.9800 |
P1—C7 | 1.838 (3) | C10—H10C | 0.9800 |
P1—C1 | 1.845 (3) | C11—C12 | 1.531 (4) |
P2—C11 | 1.829 (3) | C11—H11A | 0.9900 |
P2—C2 | 1.840 (3) | C11—H11B | 0.9900 |
P2—C15 | 1.844 (3) | C12—C13 | 1.517 (4) |
O1—C5 | 1.405 (4) | C12—H12A | 0.9900 |
O1—C6 | 1.414 (4) | C12—H12B | 0.9900 |
O2—C10 | 1.384 (5) | C13—H13A | 0.9900 |
O2—C9 | 1.392 (4) | C13—H13B | 0.9900 |
O3—C13 | 1.412 (4) | C14—H14A | 0.9800 |
O3—C14 | 1.420 (5) | C14—H14B | 0.9800 |
C1—C2 | 1.525 (4) | C14—H14C | 0.9800 |
C1—H1A | 0.9900 | C15—C16 | 1.506 (5) |
C1—H1B | 0.9900 | C15—H15A | 0.9900 |
C2—H2A | 0.9900 | C15—H15B | 0.9900 |
C2—H2B | 0.9900 | C16—C17 | 1.560 (6) |
C3—C4 | 1.521 (4) | C16—H16A | 0.9900 |
C3—H3A | 0.9900 | C16—H16B | 0.9900 |
C3—H3B | 0.9900 | C17—O4 | 1.283 (5) |
C4—C5 | 1.514 (4) | C17—H17A | 0.9900 |
C4—H4A | 0.9900 | C17—H17B | 0.9900 |
C4—H4B | 0.9900 | O4—C18 | 1.431 (6) |
C5—H5A | 0.9900 | C18—H18A | 0.9800 |
C5—H5B | 0.9900 | C18—H18B | 0.9800 |
C6—H6A | 0.9800 | C18—H18C | 0.9800 |
C6—H6B | 0.9800 | O4A—C18A | 1.451 (13) |
C6—H6C | 0.9800 | C18A—H18D | 0.9800 |
C7—C8 | 1.528 (4) | C18A—H18E | 0.9800 |
C7—H7A | 0.9900 | C18A—H18F | 0.9800 |
C7—H7B | 0.9900 | ||
P2—Os1—P2i | 180.00 (4) | C9—C8—H8A | 109.4 |
P2—Os1—P1i | 97.10 (3) | C7—C8—H8A | 109.4 |
P2i—Os1—P1i | 82.90 (3) | C9—C8—H8B | 109.4 |
P2—Os1—P1 | 82.90 (3) | C7—C8—H8B | 109.4 |
P2i—Os1—P1 | 97.10 (3) | H8A—C8—H8B | 108.0 |
P1i—Os1—P1 | 180.00 (3) | O2—C9—C8 | 108.1 (3) |
P2—Os1—Cl1 | 92.13 (3) | O2—C9—H9A | 110.1 |
P2i—Os1—Cl1 | 87.87 (3) | C8—C9—H9A | 110.1 |
P1i—Os1—Cl1 | 90.91 (3) | O2—C9—H9B | 110.1 |
P1—Os1—Cl1 | 89.09 (3) | C8—C9—H9B | 110.1 |
P2—Os1—Cl1i | 87.87 (3) | H9A—C9—H9B | 108.4 |
P2i—Os1—Cl1i | 92.13 (3) | O2—C10—H10A | 109.5 |
P1i—Os1—Cl1i | 89.09 (3) | O2—C10—H10B | 109.5 |
P1—Os1—Cl1i | 90.91 (3) | H10A—C10—H10B | 109.5 |
Cl1—Os1—Cl1i | 180.0 | O2—C10—H10C | 109.5 |
C3—P1—C7 | 104.32 (15) | H10A—C10—H10C | 109.5 |
C3—P1—C1 | 102.40 (15) | H10B—C10—H10C | 109.5 |
C7—P1—C1 | 104.24 (14) | C12—C11—P2 | 117.7 (2) |
C3—P1—Os1 | 116.50 (10) | C12—C11—H11A | 107.9 |
C7—P1—Os1 | 118.55 (10) | P2—C11—H11A | 107.9 |
C1—P1—Os1 | 109.03 (10) | C12—C11—H11B | 107.9 |
C11—P2—C2 | 103.16 (14) | P2—C11—H11B | 107.9 |
C11—P2—C15 | 103.69 (14) | H11A—C11—H11B | 107.2 |
C2—P2—C15 | 98.98 (15) | C13—C12—C11 | 111.8 (2) |
C11—P2—Os1 | 120.25 (10) | C13—C12—H12A | 109.3 |
C2—P2—Os1 | 107.11 (10) | C11—C12—H12A | 109.3 |
C15—P2—Os1 | 120.36 (11) | C13—C12—H12B | 109.3 |
C5—O1—C6 | 112.7 (3) | C11—C12—H12B | 109.3 |
C10—O2—C9 | 113.1 (3) | H12A—C12—H12B | 107.9 |
C13—O3—C14 | 112.2 (3) | O3—C13—C12 | 108.0 (3) |
C2—C1—P1 | 108.5 (2) | O3—C13—H13A | 110.1 |
C2—C1—H1A | 110.0 | C12—C13—H13A | 110.1 |
P1—C1—H1A | 110.0 | O3—C13—H13B | 110.1 |
C2—C1—H1B | 110.0 | C12—C13—H13B | 110.1 |
P1—C1—H1B | 110.0 | H13A—C13—H13B | 108.4 |
H1A—C1—H1B | 108.4 | O3—C14—H14A | 109.5 |
C1—C2—P2 | 107.7 (2) | O3—C14—H14B | 109.5 |
C1—C2—H2A | 110.2 | H14A—C14—H14B | 109.5 |
P2—C2—H2A | 110.2 | O3—C14—H14C | 109.5 |
C1—C2—H2B | 110.2 | H14A—C14—H14C | 109.5 |
P2—C2—H2B | 110.2 | H14B—C14—H14C | 109.5 |
H2A—C2—H2B | 108.5 | C16—C15—P2 | 117.0 (2) |
C4—C3—P1 | 120.1 (2) | C16—C15—H15A | 108.0 |
C4—C3—H3A | 107.3 | P2—C15—H15A | 108.0 |
P1—C3—H3A | 107.3 | C16—C15—H15B | 108.0 |
C4—C3—H3B | 107.3 | P2—C15—H15B | 108.0 |
P1—C3—H3B | 107.3 | H15A—C15—H15B | 107.3 |
H3A—C3—H3B | 106.9 | C15—C16—C17 | 110.3 (3) |
C5—C4—C3 | 111.5 (3) | C15—C16—H16A | 109.6 |
C5—C4—H4A | 109.3 | C17—C16—H16A | 109.6 |
C3—C4—H4A | 109.3 | C15—C16—H16B | 109.6 |
C5—C4—H4B | 109.3 | C17—C16—H16B | 109.6 |
C3—C4—H4B | 109.3 | H16A—C16—H16B | 108.1 |
H4A—C4—H4B | 108.0 | O4—C17—C16 | 110.8 (4) |
O1—C5—C4 | 109.1 (3) | O4—C17—H17A | 109.5 |
O1—C5—H5A | 109.9 | C16—C17—H17A | 109.5 |
C4—C5—H5A | 109.9 | O4—C17—H17B | 109.5 |
O1—C5—H5B | 109.9 | C16—C17—H17B | 109.5 |
C4—C5—H5B | 109.9 | H17A—C17—H17B | 108.1 |
H5A—C5—H5B | 108.3 | C17—O4—C18 | 110.3 (4) |
O1—C6—H6A | 109.5 | O4—C18—H18A | 109.5 |
O1—C6—H6B | 109.5 | O4—C18—H18B | 109.5 |
H6A—C6—H6B | 109.5 | H18A—C18—H18B | 109.5 |
O1—C6—H6C | 109.5 | O4—C18—H18C | 109.5 |
H6A—C6—H6C | 109.5 | H18A—C18—H18C | 109.5 |
H6B—C6—H6C | 109.5 | H18B—C18—H18C | 109.5 |
C8—C7—P1 | 118.3 (2) | O4A—C18A—H18D | 109.5 |
C8—C7—H7A | 107.7 | O4A—C18A—H18E | 109.5 |
P1—C7—H7A | 107.7 | H18D—C18A—H18E | 109.5 |
C8—C7—H7B | 107.7 | O4A—C18A—H18F | 109.5 |
P1—C7—H7B | 107.7 | H18D—C18A—H18F | 109.5 |
H7A—C7—H7B | 107.1 | H18E—C18A—H18F | 109.5 |
C9—C8—C7 | 111.2 (3) | ||
P2—Os1—P1—C3 | −109.55 (12) | C7—P1—C1—C2 | −163.7 (2) |
P2i—Os1—P1—C3 | 70.45 (12) | Os1—P1—C1—C2 | −36.2 (2) |
P1i—Os1—P1—C3 | 5 (47) | P1—C1—C2—P2 | 53.3 (2) |
Cl1—Os1—P1—C3 | 158.19 (12) | C11—P2—C2—C1 | −175.8 (2) |
Cl1i—Os1—P1—C3 | −21.81 (12) | C15—P2—C2—C1 | 77.8 (2) |
P2—Os1—P1—C7 | 124.59 (12) | Os1—P2—C2—C1 | −47.9 (2) |
P2i—Os1—P1—C7 | −55.41 (12) | C7—P1—C3—C4 | −43.0 (3) |
P1i—Os1—P1—C7 | −121 (47) | C1—P1—C3—C4 | 65.5 (3) |
Cl1—Os1—P1—C7 | 32.34 (12) | Os1—P1—C3—C4 | −175.7 (2) |
Cl1i—Os1—P1—C7 | −147.66 (12) | P1—C3—C4—C5 | −178.2 (2) |
P2—Os1—P1—C1 | 5.65 (11) | C6—O1—C5—C4 | −174.6 (3) |
P2i—Os1—P1—C1 | −174.35 (11) | C3—C4—C5—O1 | 68.8 (4) |
P1i—Os1—P1—C1 | 120 (47) | C3—P1—C7—C8 | 83.9 (3) |
Cl1—Os1—P1—C1 | −86.61 (11) | C1—P1—C7—C8 | −23.2 (3) |
Cl1i—Os1—P1—C1 | 93.39 (11) | Os1—P1—C7—C8 | −144.6 (2) |
P2i—Os1—P2—C11 | 88 (100) | P1—C7—C8—C9 | −168.4 (2) |
P1i—Os1—P2—C11 | −43.13 (12) | C10—O2—C9—C8 | 179.3 (4) |
P1—Os1—P2—C11 | 136.87 (12) | C7—C8—C9—O2 | 62.8 (4) |
Cl1—Os1—P2—C11 | −134.31 (12) | C2—P2—C11—C12 | −49.0 (3) |
Cl1i—Os1—P2—C11 | 45.69 (12) | C15—P2—C11—C12 | 53.8 (3) |
P2i—Os1—P2—C2 | −29 (100) | Os1—P2—C11—C12 | −168.09 (19) |
P1i—Os1—P2—C2 | −160.21 (11) | P2—C11—C12—C13 | −172.6 (2) |
P1—Os1—P2—C2 | 19.79 (11) | C14—O3—C13—C12 | −175.8 (3) |
Cl1—Os1—P2—C2 | 108.61 (11) | C11—C12—C13—O3 | 68.3 (3) |
Cl1i—Os1—P2—C2 | −71.39 (11) | C11—P2—C15—C16 | 52.9 (3) |
P2i—Os1—P2—C15 | −141 (100) | C2—P2—C15—C16 | 158.9 (3) |
P1i—Os1—P2—C15 | 88.10 (12) | Os1—P2—C15—C16 | −85.1 (3) |
P1—Os1—P2—C15 | −91.90 (12) | P2—C15—C16—C17 | −173.0 (3) |
Cl1—Os1—P2—C15 | −3.08 (12) | C15—C16—C17—O4 | 70.8 (5) |
Cl1i—Os1—P2—C15 | 176.92 (12) | C16—C17—O4—C18 | 175.9 (4) |
C3—P1—C1—C2 | 87.8 (2) |
Symmetry code: (i) −x+1, −y+1, −z. |
Experimental details
Crystal data | |
Chemical formula | [OsCl2(C18H40O4P2)2] |
Mr | 1025.98 |
Crystal system, space group | Monoclinic, P21/n |
Temperature (K) | 173 |
a, b, c (Å) | 12.667 (3), 10.321 (2), 18.754 (4) |
β (°) | 107.779 (3) |
V (Å3) | 2335.0 (9) |
Z | 2 |
Radiation type | Mo Kα |
µ (mm−1) | 3.03 |
Crystal size (mm) | 0.14 × 0.10 × 0.04 |
Data collection | |
Diffractometer | Bruker APEX CCD |
Absorption correction | Multi-scan (SADABS; Sheldrick, 1995) |
Tmin, Tmax | 0.677, 0.889 |
No. of measured, independent and observed [I > 2σ(I)] reflections | 25950, 5333, 4423 |
Rint | 0.032 |
(sin θ/λ)max (Å−1) | 0.650 |
Refinement | |
R[F2 > 2σ(F2)], wR(F2), S | 0.024, 0.058, 1.04 |
No. of reflections | 5333 |
No. of parameters | 251 |
No. of restraints | 5 |
H-atom treatment | H-atom parameters constrained |
Δρmax, Δρmin (e Å−3) | 0.87, −0.51 |
Computer programs: SMART (Bruker, 2000), SAINT (Bruker, 2000), SHELXTL (Sheldrick, 2008).
Acknowledgements
We thank the NSF for funding.
References
Bruker (2000). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA. Google Scholar
Egbert, J. D., Bullock, R. M. & Heinekey, D. M. (2007). Organometallics, 26, 2291–2295. Web of Science CrossRef CAS Google Scholar
Heinekey, D. M., Lledos, A. & Lluch, J. M. (2004). Chem. Soc. Rev. 33, 175–182. Web of Science CrossRef PubMed CAS Google Scholar
Miller, W. K., Gilbertson, J. D., Leiva-Paredes, C., Bernatis, P. R., Weakley, T. J. R., Lyon, D. K. & Tyler, D. R. (2002). Inorg. Chem. 41, 5453–5465. Web of Science CSD CrossRef PubMed CAS Google Scholar
Sheldrick, G. M. (1995). SADABS. University of Göttingen, Germany. Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Szymczak, N. K. & Tyler, D. R. (2007). Coord. Chem. Rev. 252, 212–230. Web of Science CrossRef Google Scholar
Szymczak, N. K., Zakharov, L. N. & Tyler, D. R. (2006). J. Am. Chem. Soc. 128, 15830–15835. Web of Science CSD CrossRef PubMed CAS Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.
A consequence of the large d-orbitals in third-row transition metals is increased overlap to antibonding orbitals of ligands such as CO and H2. Accordingly, when most third-row transition metal complexes are reacted with H2, the product is often a dihydride complex (Egbert et al., 2007; Szymczak & Tyler, 2007). However, when the d-orbitals are not sufficiently electron rich to promote a complete oxidative-addition product, an arrested oxidative addition can result. The "arrested" intermediates belong to an unusual class of dihydrogen complexes with a bond distance between 1.1 Å and 1.5 Å (Heinekey et al., 2004). The H-H bond in these complexes sits in an unusually flat potential energy surface, and the H-H bond distance is consequently very sensitive to changes in the environment around the coordinated η2-H2 ligand. We hypothesized that small changes to the environment around the H2 ligand could potentially be correlated with small energetic fluctuations, such as those that are typical of weak intermolecular forces such as hydrogen bonding.
Several osmium dihydrogen complexes have previously been shown to have H-H bond distances in the elongated regime (1.1 - 1.5 Å). For our study of hydrogen bonding of water to the H2 ligand, we sought therefore to study hydrogen bonding to the H2 ligand in the water-soluble trans-Os(DMeOPrPE)2(H2)H+ complex. (DMeOPrPE is the water-soluble, bidentate phosphine ligand 1,2-bis(bis(methoxypropyl)phosphanyl)ethane.) In prior work, we synthesized trans-Fe(DMeOPrPE)2(H2)H+ and trans-Ru(DMeOPrPE)2(H2)H+ by reaction of the trans-M(DMeOPrPE)2Cl2 complexes with H2 (Miller et al., 2002, Szymczak et al., 2006). In order to synthesize the analogous H2 complex of Os, we synthesized the trans-Os(DMeOPrPE)2Cl2 complex reported here.
The structure shows an octahedral coordination environment around osmium with trans-chloride ligands (Fig. 1). Crystallization of the osmium congener allowed a direct comparison of trans-M(DMeOPrPE)2Cl2 complexes down the group 8 triad (Table 1). The M-L bonds were found to increase substantially from iron to ruthenium with minimal elongation from ruthenium to osmium. This minimal change in going from ruthenium to osmium is consistent with a lanthanide contraction of the atomic radius.