metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

catena-Poly[[chlorido(1,10-phenanthro­line)copper(II)]-μ-{2-[(1S,3S)-3-acetyl-2,2-di­methyl­cyclo­but­yl]acetato}]

aDepartment of Chemistry and Environmental Sciences, Taishan University, 271021 Taian, Shandong, People's Republic of China, and bDepartment of Materials and Chemistry Engineering, Taishan University, 271021 Taian, Shandong, People's Republic of China
*Correspondence e-mail: mashy910@163.com

(Received 27 October 2011; accepted 15 November 2011; online 19 November 2011)

The title compound, [Cu(C10H15O3)Cl(C12H8N2)]n, is a one-dimensional coordination polymer. The CuII atom is coordin­ated by a chloride ion, two N atoms from the 1,10-phenanthroline ligand, and a monodentate carboxyl­ate O atom from the pinononate anion, forming a CuN2ClO approximate square plane. A symmetry-generated pinononate O atom completes a square-based pyramidal geometry for the copper ion. The bridging 2-(3-acetyl-2,2-dimethyl­cyclo­but­yl)acetate anion leads to chains in the crystal propagating in [001]. Adjacent 1,10-phenanthroline rings form a dihedral angle of 39.4 (2)°.

Related literature

For related structures, see: Che et al. (2006[Che, G.-B., Xu, Z.-L. & Liu, C.-B. (2006). Acta Cryst. E62, m1695-m1696.]); Lalancette et al. (1999[Lalancette, R. A., Thompson, H. W. & Brunskill, A. P. J. (1999). Acta Cryst. C55, 1908-1911.]); Vanderhoff et al. (1986[Vanderhoff, P. A., Thompson, H. W. & Lalancette, R. A. (1986). Acta Cryst. C42, 1766-1769.]).

[Scheme 1]

Experimental

Crystal data
  • [Cu(C10H15O3)Cl(C12H8N2)]

  • Mr = 462.41

  • Monoclinic, P 21 /c

  • a = 14.6143 (11) Å

  • b = 14.4920 (12) Å

  • c = 9.8419 (8) Å

  • β = 98.208 (1)°

  • V = 2063.1 (3) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 1.21 mm−1

  • T = 273 K

  • 0.20 × 0.18 × 0.16 mm

Data collection
  • Siemens SMART CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Siemens, 1996[Siemens (1996). SMART, SAINT and SADABS. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.]) Tmin = 0.793, Tmax = 0.829

  • 10533 measured reflections

  • 3647 independent reflections

  • 2924 reflections with I > 2σ(I)

  • Rint = 0.028

Refinement
  • R[F2 > 2σ(F2)] = 0.036

  • wR(F2) = 0.097

  • S = 1.03

  • 3647 reflections

  • 265 parameters

  • H-atom parameters constrained

  • Δρmax = 0.67 e Å−3

  • Δρmin = −0.30 e Å−3

Table 1
Selected bond lengths (Å)

Cu1—O1 1.937 (2)
Cu1—N2 2.030 (2)
Cu1—N1 2.050 (2)
Cu1—Cl1 2.2610 (8)
Cu1—O2i 2.305 (2)
Symmetry code: (i) [x, -y+{\script{1\over 2}}, z-{\script{1\over 2}}].

Data collection: SMART (Siemens, 1996[Siemens (1996). SMART, SAINT and SADABS. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Siemens, 1996[Siemens (1996). SMART, SAINT and SADABS. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

In the structural investigation of pinonate complexes, it has been found that the pinonic acid functions as a monodenate ligand (Lalancette et al., 1999). We sythesized the pinonic acid that obtained from α-pinene oxidated by potassium permangate. In the present paper, we describe the crystal stucture of the title compound.The polymer molecule contains CuN2O2Cl square-based pyramids (Fig.1). The Cu(II) atom exists in a distorted square pyramidal enviroment,defined by two carboxyl O atoms from two monodentate pinonate ligand,two N atoms from 1,10-phenanthroline ligand and one Cl- anion.

Related literature top

For related structures, see: Che et al. (2006); Lalancette et al. (1999); Vanderhoff et al. (1986).

Experimental top

Pinonic acid is synthesized from α-pinene oxidated by potassium permangate.The pinonic acid (0.5 mmol)and NaOH (0.5 mmol) were dissolved in methanol (5 ml). A methanolic solution (5 ml) of CuCl2.H2O (0.25 mmol) and 1,10-phenanthroline (0.25 mmol) was slowly droped to the solution of the pinonic acid with stirring.The result solution was flitered and allowed to stand in air at room temperature for seven days,yielding blue blocks of (I).

Refinement top

All H atoms were initially located in a difference Fourier map and were placed in geometrically idealized positions, with C—H = 0.93 - 0.97 Å and Uiso(H) = 1.2Ueq(C).

Structure description top

In the structural investigation of pinonate complexes, it has been found that the pinonic acid functions as a monodenate ligand (Lalancette et al., 1999). We sythesized the pinonic acid that obtained from α-pinene oxidated by potassium permangate. In the present paper, we describe the crystal stucture of the title compound.The polymer molecule contains CuN2O2Cl square-based pyramids (Fig.1). The Cu(II) atom exists in a distorted square pyramidal enviroment,defined by two carboxyl O atoms from two monodentate pinonate ligand,two N atoms from 1,10-phenanthroline ligand and one Cl- anion.

For related structures, see: Che et al. (2006); Lalancette et al. (1999); Vanderhoff et al. (1986).

Computing details top

Data collection: SMART (Siemens, 1996); cell refinement: SAINT (Siemens, 1996); data reduction: SAINT (Siemens, 1996); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of (I), with displacement ellipsoids drawn at the 30% probability level.
catena-Poly[[chlorido(1,10-phenanthroline)copper(II)]-µ- {2-[(1S,3S)-3-acetyl-2,2-dimethylcyclobutyl]acetato}] top
Crystal data top
[Cu(C10H15O3)Cl(C12H8N2)]F(000) = 956
Mr = 462.41Dx = 1.489 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 3334 reflections
a = 14.6143 (11) Åθ = 2.5–25.1°
b = 14.4920 (12) ŵ = 1.21 mm1
c = 9.8419 (8) ÅT = 273 K
β = 98.208 (1)°Block, blue
V = 2063.1 (3) Å30.20 × 0.18 × 0.16 mm
Z = 4
Data collection top
Siemens SMART CCD
diffractometer
3647 independent reflections
Radiation source: fine-focus sealed tube2924 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.028
phi and ω scansθmax = 25.1°, θmin = 1.4°
Absorption correction: multi-scan
(SADABS; Siemens, 1996)
h = 1517
Tmin = 0.793, Tmax = 0.829k = 1714
10533 measured reflectionsl = 1111
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.036Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.097H-atom parameters constrained
S = 1.03 w = 1/[σ2(Fo2) + (0.0467P)2 + 1.5378P]
where P = (Fo2 + 2Fc2)/3
3647 reflections(Δ/σ)max = 0.001
265 parametersΔρmax = 0.67 e Å3
0 restraintsΔρmin = 0.30 e Å3
Crystal data top
[Cu(C10H15O3)Cl(C12H8N2)]V = 2063.1 (3) Å3
Mr = 462.41Z = 4
Monoclinic, P21/cMo Kα radiation
a = 14.6143 (11) ŵ = 1.21 mm1
b = 14.4920 (12) ÅT = 273 K
c = 9.8419 (8) Å0.20 × 0.18 × 0.16 mm
β = 98.208 (1)°
Data collection top
Siemens SMART CCD
diffractometer
3647 independent reflections
Absorption correction: multi-scan
(SADABS; Siemens, 1996)
2924 reflections with I > 2σ(I)
Tmin = 0.793, Tmax = 0.829Rint = 0.028
10533 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0360 restraints
wR(F2) = 0.097H-atom parameters constrained
S = 1.03Δρmax = 0.67 e Å3
3647 reflectionsΔρmin = 0.30 e Å3
265 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes)

are estimated using the full covariance matrix. The cell e.s.d.'s are taken

into account individually in the estimation of e.s.d.'s in distances, angles

and torsion angles; correlations between e.s.d.'s in cell parameters are only

used when they are defined by crystal symmetry. An approximate (isotropic)

treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cu10.38042 (2)0.23582 (2)0.56377 (4)0.02863 (13)
Cl10.34460 (5)0.08697 (5)0.51189 (8)0.0398 (2)
O10.26729 (14)0.25754 (14)0.6401 (2)0.0347 (5)
O20.33639 (14)0.21019 (14)0.8438 (2)0.0355 (5)
O30.1289 (3)0.1493 (3)0.8971 (5)0.1157 (15)
N10.51618 (16)0.22377 (16)0.5353 (2)0.0289 (5)
N20.42648 (16)0.36312 (16)0.6269 (2)0.0295 (5)
C10.26816 (19)0.24062 (19)0.7671 (3)0.0279 (6)
C20.1786 (2)0.2630 (2)0.8208 (3)0.0397 (8)
H2A0.18080.23640.91160.048*
H2B0.17390.32940.82980.048*
C30.0939 (2)0.2285 (2)0.7320 (4)0.0461 (8)
H30.09850.24370.63620.055*
C40.0640 (2)0.1255 (3)0.7399 (3)0.0435 (8)
C50.0936 (3)0.0622 (3)0.6319 (5)0.0767 (14)
H5A0.15980.06150.64010.115*
H5B0.06830.08420.54230.115*
H5C0.07140.00100.64470.115*
C60.0917 (3)0.0859 (3)0.8825 (4)0.0663 (11)
H6A0.06530.02560.88720.099*
H6B0.06950.12550.94890.099*
H6C0.15780.08170.90160.099*
C70.0376 (2)0.1627 (3)0.7195 (4)0.0574 (10)
H70.06220.16330.62140.069*
C80.0020 (3)0.2584 (3)0.7638 (5)0.0651 (11)
H8A0.00370.27180.86000.078*
H8B0.02990.30790.70570.078*
C90.1054 (3)0.1142 (3)0.7988 (5)0.0697 (12)
C100.1413 (3)0.0230 (4)0.7437 (6)0.0972 (18)
H10A0.16680.01020.81390.146*
H10B0.09160.01210.71530.146*
H10C0.18840.03260.66650.146*
C110.5589 (2)0.1529 (2)0.4869 (3)0.0375 (7)
H110.52550.09950.46190.045*
C120.6521 (2)0.1559 (2)0.4722 (4)0.0451 (8)
H120.68010.10480.43830.054*
C130.7023 (2)0.2334 (2)0.5073 (4)0.0458 (8)
H130.76450.23580.49680.055*
C140.6600 (2)0.3100 (2)0.5596 (3)0.0357 (7)
C150.7052 (2)0.3956 (2)0.5989 (3)0.0435 (8)
H150.76780.40190.59290.052*
C160.6593 (2)0.4668 (2)0.6442 (3)0.0411 (8)
H160.69070.52140.66950.049*
C170.5629 (2)0.4600 (2)0.6541 (3)0.0330 (7)
C180.5098 (2)0.5331 (2)0.6977 (3)0.0370 (7)
H180.53670.59010.72080.044*
C190.4190 (2)0.5183 (2)0.7050 (3)0.0406 (8)
H190.38310.56560.73360.049*
C200.3791 (2)0.4324 (2)0.6697 (3)0.0367 (7)
H200.31690.42360.67650.044*
C210.51761 (19)0.37713 (19)0.6199 (3)0.0275 (6)
C220.56575 (19)0.3011 (2)0.5705 (3)0.0295 (6)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cu10.0292 (2)0.0275 (2)0.0297 (2)0.00360 (15)0.00622 (14)0.00034 (15)
Cl10.0446 (5)0.0285 (4)0.0455 (5)0.0070 (3)0.0040 (4)0.0003 (3)
O10.0312 (11)0.0448 (13)0.0287 (11)0.0034 (9)0.0060 (9)0.0014 (9)
O20.0377 (12)0.0373 (12)0.0309 (12)0.0077 (9)0.0032 (9)0.0031 (9)
O30.109 (3)0.110 (3)0.152 (4)0.012 (2)0.098 (3)0.022 (3)
N10.0325 (13)0.0249 (13)0.0299 (13)0.0009 (10)0.0064 (10)0.0007 (10)
N20.0319 (13)0.0291 (13)0.0285 (13)0.0023 (11)0.0074 (10)0.0016 (10)
C10.0291 (15)0.0235 (15)0.0319 (16)0.0071 (12)0.0071 (13)0.0064 (12)
C20.0345 (17)0.051 (2)0.0347 (18)0.0008 (15)0.0101 (13)0.0085 (15)
C30.0356 (18)0.060 (2)0.044 (2)0.0002 (16)0.0080 (15)0.0042 (17)
C40.0289 (17)0.058 (2)0.045 (2)0.0049 (15)0.0095 (14)0.0051 (17)
C50.058 (3)0.095 (3)0.082 (3)0.023 (2)0.026 (2)0.043 (3)
C60.067 (3)0.061 (3)0.071 (3)0.004 (2)0.012 (2)0.010 (2)
C70.0360 (19)0.075 (3)0.061 (2)0.0026 (19)0.0078 (17)0.004 (2)
C80.042 (2)0.066 (3)0.088 (3)0.0026 (19)0.011 (2)0.007 (2)
C90.039 (2)0.090 (3)0.085 (3)0.013 (2)0.026 (2)0.003 (3)
C100.065 (3)0.107 (4)0.122 (5)0.044 (3)0.023 (3)0.006 (3)
C110.0436 (18)0.0303 (17)0.0400 (18)0.0009 (14)0.0106 (14)0.0020 (14)
C120.0455 (19)0.0368 (19)0.057 (2)0.0080 (16)0.0200 (17)0.0022 (16)
C130.0365 (18)0.045 (2)0.059 (2)0.0019 (16)0.0186 (16)0.0034 (17)
C140.0311 (16)0.0359 (17)0.0411 (18)0.0034 (14)0.0089 (13)0.0024 (14)
C150.0353 (18)0.045 (2)0.052 (2)0.0086 (15)0.0119 (15)0.0008 (16)
C160.0419 (18)0.0379 (19)0.0434 (19)0.0153 (15)0.0062 (15)0.0018 (15)
C170.0392 (17)0.0322 (17)0.0272 (16)0.0054 (13)0.0040 (13)0.0002 (13)
C180.050 (2)0.0267 (16)0.0332 (17)0.0053 (14)0.0038 (14)0.0042 (13)
C190.052 (2)0.0323 (18)0.0387 (19)0.0045 (15)0.0121 (15)0.0070 (14)
C200.0362 (17)0.0362 (18)0.0396 (18)0.0023 (14)0.0118 (14)0.0026 (14)
C210.0322 (15)0.0284 (15)0.0221 (15)0.0039 (12)0.0044 (11)0.0008 (12)
C220.0325 (15)0.0269 (15)0.0289 (15)0.0020 (13)0.0041 (12)0.0011 (12)
Geometric parameters (Å, º) top
Cu1—O11.937 (2)C7—C91.519 (5)
Cu1—N22.030 (2)C7—C81.523 (6)
Cu1—N12.050 (2)C7—H70.9800
Cu1—Cl12.2610 (8)C8—H8A0.9700
Cu1—O2i2.305 (2)C8—H8B0.9700
O1—C11.272 (4)C9—C101.496 (7)
O2—C11.242 (3)C10—H10A0.9600
O2—Cu1ii2.305 (2)C10—H10B0.9600
O3—C91.186 (5)C10—H10C0.9600
N1—C111.326 (4)C11—C121.391 (4)
N1—C221.352 (4)C11—H110.9300
N2—C201.322 (4)C12—C131.360 (5)
N2—C211.359 (3)C12—H120.9300
C1—C21.514 (4)C13—C141.403 (4)
C2—C31.496 (5)C13—H130.9300
C2—H2A0.9700C14—C221.403 (4)
C2—H2B0.9700C14—C151.431 (4)
C3—C81.541 (5)C15—C161.342 (5)
C3—C41.559 (5)C15—H150.9300
C3—H30.9800C16—C171.430 (4)
C4—C51.513 (5)C16—H160.9300
C4—C61.517 (5)C17—C211.390 (4)
C4—C71.566 (5)C17—C181.414 (4)
C5—H5A0.9600C18—C191.357 (4)
C5—H5B0.9600C18—H180.9300
C5—H5C0.9600C19—C201.398 (4)
C6—H6A0.9600C19—H190.9300
C6—H6B0.9600C20—H200.9300
C6—H6C0.9600C21—C221.430 (4)
O1—Cu1—N289.87 (9)C9—C7—H7109.7
O1—Cu1—N1164.36 (9)C8—C7—H7109.7
N2—Cu1—N180.45 (9)C4—C7—H7109.7
O1—Cu1—Cl193.42 (6)C7—C8—C388.2 (3)
N2—Cu1—Cl1172.71 (7)C7—C8—H8A113.9
N1—Cu1—Cl194.89 (7)C3—C8—H8A113.9
O1—Cu1—O2i99.78 (8)C7—C8—H8B113.9
N2—Cu1—O2i90.84 (8)C3—C8—H8B113.9
N1—Cu1—O2i92.67 (8)H8A—C8—H8B111.1
Cl1—Cu1—O2i95.00 (6)O3—C9—C10123.2 (4)
C1—O1—Cu1117.42 (18)O3—C9—C7120.5 (4)
C1—O2—Cu1ii122.84 (18)C10—C9—C7116.3 (4)
C11—N1—C22118.1 (2)C9—C10—H10A109.5
C11—N1—Cu1129.0 (2)C9—C10—H10B109.5
C22—N1—Cu1112.83 (18)H10A—C10—H10B109.5
C20—N2—C21117.7 (3)C9—C10—H10C109.5
C20—N2—Cu1128.4 (2)H10A—C10—H10C109.5
C21—N2—Cu1113.88 (18)H10B—C10—H10C109.5
O2—C1—O1124.1 (3)N1—C11—C12122.1 (3)
O2—C1—C2121.5 (3)N1—C11—H11118.9
O1—C1—C2114.4 (3)C12—C11—H11118.9
C3—C2—C1114.2 (3)C13—C12—C11120.0 (3)
C3—C2—H2A108.7C13—C12—H12120.0
C1—C2—H2A108.7C11—C12—H12120.0
C3—C2—H2B108.7C12—C13—C14119.9 (3)
C1—C2—H2B108.7C12—C13—H13120.1
H2A—C2—H2B107.6C14—C13—H13120.1
C2—C3—C8119.2 (3)C22—C14—C13116.3 (3)
C2—C3—C4120.3 (3)C22—C14—C15118.6 (3)
C8—C3—C489.5 (3)C13—C14—C15125.0 (3)
C2—C3—H3108.8C16—C15—C14121.6 (3)
C8—C3—H3108.8C16—C15—H15119.2
C4—C3—H3108.8C14—C15—H15119.2
C5—C4—C6110.8 (4)C15—C16—C17120.9 (3)
C5—C4—C3115.8 (3)C15—C16—H16119.6
C6—C4—C3111.6 (3)C17—C16—H16119.6
C5—C4—C7118.6 (3)C21—C17—C18117.2 (3)
C6—C4—C7111.8 (3)C21—C17—C16118.9 (3)
C3—C4—C786.1 (3)C18—C17—C16123.9 (3)
C4—C5—H5A109.5C19—C18—C17118.8 (3)
C4—C5—H5B109.5C19—C18—H18120.6
H5A—C5—H5B109.5C17—C18—H18120.6
C4—C5—H5C109.5C18—C19—C20120.3 (3)
H5A—C5—H5C109.5C18—C19—H19119.9
H5B—C5—H5C109.5C20—C19—H19119.9
C4—C6—H6A109.5N2—C20—C19122.4 (3)
C4—C6—H6B109.5N2—C20—H20118.8
H6A—C6—H6B109.5C19—C20—H20118.8
C4—C6—H6C109.5N2—C21—C17123.6 (3)
H6A—C6—H6C109.5N2—C21—C22115.8 (2)
H6B—C6—H6C109.5C17—C21—C22120.6 (3)
C9—C7—C8119.7 (4)N1—C22—C14123.6 (3)
C9—C7—C4116.8 (3)N1—C22—C21117.0 (2)
C8—C7—C489.8 (3)C14—C22—C21119.4 (3)
N2—Cu1—O1—C184.8 (2)C4—C3—C8—C719.2 (3)
N1—Cu1—O1—C133.3 (4)C8—C7—C9—O31.9 (7)
Cl1—Cu1—O1—C188.70 (19)C4—C7—C9—O3104.6 (5)
O2i—Cu1—O1—C1175.62 (19)C8—C7—C9—C10176.5 (4)
O1—Cu1—N1—C11128.7 (3)C4—C7—C9—C1076.9 (5)
N2—Cu1—N1—C11178.8 (3)C22—N1—C11—C120.3 (4)
Cl1—Cu1—N1—C116.8 (3)Cu1—N1—C11—C12179.2 (2)
O2i—Cu1—N1—C1188.4 (3)N1—C11—C12—C130.4 (5)
O1—Cu1—N1—C2252.3 (4)C11—C12—C13—C140.6 (5)
N2—Cu1—N1—C220.14 (19)C12—C13—C14—C220.8 (5)
Cl1—Cu1—N1—C22174.20 (18)C12—C13—C14—C15179.4 (3)
O2i—Cu1—N1—C2290.55 (19)C22—C14—C15—C160.6 (5)
O1—Cu1—N2—C2013.9 (3)C13—C14—C15—C16177.9 (3)
N1—Cu1—N2—C20178.4 (3)C14—C15—C16—C170.4 (5)
Cl1—Cu1—N2—C20130.9 (5)C15—C16—C17—C211.9 (5)
O2i—Cu1—N2—C2085.9 (3)C15—C16—C17—C18178.3 (3)
O1—Cu1—N2—C21167.71 (19)C21—C17—C18—C190.7 (4)
N1—Cu1—N2—C210.05 (19)C16—C17—C18—C19179.1 (3)
Cl1—Cu1—N2—C2150.7 (6)C17—C18—C19—C200.1 (5)
O2i—Cu1—N2—C2192.51 (19)C21—N2—C20—C191.1 (4)
Cu1ii—O2—C1—O1137.8 (2)Cu1—N2—C20—C19177.3 (2)
Cu1ii—O2—C1—C240.6 (3)C18—C19—C20—N20.8 (5)
Cu1—O1—C1—O20.9 (4)C20—N2—C21—C170.5 (4)
Cu1—O1—C1—C2177.59 (19)Cu1—N2—C21—C17178.1 (2)
O2—C1—C2—C3134.8 (3)C20—N2—C21—C22178.8 (3)
O1—C1—C2—C346.7 (4)Cu1—N2—C21—C220.2 (3)
C1—C2—C3—C8171.3 (3)C18—C17—C21—N20.4 (4)
C1—C2—C3—C480.3 (4)C16—C17—C21—N2179.4 (3)
C2—C3—C4—C597.2 (4)C18—C17—C21—C22177.9 (3)
C8—C3—C4—C5138.7 (4)C16—C17—C21—C222.4 (4)
C2—C3—C4—C630.8 (4)C11—N1—C22—C140.6 (4)
C8—C3—C4—C693.2 (3)Cu1—N1—C22—C14179.6 (2)
C2—C3—C4—C7142.8 (3)C11—N1—C22—C21178.8 (3)
C8—C3—C4—C718.7 (3)Cu1—N1—C22—C210.3 (3)
C5—C4—C7—C9100.1 (5)C13—C14—C22—N10.8 (5)
C6—C4—C7—C930.8 (5)C15—C14—C22—N1179.5 (3)
C3—C4—C7—C9142.6 (4)C13—C14—C22—C21178.5 (3)
C5—C4—C7—C8136.3 (4)C15—C14—C22—C210.2 (4)
C6—C4—C7—C892.8 (4)N2—C21—C22—N10.4 (4)
C3—C4—C7—C819.0 (3)C17—C21—C22—N1178.0 (3)
C9—C7—C8—C3140.3 (4)N2—C21—C22—C14179.7 (3)
C4—C7—C8—C319.2 (3)C17—C21—C22—C141.4 (4)
C2—C3—C8—C7144.2 (3)
Symmetry codes: (i) x, y+1/2, z1/2; (ii) x, y+1/2, z+1/2.

Experimental details

Crystal data
Chemical formula[Cu(C10H15O3)Cl(C12H8N2)]
Mr462.41
Crystal system, space groupMonoclinic, P21/c
Temperature (K)273
a, b, c (Å)14.6143 (11), 14.4920 (12), 9.8419 (8)
β (°) 98.208 (1)
V3)2063.1 (3)
Z4
Radiation typeMo Kα
µ (mm1)1.21
Crystal size (mm)0.20 × 0.18 × 0.16
Data collection
DiffractometerSiemens SMART CCD
Absorption correctionMulti-scan
(SADABS; Siemens, 1996)
Tmin, Tmax0.793, 0.829
No. of measured, independent and
observed [I > 2σ(I)] reflections
10533, 3647, 2924
Rint0.028
(sin θ/λ)max1)0.596
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.036, 0.097, 1.03
No. of reflections3647
No. of parameters265
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.67, 0.30

Computer programs: SMART (Siemens, 1996), SAINT (Siemens, 1996), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Selected bond lengths (Å) top
Cu1—O11.937 (2)Cu1—Cl12.2610 (8)
Cu1—N22.030 (2)Cu1—O2i2.305 (2)
Cu1—N12.050 (2)
Symmetry code: (i) x, y+1/2, z1/2.
 

Acknowledgements

This project was supported by the Postgraduate Foundation of Taishan University (No·Y07–2-14).

References

First citationChe, G.-B., Xu, Z.-L. & Liu, C.-B. (2006). Acta Cryst. E62, m1695–m1696.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationLalancette, R. A., Thompson, H. W. & Brunskill, A. P. J. (1999). Acta Cryst. C55, 1908–1911.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSiemens (1996). SMART, SAINT and SADABS. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.  Google Scholar
First citationVanderhoff, P. A., Thompson, H. W. & Lalancette, R. A. (1986). Acta Cryst. C42, 1766–1769.  CSD CrossRef CAS Web of Science IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds