organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

N,N-Di­methyl-N′,N′′-di­phenyl­phospho­ric tri­amide

aDepartment of Chemistry, Ferdowsi University of Mashhad, Mashhad, 91779, Iran, bDepartment of Chemistry, Shahr-e Rey Branch, Islamic Azad University, Tehran, Iran, and cDepartment of Chemistry, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA 92093, USA
*Correspondence e-mail: mehrdad_pourayoubi@yahoo.com

(Received 27 October 2011; accepted 1 November 2011; online 9 November 2011)

In the title compound, C14H18N3OP, a crystallographic mirror plane bis­ects the mol­ecule (the C,N,C atoms of the dimethyl­amido moiety and the P=O unit lie on the mirror plane). The P atom has a distorted tetra­hedral geometry; the bond angles at P are in the range 98.98 (11)–115.28 (7)°. In the crystal, the O atom of the P=O group acts as a double hydrogen-bond acceptor for two symmetry-equivalent N—H⋯O hydrogen bonds, building [001] chains containing R21(6) loops.

Related literature

For bond lengths and angles in compounds having a [(N)P(O)(N)2] skeleton, see: Sabbaghi et al. (2011[Sabbaghi, F., Pourayoubi, M., Karimi Ahmadabad, F., Azarkamanzad, Z. & Ebrahimi Valmoozi, A. A. (2011). Acta Cryst. E67, o502.]). For the double hydrogen-bond acceptor capability of the phosphoryl group, see: Pourayoubi et al. (2011[Pourayoubi, M., Nečas, M. & Negari, M. (2011). Acta Cryst. C67. Submitted. [SF3159]]).

[Scheme 1]

Experimental

Crystal data
  • C14H18N3OP

  • Mr = 275.28

  • Orthorhombic, C m c 21

  • a = 15.501 (3) Å

  • b = 10.8569 (17) Å

  • c = 8.1579 (13) Å

  • V = 1372.9 (4) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.20 mm−1

  • T = 100 K

  • 0.60 × 0.15 × 0.13 mm

Data collection
  • Bruker APEXII CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2005[Bruker (2005). SADABS, SAINT and APEX2. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.891, Tmax = 0.975

  • 5356 measured reflections

  • 1317 independent reflections

  • 1272 reflections with I > 2σ(I)

  • Rint = 0.031

Refinement
  • R[F2 > 2σ(F2)] = 0.028

  • wR(F2) = 0.084

  • S = 1.04

  • 1317 reflections

  • 108 parameters

  • 1 restraint

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.22 e Å−3

  • Δρmin = −0.22 e Å−3

  • Absolute structure: Flack (1983[Flack, H. D. (1983). Acta Cryst. A39, 876-881.]), 604 Friedel pairs

  • Flack parameter: −0.11 (10)

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1A⋯O1i 0.88 2.22 2.982 (2) 145
Symmetry code: (i) [-x, -y+1, z-{\script{1\over 2}}].

Data collection: APEX2 (Bruker, 2005[Bruker (2005). SADABS, SAINT and APEX2. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2005[Bruker (2005). SADABS, SAINT and APEX2. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: Mercury (Macrae et al., 2008[Macrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466-470.]); software used to prepare material for publication: SHELXTL and enCIFer (Allen et al., 2004[Allen, F. H., Johnson, O., Shields, G. P., Smith, B. R. & Towler, M. (2004). J. Appl. Cryst. 37, 335-338.]).

Supporting information


Comment top

The title molecule, Fig. 1, has crystallographically imposed mirror symmetry. In the (CH3)2NP(O) unit, the O—P—N—C torsion angles, showing the orientations of the methyl groups with respect to the phosphoryl group, are 0.0 and 180.0°.

The PO and P—N bond lengths and the C—N—P bond angles match those found for the other compounds having a [(N)P(O)(N)2] skeleton (Sabbaghi et al., 2011).

The tetrahedral geometry of the phosphorus atom is significantly distorted as it has been noted for the other phosphoric triamides: the bond angles at the P atom vary in the range from 98.98 (11) [N1i—P1—N1; symmetry code (i): -x, y, z] to 115.28 (7)° [O1—P1—N1].

The O atom of the PO group acts as a double hydrogen-bond acceptor (Pourayoubi et al., 2011) to form the [N—H]2···O(P) grouping within a 1-D hydrogen-bonded arrangement along the c axis (Fig. 2, Table 1).

Related literature top

For bond lengths and angles in compounds having a [(N)P(O)(N)2] skeleton, see: Sabbaghi et al. (2011). For the double hydrogen-bond acceptor capability of the phosphoryl group, see: Pourayoubi et al. (2011).

Experimental top

Synthesis of ((CH3)2N)P(O)Cl2: [(CH3)2NH2]Cl (0.184 mol) and P(O)Cl3 (0.552 mol) were refluxed for 8 h and afterwards the excess of P(O)Cl3 was removed in vacuum.

Synthesis of title compound: to a solution of ((CH3)2N)P(O)Cl2 (3.7 mmol) in CH3CN (15 ml), a solution of aniline (14.8 mmol) in CH3CN (25 ml) was added at 273 K. After 4 h stirring, the solvent was removed and product was washed with deionized water and recrystallized from CH3CN at room temperature to yield colourless rods.

Refinement top

The H4, H11, H12 and H13 were found in difference Fourier maps and refined with isotropic displacement parameters. The others hydrogen atom positions of the C-H and N-H units were calculated and refined in a riding-model with appropriate HFIX command in SHELXL-97.

Structure description top

The title molecule, Fig. 1, has crystallographically imposed mirror symmetry. In the (CH3)2NP(O) unit, the O—P—N—C torsion angles, showing the orientations of the methyl groups with respect to the phosphoryl group, are 0.0 and 180.0°.

The PO and P—N bond lengths and the C—N—P bond angles match those found for the other compounds having a [(N)P(O)(N)2] skeleton (Sabbaghi et al., 2011).

The tetrahedral geometry of the phosphorus atom is significantly distorted as it has been noted for the other phosphoric triamides: the bond angles at the P atom vary in the range from 98.98 (11) [N1i—P1—N1; symmetry code (i): -x, y, z] to 115.28 (7)° [O1—P1—N1].

The O atom of the PO group acts as a double hydrogen-bond acceptor (Pourayoubi et al., 2011) to form the [N—H]2···O(P) grouping within a 1-D hydrogen-bonded arrangement along the c axis (Fig. 2, Table 1).

For bond lengths and angles in compounds having a [(N)P(O)(N)2] skeleton, see: Sabbaghi et al. (2011). For the double hydrogen-bond acceptor capability of the phosphoryl group, see: Pourayoubi et al. (2011).

Computing details top

Data collection: APEX2 (Bruker, 2005); cell refinement: SAINT (Bruker, 2005); data reduction: SAINT (Bruker, 2005); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: Mercury (Macrae et al., 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008) and enCIFer (Allen et al., 2004).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound with ellipsoids shown at the 50% probability level.
[Figure 2] Fig. 2. A view of the crystal packing showing the formation of 1-D arrangement through N—H···O hydrogen bonds (shown as dotted lines), carbon bound H atoms have been omitted for clarity.
N,N-Dimethyl-N',N''-diphenylphosphoric triamide top
Crystal data top
C14H18N3OPDx = 1.332 Mg m3
Mr = 275.28Melting point: NOT MEASURED K
Orthorhombic, Cmc21Mo Kα radiation, λ = 0.71073 Å
a = 15.501 (3) ÅCell parameters from 3006 reflections
b = 10.8569 (17) Åθ = 3.4–25.5°
c = 8.1579 (13) ŵ = 0.20 mm1
V = 1372.9 (4) Å3T = 100 K
Z = 4Rod, colourless
F(000) = 5840.60 × 0.15 × 0.13 mm
Data collection top
Bruker APEXII CCD
diffractometer
1317 independent reflections
Radiation source: fine-focus sealed tube1272 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.031
φ and ω scansθmax = 25.5°, θmin = 2.3°
Absorption correction: multi-scan
(SADABS; Bruker, 2005)
h = 1814
Tmin = 0.891, Tmax = 0.975k = 1311
5356 measured reflectionsl = 99
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.028H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.084 w = 1/[σ2(Fo2) + (0.0623P)2]
where P = (Fo2 + 2Fc2)/3
S = 1.04(Δ/σ)max = 0.001
1317 reflectionsΔρmax = 0.22 e Å3
108 parametersΔρmin = 0.22 e Å3
1 restraintAbsolute structure: Flack (1983), 604 Friedel pairs
Primary atom site location: structure-invariant direct methodsAbsolute structure parameter: 0.11 (10)
Crystal data top
C14H18N3OPV = 1372.9 (4) Å3
Mr = 275.28Z = 4
Orthorhombic, Cmc21Mo Kα radiation
a = 15.501 (3) ŵ = 0.20 mm1
b = 10.8569 (17) ÅT = 100 K
c = 8.1579 (13) Å0.60 × 0.15 × 0.13 mm
Data collection top
Bruker APEXII CCD
diffractometer
1317 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2005)
1272 reflections with I > 2σ(I)
Tmin = 0.891, Tmax = 0.975Rint = 0.031
5356 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.028H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.084Δρmax = 0.22 e Å3
S = 1.04Δρmin = 0.22 e Å3
1317 reflectionsAbsolute structure: Flack (1983), 604 Friedel pairs
108 parametersAbsolute structure parameter: 0.11 (10)
1 restraint
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
H130.0531 (17)0.819 (2)0.158 (3)0.043 (6)*
H110.00000.708 (4)0.186 (5)0.052 (11)*
H120.00000.849 (4)0.262 (6)0.053 (11)*
H40.0525 (13)0.9247 (19)0.112 (3)0.028 (5)*
P10.00000.62183 (5)0.12667 (6)0.02090 (19)
O10.00000.63022 (15)0.3089 (2)0.0251 (4)
N10.08103 (10)0.54350 (14)0.0464 (2)0.0254 (4)
H1A0.06960.47060.00470.031*
N20.00000.76094 (19)0.0485 (3)0.0243 (5)
C10.34009 (13)0.66067 (19)0.0212 (2)0.0271 (4)
H10.39860.68640.01420.033*
C20.31200 (13)0.55744 (18)0.0645 (2)0.0283 (4)
H20.35150.51250.13030.034*
C30.22643 (11)0.51958 (17)0.0546 (2)0.0243 (4)
H30.20800.44850.11280.029*
C40.16777 (13)0.58505 (18)0.0398 (2)0.0232 (4)
C50.28212 (11)0.72536 (16)0.1165 (3)0.0252 (4)
H50.30110.79540.17620.030*
C60.19609 (10)0.68909 (16)0.1260 (3)0.0241 (4)
H60.15660.73490.19100.029*
C70.00000.8737 (2)0.1449 (4)0.0269 (6)
C80.00000.7773 (3)0.1284 (4)0.0329 (6)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
P10.0224 (3)0.0191 (3)0.0212 (3)0.0000.0000.0002 (3)
O10.0304 (10)0.0227 (9)0.0221 (10)0.0000.0000.0036 (7)
N10.0246 (8)0.0218 (8)0.0300 (8)0.0009 (6)0.0010 (6)0.0034 (6)
N20.0304 (11)0.0218 (11)0.0208 (12)0.0000.0000.0001 (8)
C10.0239 (9)0.0308 (10)0.0265 (9)0.0005 (8)0.0006 (8)0.0058 (8)
C20.0286 (9)0.0314 (10)0.0248 (9)0.0073 (8)0.0025 (8)0.0006 (8)
C30.0289 (9)0.0215 (9)0.0225 (9)0.0025 (7)0.0021 (8)0.0006 (7)
C40.0264 (9)0.0208 (10)0.0224 (10)0.0021 (8)0.0024 (7)0.0032 (7)
C50.0296 (8)0.0230 (8)0.0230 (9)0.0005 (7)0.0033 (9)0.0038 (8)
C60.0269 (8)0.0226 (8)0.0227 (7)0.0043 (7)0.0013 (8)0.0007 (8)
C70.0342 (13)0.0224 (13)0.0241 (14)0.0000.0000.0001 (10)
C80.0446 (17)0.0310 (16)0.0232 (14)0.0000.0000.0029 (12)
Geometric parameters (Å, º) top
P1—O11.489 (2)C2—H20.9500
P1—N21.639 (2)C3—C41.388 (3)
P1—N1i1.6521 (16)C3—H30.9500
P1—N11.6522 (16)C4—C61.401 (3)
N1—C41.419 (2)C5—C61.393 (2)
N1—H1A0.8800C5—H50.9500
N2—C81.454 (3)C6—H60.9500
N2—C71.455 (3)C7—H120.99 (5)
C1—C51.380 (3)C7—H41.02 (2)
C1—C21.391 (3)C8—H130.97 (3)
C1—H10.9500C8—H110.89 (4)
C2—C31.391 (3)
O1—P1—N2109.39 (11)C4—C3—C2120.39 (18)
O1—P1—N1i115.28 (7)C4—C3—H3119.8
N2—P1—N1i108.66 (8)C2—C3—H3119.8
O1—P1—N1115.28 (7)C3—C4—C6119.10 (17)
N2—P1—N1108.66 (8)C3—C4—N1118.62 (16)
N1i—P1—N198.98 (11)C6—C4—N1122.28 (16)
C4—N1—P1124.87 (13)C1—C5—C6120.74 (18)
C4—N1—H1A117.6C1—C5—H5119.6
P1—N1—H1A117.6C6—C5—H5119.6
C8—N2—C7115.7 (2)C5—C6—C4119.99 (17)
C8—N2—P1119.9 (2)C5—C6—H6120.0
C7—N2—P1124.38 (19)C4—C6—H6120.0
C5—C1—C2119.30 (18)N2—C7—H12107 (2)
C5—C1—H1120.4N2—C7—H4108.2 (13)
C2—C1—H1120.4H12—C7—H4113.7 (18)
C1—C2—C3120.49 (18)N2—C8—H13107.6 (15)
C1—C2—H2119.8N2—C8—H11115 (3)
C3—C2—H2119.8H13—C8—H11105.1 (19)
O1—P1—N1—C472.29 (16)C1—C2—C3—C40.6 (3)
N2—P1—N1—C450.87 (18)C2—C3—C4—C60.5 (3)
N1i—P1—N1—C4164.16 (11)C2—C3—C4—N1179.88 (17)
O1—P1—N2—C8180.0P1—N1—C4—C3169.43 (13)
N1i—P1—N2—C853.37 (7)P1—N1—C4—C611.0 (2)
N1—P1—N2—C853.37 (7)C2—C1—C5—C60.7 (3)
O1—P1—N2—C70.0C1—C5—C6—C40.7 (3)
N1i—P1—N2—C7126.63 (7)C3—C4—C6—C50.1 (3)
N1—P1—N2—C7126.63 (7)N1—C4—C6—C5179.45 (18)
C5—C1—C2—C30.0 (3)
Symmetry code: (i) x, y, z.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1A···O1ii0.882.222.982 (2)145
Symmetry code: (ii) x, y+1, z1/2.

Experimental details

Crystal data
Chemical formulaC14H18N3OP
Mr275.28
Crystal system, space groupOrthorhombic, Cmc21
Temperature (K)100
a, b, c (Å)15.501 (3), 10.8569 (17), 8.1579 (13)
V3)1372.9 (4)
Z4
Radiation typeMo Kα
µ (mm1)0.20
Crystal size (mm)0.60 × 0.15 × 0.13
Data collection
DiffractometerBruker APEXII CCD
Absorption correctionMulti-scan
(SADABS; Bruker, 2005)
Tmin, Tmax0.891, 0.975
No. of measured, independent and
observed [I > 2σ(I)] reflections
5356, 1317, 1272
Rint0.031
(sin θ/λ)max1)0.606
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.028, 0.084, 1.04
No. of reflections1317
No. of parameters108
No. of restraints1
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.22, 0.22
Absolute structureFlack (1983), 604 Friedel pairs
Absolute structure parameter0.11 (10)

Computer programs: APEX2 (Bruker, 2005), SAINT (Bruker, 2005), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), Mercury (Macrae et al., 2008), SHELXTL (Sheldrick, 2008) and enCIFer (Allen et al., 2004).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1A···O1i0.882.222.982 (2)145
Symmetry code: (i) x, y+1, z1/2.
 

Acknowledgements

Support of this investigation by the Ferdowsi University of Mashhad is gratefully acknowledged.

References

First citationAllen, F. H., Johnson, O., Shields, G. P., Smith, B. R. & Towler, M. (2004). J. Appl. Cryst. 37, 335–338.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationBruker (2005). SADABS, SAINT and APEX2. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationFlack, H. D. (1983). Acta Cryst. A39, 876–881.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationMacrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466–470.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationPourayoubi, M., Nečas, M. & Negari, M. (2011). Acta Cryst. C67. Submitted. [SF3159]  CrossRef IUCr Journals Google Scholar
First citationSabbaghi, F., Pourayoubi, M., Karimi Ahmadabad, F., Azarkamanzad, Z. & Ebrahimi Valmoozi, A. A. (2011). Acta Cryst. E67, o502.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds