metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Bis{1,2-bis­­[bis­­(3-meth­­oxy­prop­yl)phosphan­yl]ethane-κ2P,P′}di­chlorido­osmium(II)

aDepartment of Chemistry, 1253 University of Oregon, Eugene, Oregon 97403-1253, USA
*Correspondence e-mail: dtyler@uoregon.edu

(Received 26 October 2011; accepted 16 November 2011; online 23 November 2011)

In the centrosymmetric title compound, [OsCl2(C18H40O4P2)2], the OsII atom adopts a trans-OsCl2P4 geometry, arising from its coordination by two chelating diphosphane ligands and two chloride ions. One of the meth­oxy side chains of the ligand is disordered over two orientations in a 0.700 (6):0.300 (6) ratio.

Related literature

For background to transition-metal dihydride complexes, see: Egbert et al. (2007[Egbert, J. D., Bullock, R. M. & Heinekey, D. M. (2007). Organometallics, 26, 2291-2295.]); Heinekey et al. (2004[Heinekey, D. M., Lledos, A. & Lluch, J. M. (2004). Chem. Soc. Rev. 33, 175-182.]); Miller et al. (2002[Miller, W. K., Gilbertson, J. D., Leiva-Paredes, C., Bernatis, P. R., Weakley, T. J. R., Lyon, D. K. & Tyler, D. R. (2002). Inorg. Chem. 41, 5453-5465.]); Szymczak & Tyler (2007[Szymczak, N. K. & Tyler, D. R. (2007). Coord. Chem. Rev. 252, 212-230.]); Szymczak et al. (2006[Szymczak, N. K., Zakharov, L. N. & Tyler, D. R. (2006). J. Am. Chem. Soc. 128, 15830-15835.]).

[Scheme 1]

Experimental

Crystal data
  • [OsCl2(C18H40O4P2)2]

  • Mr = 1025.98

  • Monoclinic, P 21 /n

  • a = 12.667 (3) Å

  • b = 10.321 (2) Å

  • c = 18.754 (4) Å

  • β = 107.779 (3)°

  • V = 2335.0 (9) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 3.03 mm−1

  • T = 173 K

  • 0.14 × 0.10 × 0.04 mm

Data collection
  • Bruker APEX CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1995[Sheldrick, G. M. (1995). SADABS. University of Göttingen, Germany.]) Tmin = 0.677, Tmax = 0.889

  • 25950 measured reflections

  • 5333 independent reflections

  • 4423 reflections with I > 2σ(I)

  • Rint = 0.032

Refinement
  • R[F2 > 2σ(F2)] = 0.024

  • wR(F2) = 0.058

  • S = 1.04

  • 5333 reflections

  • 251 parameters

  • 5 restraints

  • H-atom parameters constrained

  • Δρmax = 0.87 e Å−3

  • Δρmin = −0.51 e Å−3

Table 1
Selected bond lengths (Å)

Os1—P2 2.3383 (8)
Os1—P1 2.3434 (8)
Os1—Cl1 2.4515 (8)

Data collection: SMART (Bruker, 2000[Bruker (2000). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2000[Bruker (2000). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT (Bruker, 2000[Bruker (2000). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); program(s) used to solve structure: SHELXTL (Sheldrick, 2008)[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]; program(s) used to refine structure: SHELXTL (Sheldrick, 2008)[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]; molecular graphics: SHELXTL (Sheldrick, 2008)[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]; software used to prepare material for publication: SHELXTL (Sheldrick, 2008)[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.].

Supporting information


Comment top

A consequence of the large d-orbitals in third-row transition metals is increased overlap to antibonding orbitals of ligands such as CO and H2. Accordingly, when most third-row transition metal complexes are reacted with H2, the product is often a dihydride complex (Egbert et al., 2007; Szymczak & Tyler, 2007). However, when the d-orbitals are not sufficiently electron rich to promote a complete oxidative-addition product, an arrested oxidative addition can result. The "arrested" intermediates belong to an unusual class of dihydrogen complexes with a bond distance between 1.1 Å and 1.5 Å (Heinekey et al., 2004). The H-H bond in these complexes sits in an unusually flat potential energy surface, and the H-H bond distance is consequently very sensitive to changes in the environment around the coordinated η2-H2 ligand. We hypothesized that small changes to the environment around the H2 ligand could potentially be correlated with small energetic fluctuations, such as those that are typical of weak intermolecular forces such as hydrogen bonding.

Several osmium dihydrogen complexes have previously been shown to have H-H bond distances in the elongated regime (1.1 - 1.5 Å). For our study of hydrogen bonding of water to the H2 ligand, we sought therefore to study hydrogen bonding to the H2 ligand in the water-soluble trans-Os(DMeOPrPE)2(H2)H+ complex. (DMeOPrPE is the water-soluble, bidentate phosphine ligand 1,2-bis(bis(methoxypropyl)phosphanyl)ethane.) In prior work, we synthesized trans-Fe(DMeOPrPE)2(H2)H+ and trans-Ru(DMeOPrPE)2(H2)H+ by reaction of the trans-M(DMeOPrPE)2Cl2 complexes with H2 (Miller et al., 2002, Szymczak et al., 2006). In order to synthesize the analogous H2 complex of Os, we synthesized the trans-Os(DMeOPrPE)2Cl2 complex reported here.

The structure shows an octahedral coordination environment around osmium with trans-chloride ligands (Fig. 1). Crystallization of the osmium congener allowed a direct comparison of trans-M(DMeOPrPE)2Cl2 complexes down the group 8 triad (Table 1). The M-L bonds were found to increase substantially from iron to ruthenium with minimal elongation from ruthenium to osmium. This minimal change in going from ruthenium to osmium is consistent with a lanthanide contraction of the atomic radius.

Related literature top

For background to transition-metal dihydride complexes, see: Egbert et al. (2007); Heinekey et al. (2004); Miller et al. (2002); Szymczak et al. (2006, 2007).

Experimental top

To a flask containing [OsCl6][NEt4]2 (0.9114 g, 1.374 mmol) and NaBPh4 (1.890 g, 5.523 mmol) was added a solution of DMeOPrPE (2.11 g, 5.524 mmol) in methanol (300 ml) followed by ethanol (365 ml). After heating to reflux for 16 h, the solution was deep purple with a white precipitate, and the solution was kept at reflux. After 4 days, the solution was clear yellow with a white solid on the flask walls. The solvent was removed and the residue was extracted with hot hexanes (3 x 30 ml) and diethyl ether (3 x 30 ml), leaving a yellow oil. Upon letting the oil stand for 24 h, yellow crystals of trans-[Os(DMeOPrPE)2Cl2] developed. Yield: 0.862 g (61%); {1H} 31P NMR: d 8.6.

Refinement top

The structure was solved using direct methods and refined with anisotropic thermal parameters for non-H atoms. H atoms were positioned geometrically and refined in a rigid group model, C—H = 1.2Ueq(C) and 1.5Ueq(C), respectively for –CH2 and –CH3 groups. In the molecule there are eight -(CH2)3OCH3 terminal groups which are flexible and thermal parameters for atoms in these groups are significantly elongated. One of the –CH2OCH3 groups, C(17)O(4) C(18), is disordered over two positions in the ratio 0.700/0.300. Restrictions have been used in the refinement of this group; the typical values of the –CH2—CH2–, –CH2—O– and –O—CH3 bonds (1.524, 1.426 and 1.416 Å, respectively) have been used in the refinement as the targets for corresponding bond lengths.

Structure description top

A consequence of the large d-orbitals in third-row transition metals is increased overlap to antibonding orbitals of ligands such as CO and H2. Accordingly, when most third-row transition metal complexes are reacted with H2, the product is often a dihydride complex (Egbert et al., 2007; Szymczak & Tyler, 2007). However, when the d-orbitals are not sufficiently electron rich to promote a complete oxidative-addition product, an arrested oxidative addition can result. The "arrested" intermediates belong to an unusual class of dihydrogen complexes with a bond distance between 1.1 Å and 1.5 Å (Heinekey et al., 2004). The H-H bond in these complexes sits in an unusually flat potential energy surface, and the H-H bond distance is consequently very sensitive to changes in the environment around the coordinated η2-H2 ligand. We hypothesized that small changes to the environment around the H2 ligand could potentially be correlated with small energetic fluctuations, such as those that are typical of weak intermolecular forces such as hydrogen bonding.

Several osmium dihydrogen complexes have previously been shown to have H-H bond distances in the elongated regime (1.1 - 1.5 Å). For our study of hydrogen bonding of water to the H2 ligand, we sought therefore to study hydrogen bonding to the H2 ligand in the water-soluble trans-Os(DMeOPrPE)2(H2)H+ complex. (DMeOPrPE is the water-soluble, bidentate phosphine ligand 1,2-bis(bis(methoxypropyl)phosphanyl)ethane.) In prior work, we synthesized trans-Fe(DMeOPrPE)2(H2)H+ and trans-Ru(DMeOPrPE)2(H2)H+ by reaction of the trans-M(DMeOPrPE)2Cl2 complexes with H2 (Miller et al., 2002, Szymczak et al., 2006). In order to synthesize the analogous H2 complex of Os, we synthesized the trans-Os(DMeOPrPE)2Cl2 complex reported here.

The structure shows an octahedral coordination environment around osmium with trans-chloride ligands (Fig. 1). Crystallization of the osmium congener allowed a direct comparison of trans-M(DMeOPrPE)2Cl2 complexes down the group 8 triad (Table 1). The M-L bonds were found to increase substantially from iron to ruthenium with minimal elongation from ruthenium to osmium. This minimal change in going from ruthenium to osmium is consistent with a lanthanide contraction of the atomic radius.

For background to transition-metal dihydride complexes, see: Egbert et al. (2007); Heinekey et al. (2004); Miller et al. (2002); Szymczak et al. (2006, 2007).

Computing details top

Data collection: SMART (Bruker, 2000); cell refinement: SAINT (Bruker, 2000); data reduction: SAINT (Bruker, 2000); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The structure of (I) with 50% probability displacement ellipsoids [Symmetry code (A): -x,-y,-z]. Only one position of the disordered C17/O4/C18 group is shown for clarity.
Bis{1,2-bis[bis(3-methoxypropyl)phosphanyl]ethane-κ2P,P'}dichloridoosmium(II) top
Crystal data top
[OsCl2(C18H40O4P2)2]F(000) = 1060
Mr = 1025.98Dx = 1.459 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ynCell parameters from 8415 reflections
a = 12.667 (3) Åθ = 2.3–26.7°
b = 10.321 (2) ŵ = 3.03 mm1
c = 18.754 (4) ÅT = 173 K
β = 107.779 (3)°Plate, yellow
V = 2335.0 (9) Å30.14 × 0.10 × 0.04 mm
Z = 2
Data collection top
Bruker APEX CCD
diffractometer
5333 independent reflections
Radiation source: fine-focus sealed tube4423 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.032
phi and ω scansθmax = 27.5°, θmin = 1.7°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1995)
h = 1616
Tmin = 0.677, Tmax = 0.889k = 1313
25950 measured reflectionsl = 2324
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.024Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.058H-atom parameters constrained
S = 1.04 w = 1/[σ2(Fo2) + (0.028P)2 + 0.9782P]
where P = (Fo2 + 2Fc2)/3
5333 reflections(Δ/σ)max < 0.001
251 parametersΔρmax = 0.87 e Å3
5 restraintsΔρmin = 0.51 e Å3
Crystal data top
[OsCl2(C18H40O4P2)2]V = 2335.0 (9) Å3
Mr = 1025.98Z = 2
Monoclinic, P21/nMo Kα radiation
a = 12.667 (3) ŵ = 3.03 mm1
b = 10.321 (2) ÅT = 173 K
c = 18.754 (4) Å0.14 × 0.10 × 0.04 mm
β = 107.779 (3)°
Data collection top
Bruker APEX CCD
diffractometer
5333 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1995)
4423 reflections with I > 2σ(I)
Tmin = 0.677, Tmax = 0.889Rint = 0.032
25950 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0245 restraints
wR(F2) = 0.058H-atom parameters constrained
S = 1.04Δρmax = 0.87 e Å3
5333 reflectionsΔρmin = 0.51 e Å3
251 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes)

are estimated using the full covariance matrix. The cell e.s.d.'s are taken

into account individually in the estimation of e.s.d.'s in distances, angles

and torsion angles; correlations between e.s.d.'s in cell parameters are only

used when they are defined by crystal symmetry. An approximate (isotropic)

treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
Os10.50000.50000.00000.02110 (5)
Cl10.31396 (6)0.41077 (7)0.05728 (4)0.03191 (16)
P10.57375 (6)0.32518 (7)0.04887 (4)0.02556 (15)
P20.53170 (6)0.36384 (7)0.10408 (4)0.02567 (15)
O10.9493 (2)0.2799 (3)0.02252 (14)0.0575 (7)
O20.5043 (2)0.1314 (3)0.27322 (14)0.0666 (8)
O30.5690 (2)0.4496 (3)0.35068 (13)0.0512 (6)
C10.5965 (3)0.1882 (3)0.01729 (16)0.0354 (7)
H1A0.52700.13840.00890.043*
H1B0.65390.12950.00960.043*
C20.6341 (3)0.2421 (3)0.09683 (16)0.0352 (7)
H2A0.70820.28230.10760.042*
H2B0.63860.17150.13340.042*
C30.7111 (2)0.3487 (3)0.05918 (18)0.0355 (7)
H3A0.70850.42930.08830.043*
H3B0.76320.36450.00860.043*
C40.7620 (3)0.2440 (3)0.09552 (18)0.0397 (7)
H4A0.76570.16170.06770.048*
H4B0.71410.22980.14750.048*
C50.8773 (3)0.2810 (4)0.09625 (19)0.0457 (8)
H5A0.90350.21880.12730.055*
H5B0.87590.36850.11820.055*
C61.0568 (3)0.3250 (5)0.0175 (2)0.0691 (12)
H6A1.10370.32190.03480.104*
H6B1.05210.41440.03580.104*
H6C1.08890.26990.04810.104*
C70.4913 (3)0.2555 (3)0.13885 (17)0.0336 (7)
H7A0.41270.27820.14650.040*
H7B0.51400.29900.17890.040*
C80.4975 (3)0.1093 (3)0.15003 (18)0.0410 (8)
H8A0.57610.08160.13390.049*
H8B0.45930.06380.11850.049*
C90.4444 (3)0.0725 (3)0.23097 (19)0.0455 (8)
H9A0.44550.02280.23670.055*
H9B0.36640.10210.24810.055*
C100.4635 (4)0.1030 (6)0.3488 (2)0.0944 (18)
H10A0.50890.14640.37550.142*
H10B0.38670.13330.36830.142*
H10C0.46590.00910.35600.142*
C110.5917 (2)0.4287 (3)0.19857 (16)0.0303 (6)
H11A0.65540.48420.19840.036*
H11B0.53560.48530.20970.036*
C120.6318 (3)0.3317 (3)0.26298 (17)0.0381 (7)
H12A0.57180.26900.26080.046*
H12B0.69590.28290.25710.046*
C130.6655 (3)0.3987 (3)0.33861 (18)0.0437 (8)
H13A0.70160.33610.37860.052*
H13B0.71870.46930.33930.052*
C140.5931 (5)0.5225 (4)0.4180 (3)0.0833 (16)
H14A0.52400.55590.42410.125*
H14B0.64190.59500.41570.125*
H14C0.63010.46670.46060.125*
C150.4218 (3)0.2540 (3)0.11326 (17)0.0374 (7)
H15A0.38100.22110.06280.045*
H15B0.45770.17870.14380.045*
C160.3385 (3)0.3093 (3)0.1475 (2)0.0509 (9)
H16A0.29350.37630.11400.061*
H16B0.37770.35080.19600.061*
C170.2609 (4)0.2002 (6)0.1602 (3)0.0890 (18)0.700 (6)
H17A0.19750.23960.17270.107*0.700 (6)
H17B0.23130.14950.11360.107*0.700 (6)
O40.3138 (3)0.1245 (3)0.2135 (2)0.0515 (12)0.700 (6)
C180.2400 (6)0.0305 (5)0.2282 (4)0.0579 (17)0.700 (6)
H18A0.28130.02640.26900.087*0.700 (6)
H18B0.20720.02130.18300.087*0.700 (6)
H18C0.18120.07470.24260.087*0.700 (6)
C17A0.2609 (4)0.2002 (6)0.1602 (3)0.0890 (18)0.300 (6)
H17C0.21400.17210.11010.107*0.300 (6)
H17D0.30900.12570.18250.107*0.300 (6)
O4A0.2061 (9)0.2156 (9)0.1940 (6)0.072 (4)0.300 (6)
C18A0.1540 (15)0.0978 (17)0.2088 (10)0.098 (7)0.300 (6)
H18D0.10480.11840.23870.146*0.300 (6)
H18E0.21120.03680.23640.146*0.300 (6)
H18F0.11060.05860.16120.146*0.300 (6)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Os10.02079 (8)0.01550 (8)0.02816 (8)0.00026 (6)0.00918 (6)0.00023 (6)
Cl10.0249 (3)0.0302 (4)0.0410 (4)0.0056 (3)0.0105 (3)0.0045 (3)
P10.0281 (4)0.0187 (3)0.0315 (4)0.0028 (3)0.0115 (3)0.0000 (3)
P20.0300 (4)0.0183 (3)0.0300 (4)0.0004 (3)0.0112 (3)0.0013 (3)
O10.0332 (13)0.091 (2)0.0499 (15)0.0038 (14)0.0149 (11)0.0043 (14)
O20.080 (2)0.078 (2)0.0400 (14)0.0198 (16)0.0150 (14)0.0137 (14)
O30.0617 (17)0.0534 (14)0.0407 (14)0.0105 (13)0.0189 (12)0.0129 (12)
C10.0489 (19)0.0217 (15)0.0398 (17)0.0087 (13)0.0196 (15)0.0028 (13)
C20.0464 (18)0.0263 (15)0.0345 (16)0.0116 (13)0.0146 (14)0.0071 (12)
C30.0338 (16)0.0309 (16)0.0464 (18)0.0029 (13)0.0188 (14)0.0018 (14)
C40.0377 (18)0.0457 (19)0.0392 (18)0.0094 (15)0.0169 (15)0.0033 (15)
C50.0375 (18)0.060 (2)0.047 (2)0.0101 (16)0.0230 (16)0.0002 (17)
C60.036 (2)0.097 (4)0.074 (3)0.004 (2)0.016 (2)0.002 (3)
C70.0354 (17)0.0254 (15)0.0382 (17)0.0027 (12)0.0088 (14)0.0059 (13)
C80.057 (2)0.0219 (16)0.0427 (18)0.0017 (14)0.0134 (16)0.0029 (13)
C90.051 (2)0.0304 (18)0.050 (2)0.0037 (15)0.0078 (17)0.0116 (15)
C100.074 (3)0.160 (6)0.044 (3)0.007 (3)0.011 (2)0.018 (3)
C110.0334 (16)0.0243 (16)0.0323 (15)0.0008 (12)0.0086 (13)0.0014 (12)
C120.0465 (19)0.0299 (17)0.0347 (16)0.0052 (14)0.0074 (14)0.0044 (13)
C130.051 (2)0.0391 (19)0.0338 (17)0.0034 (16)0.0019 (15)0.0051 (14)
C140.115 (5)0.076 (3)0.061 (3)0.019 (3)0.031 (3)0.033 (2)
C150.0468 (19)0.0304 (17)0.0363 (17)0.0084 (14)0.0148 (15)0.0023 (13)
C160.046 (2)0.048 (2)0.065 (2)0.0052 (17)0.0256 (18)0.0135 (18)
C170.080 (3)0.128 (5)0.076 (3)0.005 (3)0.048 (3)0.044 (3)
O40.041 (2)0.058 (2)0.056 (2)0.0074 (17)0.0166 (17)0.0144 (18)
C180.059 (4)0.047 (3)0.080 (4)0.018 (3)0.042 (4)0.005 (3)
C17A0.080 (3)0.128 (5)0.076 (3)0.005 (3)0.048 (3)0.044 (3)
O4A0.077 (7)0.062 (6)0.077 (7)0.007 (5)0.024 (6)0.012 (5)
C18A0.076 (12)0.099 (14)0.105 (13)0.061 (11)0.009 (10)0.042 (11)
Geometric parameters (Å, º) top
Os1—P22.3383 (8)C8—C91.509 (4)
Os1—P2i2.3383 (8)C8—H8A0.9900
Os1—P1i2.3434 (8)C8—H8B0.9900
Os1—P12.3434 (8)C9—H9A0.9900
Os1—Cl12.4515 (8)C9—H9B0.9900
Os1—Cl1i2.4515 (8)C10—H10A0.9800
P1—C31.825 (3)C10—H10B0.9800
P1—C71.838 (3)C10—H10C0.9800
P1—C11.845 (3)C11—C121.531 (4)
P2—C111.829 (3)C11—H11A0.9900
P2—C21.840 (3)C11—H11B0.9900
P2—C151.844 (3)C12—C131.517 (4)
O1—C51.405 (4)C12—H12A0.9900
O1—C61.414 (4)C12—H12B0.9900
O2—C101.384 (5)C13—H13A0.9900
O2—C91.392 (4)C13—H13B0.9900
O3—C131.412 (4)C14—H14A0.9800
O3—C141.420 (5)C14—H14B0.9800
C1—C21.525 (4)C14—H14C0.9800
C1—H1A0.9900C15—C161.506 (5)
C1—H1B0.9900C15—H15A0.9900
C2—H2A0.9900C15—H15B0.9900
C2—H2B0.9900C16—C171.560 (6)
C3—C41.521 (4)C16—H16A0.9900
C3—H3A0.9900C16—H16B0.9900
C3—H3B0.9900C17—O41.283 (5)
C4—C51.514 (4)C17—H17A0.9900
C4—H4A0.9900C17—H17B0.9900
C4—H4B0.9900O4—C181.431 (6)
C5—H5A0.9900C18—H18A0.9800
C5—H5B0.9900C18—H18B0.9800
C6—H6A0.9800C18—H18C0.9800
C6—H6B0.9800O4A—C18A1.451 (13)
C6—H6C0.9800C18A—H18D0.9800
C7—C81.528 (4)C18A—H18E0.9800
C7—H7A0.9900C18A—H18F0.9800
C7—H7B0.9900
P2—Os1—P2i180.00 (4)C9—C8—H8A109.4
P2—Os1—P1i97.10 (3)C7—C8—H8A109.4
P2i—Os1—P1i82.90 (3)C9—C8—H8B109.4
P2—Os1—P182.90 (3)C7—C8—H8B109.4
P2i—Os1—P197.10 (3)H8A—C8—H8B108.0
P1i—Os1—P1180.00 (3)O2—C9—C8108.1 (3)
P2—Os1—Cl192.13 (3)O2—C9—H9A110.1
P2i—Os1—Cl187.87 (3)C8—C9—H9A110.1
P1i—Os1—Cl190.91 (3)O2—C9—H9B110.1
P1—Os1—Cl189.09 (3)C8—C9—H9B110.1
P2—Os1—Cl1i87.87 (3)H9A—C9—H9B108.4
P2i—Os1—Cl1i92.13 (3)O2—C10—H10A109.5
P1i—Os1—Cl1i89.09 (3)O2—C10—H10B109.5
P1—Os1—Cl1i90.91 (3)H10A—C10—H10B109.5
Cl1—Os1—Cl1i180.0O2—C10—H10C109.5
C3—P1—C7104.32 (15)H10A—C10—H10C109.5
C3—P1—C1102.40 (15)H10B—C10—H10C109.5
C7—P1—C1104.24 (14)C12—C11—P2117.7 (2)
C3—P1—Os1116.50 (10)C12—C11—H11A107.9
C7—P1—Os1118.55 (10)P2—C11—H11A107.9
C1—P1—Os1109.03 (10)C12—C11—H11B107.9
C11—P2—C2103.16 (14)P2—C11—H11B107.9
C11—P2—C15103.69 (14)H11A—C11—H11B107.2
C2—P2—C1598.98 (15)C13—C12—C11111.8 (2)
C11—P2—Os1120.25 (10)C13—C12—H12A109.3
C2—P2—Os1107.11 (10)C11—C12—H12A109.3
C15—P2—Os1120.36 (11)C13—C12—H12B109.3
C5—O1—C6112.7 (3)C11—C12—H12B109.3
C10—O2—C9113.1 (3)H12A—C12—H12B107.9
C13—O3—C14112.2 (3)O3—C13—C12108.0 (3)
C2—C1—P1108.5 (2)O3—C13—H13A110.1
C2—C1—H1A110.0C12—C13—H13A110.1
P1—C1—H1A110.0O3—C13—H13B110.1
C2—C1—H1B110.0C12—C13—H13B110.1
P1—C1—H1B110.0H13A—C13—H13B108.4
H1A—C1—H1B108.4O3—C14—H14A109.5
C1—C2—P2107.7 (2)O3—C14—H14B109.5
C1—C2—H2A110.2H14A—C14—H14B109.5
P2—C2—H2A110.2O3—C14—H14C109.5
C1—C2—H2B110.2H14A—C14—H14C109.5
P2—C2—H2B110.2H14B—C14—H14C109.5
H2A—C2—H2B108.5C16—C15—P2117.0 (2)
C4—C3—P1120.1 (2)C16—C15—H15A108.0
C4—C3—H3A107.3P2—C15—H15A108.0
P1—C3—H3A107.3C16—C15—H15B108.0
C4—C3—H3B107.3P2—C15—H15B108.0
P1—C3—H3B107.3H15A—C15—H15B107.3
H3A—C3—H3B106.9C15—C16—C17110.3 (3)
C5—C4—C3111.5 (3)C15—C16—H16A109.6
C5—C4—H4A109.3C17—C16—H16A109.6
C3—C4—H4A109.3C15—C16—H16B109.6
C5—C4—H4B109.3C17—C16—H16B109.6
C3—C4—H4B109.3H16A—C16—H16B108.1
H4A—C4—H4B108.0O4—C17—C16110.8 (4)
O1—C5—C4109.1 (3)O4—C17—H17A109.5
O1—C5—H5A109.9C16—C17—H17A109.5
C4—C5—H5A109.9O4—C17—H17B109.5
O1—C5—H5B109.9C16—C17—H17B109.5
C4—C5—H5B109.9H17A—C17—H17B108.1
H5A—C5—H5B108.3C17—O4—C18110.3 (4)
O1—C6—H6A109.5O4—C18—H18A109.5
O1—C6—H6B109.5O4—C18—H18B109.5
H6A—C6—H6B109.5H18A—C18—H18B109.5
O1—C6—H6C109.5O4—C18—H18C109.5
H6A—C6—H6C109.5H18A—C18—H18C109.5
H6B—C6—H6C109.5H18B—C18—H18C109.5
C8—C7—P1118.3 (2)O4A—C18A—H18D109.5
C8—C7—H7A107.7O4A—C18A—H18E109.5
P1—C7—H7A107.7H18D—C18A—H18E109.5
C8—C7—H7B107.7O4A—C18A—H18F109.5
P1—C7—H7B107.7H18D—C18A—H18F109.5
H7A—C7—H7B107.1H18E—C18A—H18F109.5
C9—C8—C7111.2 (3)
P2—Os1—P1—C3109.55 (12)C7—P1—C1—C2163.7 (2)
P2i—Os1—P1—C370.45 (12)Os1—P1—C1—C236.2 (2)
P1i—Os1—P1—C35 (47)P1—C1—C2—P253.3 (2)
Cl1—Os1—P1—C3158.19 (12)C11—P2—C2—C1175.8 (2)
Cl1i—Os1—P1—C321.81 (12)C15—P2—C2—C177.8 (2)
P2—Os1—P1—C7124.59 (12)Os1—P2—C2—C147.9 (2)
P2i—Os1—P1—C755.41 (12)C7—P1—C3—C443.0 (3)
P1i—Os1—P1—C7121 (47)C1—P1—C3—C465.5 (3)
Cl1—Os1—P1—C732.34 (12)Os1—P1—C3—C4175.7 (2)
Cl1i—Os1—P1—C7147.66 (12)P1—C3—C4—C5178.2 (2)
P2—Os1—P1—C15.65 (11)C6—O1—C5—C4174.6 (3)
P2i—Os1—P1—C1174.35 (11)C3—C4—C5—O168.8 (4)
P1i—Os1—P1—C1120 (47)C3—P1—C7—C883.9 (3)
Cl1—Os1—P1—C186.61 (11)C1—P1—C7—C823.2 (3)
Cl1i—Os1—P1—C193.39 (11)Os1—P1—C7—C8144.6 (2)
P2i—Os1—P2—C1188 (100)P1—C7—C8—C9168.4 (2)
P1i—Os1—P2—C1143.13 (12)C10—O2—C9—C8179.3 (4)
P1—Os1—P2—C11136.87 (12)C7—C8—C9—O262.8 (4)
Cl1—Os1—P2—C11134.31 (12)C2—P2—C11—C1249.0 (3)
Cl1i—Os1—P2—C1145.69 (12)C15—P2—C11—C1253.8 (3)
P2i—Os1—P2—C229 (100)Os1—P2—C11—C12168.09 (19)
P1i—Os1—P2—C2160.21 (11)P2—C11—C12—C13172.6 (2)
P1—Os1—P2—C219.79 (11)C14—O3—C13—C12175.8 (3)
Cl1—Os1—P2—C2108.61 (11)C11—C12—C13—O368.3 (3)
Cl1i—Os1—P2—C271.39 (11)C11—P2—C15—C1652.9 (3)
P2i—Os1—P2—C15141 (100)C2—P2—C15—C16158.9 (3)
P1i—Os1—P2—C1588.10 (12)Os1—P2—C15—C1685.1 (3)
P1—Os1—P2—C1591.90 (12)P2—C15—C16—C17173.0 (3)
Cl1—Os1—P2—C153.08 (12)C15—C16—C17—O470.8 (5)
Cl1i—Os1—P2—C15176.92 (12)C16—C17—O4—C18175.9 (4)
C3—P1—C1—C287.8 (2)
Symmetry code: (i) x+1, y+1, z.

Experimental details

Crystal data
Chemical formula[OsCl2(C18H40O4P2)2]
Mr1025.98
Crystal system, space groupMonoclinic, P21/n
Temperature (K)173
a, b, c (Å)12.667 (3), 10.321 (2), 18.754 (4)
β (°) 107.779 (3)
V3)2335.0 (9)
Z2
Radiation typeMo Kα
µ (mm1)3.03
Crystal size (mm)0.14 × 0.10 × 0.04
Data collection
DiffractometerBruker APEX CCD
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1995)
Tmin, Tmax0.677, 0.889
No. of measured, independent and
observed [I > 2σ(I)] reflections
25950, 5333, 4423
Rint0.032
(sin θ/λ)max1)0.650
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.024, 0.058, 1.04
No. of reflections5333
No. of parameters251
No. of restraints5
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.87, 0.51

Computer programs: SMART (Bruker, 2000), SAINT (Bruker, 2000), SHELXTL (Sheldrick, 2008).

Selected bond lengths (Å) top
Os1—P22.3383 (8)Os1—Cl12.4515 (8)
Os1—P12.3434 (8)
 

Acknowledgements

We thank the NSF for funding.

References

First citationBruker (2000). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationEgbert, J. D., Bullock, R. M. & Heinekey, D. M. (2007). Organometallics, 26, 2291–2295.  Web of Science CrossRef CAS Google Scholar
First citationHeinekey, D. M., Lledos, A. & Lluch, J. M. (2004). Chem. Soc. Rev. 33, 175–182.  Web of Science CrossRef PubMed CAS Google Scholar
First citationMiller, W. K., Gilbertson, J. D., Leiva-Paredes, C., Bernatis, P. R., Weakley, T. J. R., Lyon, D. K. & Tyler, D. R. (2002). Inorg. Chem. 41, 5453–5465.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationSheldrick, G. M. (1995). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSzymczak, N. K. & Tyler, D. R. (2007). Coord. Chem. Rev. 252, 212–230.  Web of Science CrossRef Google Scholar
First citationSzymczak, N. K., Zakharov, L. N. & Tyler, D. R. (2006). J. Am. Chem. Soc. 128, 15830–15835.  Web of Science CSD CrossRef PubMed CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds