organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

1,1′-Bi­naphthyl-2,2′-diyl benzyl­phos­phoramidate

aDepartment of Chemistry, IIT Madras, Chennai, TamilNadu, India
*Correspondence e-mail: dchakraborty@iitm.ac.in

(Received 28 October 2011; accepted 7 November 2011; online 16 November 2011)

In the title compound, C27H20NO3P, the P atom exhibits a somewhat distorted PNO3 tetra­hedral geometry, with the O—P—O angle for the binaphthyl fragment being 102.82 (6)°. The dihedral angle between the naphthyl ring systems is 59.00 (2)°. In the crystal, inversion dimers linked by pairs of N—H⋯O hydrogen bonds generate R22(8) loops.

Related literature

For background to organo­phospho­rus chemistry, see: Malik et al. (2010[Malik, P., Chakraborty, D. & Ramkumar, V. (2010). Polyhedron, 29, 2142-2148.]). For related structures, see: Gowda et al. (2010a[Gowda, R. R., Ramkumar, V. & Chakraborty, D. (2010a). Acta Cryst. E66, o1625.],b[Gowda, R. R., Ramkumar, V. & Chakraborty, D. (2010b). Acta Cryst. E66, o3049.], 2011[Gowda, R. R., Chakraborty, D. & Ramkumar, V. (2011). Inorg. Chim. Acta, 372, 88-93.]).

[Scheme 1]

Experimental

Crystal data
  • C27H20NO3P

  • Mr = 437.41

  • Monoclinic, P 21 /c

  • a = 13.7998 (4) Å

  • b = 11.0667 (3) Å

  • c = 14.7487 (5) Å

  • β = 112.674 (1)°

  • V = 2078.31 (11) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.16 mm−1

  • T = 298 K

  • 0.35 × 0.27 × 0.22 mm

Data collection
  • Bruker APEXII CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2004[Bruker (2004). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.945, Tmax = 0.965

  • 29246 measured reflections

  • 5053 independent reflections

  • 3766 reflections with I > 2σ(I)

  • Rint = 0.053

Refinement
  • R[F2 > 2σ(F2)] = 0.039

  • wR(F2) = 0.104

  • S = 1.03

  • 5053 reflections

  • 293 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.32 e Å−3

  • Δρmin = −0.51 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1N⋯O3i 0.90 (2) 2.01 (2) 2.9015 (17) 170.2 (18)
Symmetry code: (i) -x, -y+1, -z+1.

Data collection: APEX2 (Bruker, 2004[Bruker (2004). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2004[Bruker (2004). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

In the recent years, we were interested in the chemistry of phosphorus (V) compounds (Malik et al., 2010). One of our major objectives has been the use of such reagents for ring-opening polymerization reactions (Gowda et al., 2011). Recently, we have published two phosphoric acid derivatives (Gowda et al., 2010a,b). The title compound described here is the new benzylphosphoroamidate derived from binol phosphorochloridate and benzyl amine.

The P=O bond length is slightly shorter than the P-O length. All the bond lengths and angles are in agreement with literature precedents (Gowda et al., 2011).

Related literature top

For background to organophosphorus chemistry, see: Malik et al. (2010). For related structures, see: Gowda et al. (2010a,b, 2011).

Experimental top

To a stirred solution of binol (200 mg, 0.69 mmol) in CH2Cl2 (20 mL) under nitrogen atm at 0 °C was added triethylamine (2 ml, 13.96 mmol) dropwise. To the above reaction mixture POCl3 (0.07 mL, 0.69 mmol) was added dropwise, formation of HCl was observed. Reaction mixture stirred at 0 °C for 10 mins up to room temperature and continued stirring for 4 h. To the above reaction mixture benzyl amine (0.38 mL, 3.49 mmol)was added at room temperature and the reaction mixture was stirred for 2.5 h. The reaction mixture was evaporated to dryness. Mass was dissoved in CH2Cl2 (30 ml) and washed with water (5 mL) then with saturated brine (5 ml). Organic layer was dried over Na2SO4, filtered and evaporated to dryness. This was further purified by column chromatography to yield a colourless solid.

Refinement top

All hydrogen atoms except N atom were fixed geometrically and allowed to ride on the parent carbon atoms with aromatic C-H = 0.93 Å and methylene C-H = 0.96 Å. The displacement parameters were set for phenyl H atoms at Uiso(H) = 1.2U eq(C) and for methylene H atoms at Uiso(H) = 1.5Ueq(C).N atom was identified by fourier mapping and were fixed.

Structure description top

In the recent years, we were interested in the chemistry of phosphorus (V) compounds (Malik et al., 2010). One of our major objectives has been the use of such reagents for ring-opening polymerization reactions (Gowda et al., 2011). Recently, we have published two phosphoric acid derivatives (Gowda et al., 2010a,b). The title compound described here is the new benzylphosphoroamidate derived from binol phosphorochloridate and benzyl amine.

The P=O bond length is slightly shorter than the P-O length. All the bond lengths and angles are in agreement with literature precedents (Gowda et al., 2011).

For background to organophosphorus chemistry, see: Malik et al. (2010). For related structures, see: Gowda et al. (2010a,b, 2011).

Computing details top

Data collection: APEX2 (Bruker, 2004); cell refinement: SAINT (Bruker, 2004); data reduction: SAINT (Bruker, 2004); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. ORTEP of the molecule with atoms represented as 30% probability ellipsoids.
1,1'-Binaphthyl-2,2'-diyl benzylphosphoramidate top
Crystal data top
C27H20NO3PF(000) = 912
Mr = 437.41Dx = 1.398 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 9423 reflections
a = 13.7998 (4) Åθ = 2.4–28.1°
b = 11.0667 (3) ŵ = 0.16 mm1
c = 14.7487 (5) ÅT = 298 K
β = 112.674 (1)°Block, colourless
V = 2078.31 (11) Å30.35 × 0.27 × 0.22 mm
Z = 4
Data collection top
Bruker APEXII CCD
diffractometer
5053 independent reflections
Radiation source: fine-focus sealed tube3766 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.053
phi and ω scansθmax = 28.3°, θmin = 1.6°
Absorption correction: multi-scan
(SADABS; Bruker, 2004)
h = 1818
Tmin = 0.945, Tmax = 0.965k = 1414
29246 measured reflectionsl = 1719
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.039Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.104H atoms treated by a mixture of independent and constrained refinement
S = 1.03 w = 1/[σ2(Fo2) + (0.0445P)2 + 0.951P]
where P = (Fo2 + 2Fc2)/3
5053 reflections(Δ/σ)max = 0.001
293 parametersΔρmax = 0.32 e Å3
0 restraintsΔρmin = 0.51 e Å3
Crystal data top
C27H20NO3PV = 2078.31 (11) Å3
Mr = 437.41Z = 4
Monoclinic, P21/cMo Kα radiation
a = 13.7998 (4) ŵ = 0.16 mm1
b = 11.0667 (3) ÅT = 298 K
c = 14.7487 (5) Å0.35 × 0.27 × 0.22 mm
β = 112.674 (1)°
Data collection top
Bruker APEXII CCD
diffractometer
5053 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2004)
3766 reflections with I > 2σ(I)
Tmin = 0.945, Tmax = 0.965Rint = 0.053
29246 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0390 restraints
wR(F2) = 0.104H atoms treated by a mixture of independent and constrained refinement
S = 1.03Δρmax = 0.32 e Å3
5053 reflectionsΔρmin = 0.51 e Å3
293 parameters
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes)

are estimated using the full covariance matrix. The cell esds are taken

into account individually in the estimation of esds in distances, angles

and torsion angles; correlations between esds in cell parameters are only

used when they are defined by crystal symmetry. An approximate (isotropic)

treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.32299 (11)0.67344 (13)0.54067 (11)0.0203 (3)
C20.40314 (13)0.62679 (14)0.62471 (12)0.0265 (4)
H20.38930.60350.67910.032*
C30.50170 (13)0.61628 (14)0.62505 (13)0.0295 (4)
H30.55610.58970.68170.035*
C40.52293 (12)0.64488 (13)0.54141 (13)0.0260 (4)
C50.62343 (13)0.62768 (15)0.53816 (15)0.0354 (4)
H50.67830.59960.59380.042*
C60.64113 (14)0.65125 (16)0.45568 (17)0.0399 (5)
H60.70780.64020.45530.048*
C70.55859 (14)0.69235 (15)0.37079 (16)0.0363 (4)
H70.57050.70670.31380.044*
C80.46115 (13)0.71132 (14)0.37106 (13)0.0275 (4)
H80.40740.73820.31410.033*
C90.44037 (12)0.69088 (13)0.45658 (12)0.0221 (3)
C100.33940 (11)0.71257 (13)0.45942 (11)0.0192 (3)
C110.25437 (12)0.77459 (13)0.37799 (11)0.0190 (3)
C120.26774 (12)0.89308 (13)0.34438 (11)0.0204 (3)
C130.36253 (13)0.95968 (14)0.38600 (12)0.0236 (3)
H130.42000.92520.43570.028*
C140.37069 (14)1.07407 (14)0.35407 (13)0.0291 (4)
H140.43381.11580.38170.035*
C150.28496 (15)1.12864 (15)0.28029 (13)0.0339 (4)
H150.29101.20690.26000.041*
C160.19313 (15)1.06775 (16)0.23828 (13)0.0318 (4)
H160.13681.10460.18890.038*
C170.18144 (13)0.94851 (15)0.26850 (11)0.0245 (3)
C180.08507 (13)0.88577 (16)0.22596 (12)0.0294 (4)
H180.02970.92070.17430.035*
C190.07260 (12)0.77502 (16)0.25975 (12)0.0269 (4)
H190.00880.73450.23220.032*
C200.15695 (12)0.72271 (14)0.33655 (11)0.0211 (3)
C210.02951 (13)0.81676 (14)0.48691 (14)0.0313 (4)
H21A0.07450.85460.45830.038*
H21B0.05930.83250.55700.038*
C220.07845 (12)0.87219 (13)0.44285 (12)0.0246 (3)
C230.11269 (14)0.93190 (15)0.35337 (13)0.0305 (4)
H230.06990.93410.31770.037*
C240.20985 (15)0.98832 (16)0.31637 (14)0.0360 (4)
H240.23171.02850.25640.043*
C250.27378 (14)0.98487 (16)0.36827 (15)0.0376 (4)
H250.33851.02380.34410.045*
C260.24159 (15)0.92352 (18)0.45635 (15)0.0397 (5)
H260.28530.91950.49100.048*
C270.14467 (15)0.86821 (17)0.49314 (14)0.0341 (4)
H270.12350.82750.55280.041*
N10.02726 (10)0.68495 (11)0.47013 (10)0.0239 (3)
O10.22318 (8)0.68401 (9)0.54441 (8)0.0220 (2)
O20.14012 (8)0.61001 (9)0.37169 (8)0.0229 (2)
O30.12166 (8)0.47812 (10)0.49874 (8)0.0260 (3)
P10.12654 (3)0.60554 (3)0.47454 (3)0.02003 (11)
H1N0.0227 (15)0.6422 (19)0.4812 (14)0.038 (5)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0176 (7)0.0159 (7)0.0252 (8)0.0039 (6)0.0057 (6)0.0015 (6)
C20.0310 (9)0.0196 (8)0.0227 (8)0.0038 (6)0.0034 (7)0.0014 (6)
C30.0241 (8)0.0191 (8)0.0323 (9)0.0010 (6)0.0035 (7)0.0011 (7)
C40.0186 (8)0.0136 (7)0.0391 (10)0.0006 (6)0.0036 (7)0.0023 (6)
C50.0185 (8)0.0198 (8)0.0578 (13)0.0015 (6)0.0036 (8)0.0051 (8)
C60.0227 (9)0.0240 (9)0.0775 (15)0.0011 (7)0.0242 (10)0.0060 (9)
C70.0344 (10)0.0246 (9)0.0605 (13)0.0016 (7)0.0300 (10)0.0000 (8)
C80.0256 (8)0.0188 (7)0.0418 (10)0.0011 (6)0.0170 (8)0.0013 (7)
C90.0187 (7)0.0118 (7)0.0345 (9)0.0016 (5)0.0086 (7)0.0006 (6)
C100.0159 (7)0.0132 (6)0.0254 (8)0.0021 (5)0.0046 (6)0.0006 (6)
C110.0186 (7)0.0193 (7)0.0199 (8)0.0012 (6)0.0084 (6)0.0009 (6)
C120.0232 (8)0.0202 (7)0.0206 (8)0.0030 (6)0.0117 (6)0.0005 (6)
C130.0252 (8)0.0191 (7)0.0270 (8)0.0017 (6)0.0107 (7)0.0007 (6)
C140.0363 (10)0.0205 (8)0.0348 (10)0.0020 (7)0.0184 (8)0.0001 (7)
C150.0505 (11)0.0200 (8)0.0386 (10)0.0051 (7)0.0253 (9)0.0085 (7)
C160.0402 (10)0.0290 (9)0.0283 (9)0.0129 (8)0.0154 (8)0.0106 (7)
C170.0284 (9)0.0268 (8)0.0207 (8)0.0066 (7)0.0119 (7)0.0026 (6)
C180.0251 (9)0.0401 (10)0.0205 (8)0.0085 (7)0.0058 (7)0.0056 (7)
C190.0177 (8)0.0394 (9)0.0206 (8)0.0018 (7)0.0042 (7)0.0033 (7)
C200.0213 (8)0.0230 (8)0.0201 (8)0.0009 (6)0.0092 (6)0.0015 (6)
C210.0251 (9)0.0191 (8)0.0465 (11)0.0031 (6)0.0103 (8)0.0062 (7)
C220.0234 (8)0.0166 (7)0.0339 (9)0.0039 (6)0.0113 (7)0.0057 (6)
C230.0343 (10)0.0269 (8)0.0359 (10)0.0052 (7)0.0199 (8)0.0038 (7)
C240.0378 (10)0.0290 (9)0.0346 (10)0.0013 (8)0.0067 (8)0.0018 (8)
C250.0254 (9)0.0303 (9)0.0520 (12)0.0013 (7)0.0094 (9)0.0099 (8)
C260.0347 (10)0.0425 (11)0.0517 (12)0.0045 (8)0.0274 (10)0.0111 (9)
C270.0376 (10)0.0350 (10)0.0339 (10)0.0020 (8)0.0184 (8)0.0005 (8)
N10.0208 (7)0.0167 (6)0.0358 (8)0.0038 (5)0.0125 (6)0.0014 (5)
O10.0190 (5)0.0248 (5)0.0214 (6)0.0063 (4)0.0068 (5)0.0028 (4)
O20.0223 (6)0.0207 (5)0.0254 (6)0.0069 (4)0.0089 (5)0.0045 (4)
O30.0214 (6)0.0200 (5)0.0367 (7)0.0016 (4)0.0114 (5)0.0020 (5)
P10.0170 (2)0.01769 (19)0.0248 (2)0.00387 (14)0.00742 (16)0.00084 (15)
Geometric parameters (Å, º) top
C1—C101.373 (2)C16—C171.422 (2)
C1—C21.403 (2)C16—H160.9300
C1—O11.4043 (18)C17—C181.415 (2)
C2—C31.363 (2)C18—C191.359 (2)
C2—H20.9300C18—H180.9300
C3—C41.409 (3)C19—C201.399 (2)
C3—H30.9300C19—H190.9300
C4—C51.419 (2)C20—O21.4039 (18)
C4—C91.422 (2)C21—N11.4778 (19)
C5—C61.355 (3)C21—C221.507 (2)
C5—H50.9300C21—H21A0.9700
C6—C71.404 (3)C21—H21B0.9700
C6—H60.9300C22—C271.382 (2)
C7—C81.362 (2)C22—C231.386 (2)
C7—H70.9300C23—C241.386 (3)
C8—C91.415 (2)C23—H230.9300
C8—H80.9300C24—C251.373 (3)
C9—C101.430 (2)C24—H240.9300
C10—C111.485 (2)C25—C261.379 (3)
C11—C201.370 (2)C25—H250.9300
C11—C121.439 (2)C26—C271.378 (3)
C12—C131.418 (2)C26—H260.9300
C12—C171.421 (2)C27—H270.9300
C13—C141.370 (2)N1—P11.6078 (14)
C13—H130.9300N1—H1N0.90 (2)
C14—C151.399 (2)O1—P11.5921 (11)
C14—H140.9300O2—P11.5992 (11)
C15—C161.356 (3)O3—P11.4625 (11)
C15—H150.9300
C10—C1—C2123.23 (14)C18—C17—C12119.77 (14)
C10—C1—O1120.16 (13)C18—C17—C16121.16 (15)
C2—C1—O1116.56 (14)C12—C17—C16119.05 (15)
C3—C2—C1118.71 (16)C19—C18—C17120.69 (15)
C3—C2—H2120.6C19—C18—H18119.7
C1—C2—H2120.6C17—C18—H18119.7
C2—C3—C4121.42 (15)C18—C19—C20119.13 (15)
C2—C3—H3119.3C18—C19—H19120.4
C4—C3—H3119.3C20—C19—H19120.4
C3—C4—C5122.35 (16)C11—C20—C19123.71 (14)
C3—C4—C9118.95 (14)C11—C20—O2118.75 (13)
C5—C4—C9118.69 (16)C19—C20—O2117.53 (13)
C6—C5—C4121.42 (17)N1—C21—C22112.09 (13)
C6—C5—H5119.3N1—C21—H21A109.2
C4—C5—H5119.3C22—C21—H21A109.2
C5—C6—C7119.85 (16)N1—C21—H21B109.2
C5—C6—H6120.1C22—C21—H21B109.2
C7—C6—H6120.1H21A—C21—H21B107.9
C8—C7—C6120.63 (18)C27—C22—C23118.23 (16)
C8—C7—H7119.7C27—C22—C21120.26 (16)
C6—C7—H7119.7C23—C22—C21121.47 (15)
C7—C8—C9121.15 (17)C22—C23—C24120.85 (16)
C7—C8—H8119.4C22—C23—H23119.6
C9—C8—H8119.4C24—C23—H23119.6
C8—C9—C4118.19 (14)C25—C24—C23119.98 (18)
C8—C9—C10122.24 (14)C25—C24—H24120.0
C4—C9—C10119.56 (14)C23—C24—H24120.0
C1—C10—C9117.58 (14)C24—C25—C26119.73 (17)
C1—C10—C11120.47 (13)C24—C25—H25120.1
C9—C10—C11121.94 (13)C26—C25—H25120.1
C20—C11—C12117.54 (14)C27—C26—C25120.07 (17)
C20—C11—C10120.06 (13)C27—C26—H26120.0
C12—C11—C10122.26 (13)C25—C26—H26120.0
C13—C12—C17118.00 (14)C26—C27—C22121.12 (18)
C13—C12—C11122.95 (14)C26—C27—H27119.4
C17—C12—C11119.01 (14)C22—C27—H27119.4
C14—C13—C12121.03 (15)C21—N1—P1124.76 (11)
C14—C13—H13119.5C21—N1—H1N117.2 (13)
C12—C13—H13119.5P1—N1—H1N113.9 (13)
C13—C14—C15120.62 (16)C1—O1—P1121.24 (9)
C13—C14—H14119.7C20—O2—P1118.31 (9)
C15—C14—H14119.7O3—P1—O1118.28 (6)
C16—C15—C14120.15 (15)O3—P1—O2107.13 (6)
C16—C15—H15119.9O1—P1—O2102.82 (6)
C14—C15—H15119.9O3—P1—N1114.72 (7)
C15—C16—C17121.13 (16)O1—P1—N1102.49 (7)
C15—C16—H16119.4O2—P1—N1110.75 (7)
C17—C16—H16119.4
C10—C1—C2—C32.0 (2)C11—C12—C17—C181.4 (2)
O1—C1—C2—C3179.17 (13)C13—C12—C17—C160.6 (2)
C1—C2—C3—C43.5 (2)C11—C12—C17—C16177.21 (14)
C2—C3—C4—C5176.09 (15)C15—C16—C17—C18178.83 (16)
C2—C3—C4—C92.9 (2)C15—C16—C17—C120.3 (2)
C3—C4—C5—C6177.34 (16)C12—C17—C18—C192.9 (2)
C9—C4—C5—C61.7 (2)C16—C17—C18—C19175.69 (15)
C4—C5—C6—C70.7 (3)C17—C18—C19—C200.9 (2)
C5—C6—C7—C81.4 (3)C12—C11—C20—C194.2 (2)
C6—C7—C8—C90.3 (3)C10—C11—C20—C19179.94 (14)
C7—C8—C9—C42.7 (2)C12—C11—C20—O2176.58 (12)
C7—C8—C9—C10178.63 (15)C10—C11—C20—O20.8 (2)
C3—C4—C9—C8175.75 (14)C18—C19—C20—C112.8 (2)
C5—C4—C9—C83.3 (2)C18—C19—C20—O2177.96 (14)
C3—C4—C9—C103.0 (2)N1—C21—C22—C2782.3 (2)
C5—C4—C9—C10177.98 (14)N1—C21—C22—C23100.01 (18)
C2—C1—C10—C97.7 (2)C27—C22—C23—C241.4 (2)
O1—C1—C10—C9175.23 (12)C21—C22—C23—C24176.33 (15)
C2—C1—C10—C11172.53 (14)C22—C23—C24—C250.4 (3)
O1—C1—C10—C114.6 (2)C23—C24—C25—C261.0 (3)
C8—C9—C10—C1170.66 (14)C24—C25—C26—C271.4 (3)
C4—C9—C10—C18.0 (2)C25—C26—C27—C220.4 (3)
C8—C9—C10—C119.1 (2)C23—C22—C27—C261.0 (3)
C4—C9—C10—C11172.19 (13)C21—C22—C27—C26176.76 (16)
C1—C10—C11—C2051.9 (2)C22—C21—N1—P1159.02 (12)
C9—C10—C11—C20127.90 (15)C10—C1—O1—P168.19 (16)
C1—C10—C11—C12123.65 (16)C2—C1—O1—P1114.53 (13)
C9—C10—C11—C1256.6 (2)C11—C20—O2—P176.15 (16)
C20—C11—C12—C13175.66 (14)C19—C20—O2—P1104.58 (14)
C10—C11—C12—C130.0 (2)C1—O1—P1—O376.30 (12)
C20—C11—C12—C172.0 (2)C1—O1—P1—O241.44 (12)
C10—C11—C12—C17177.66 (14)C1—O1—P1—N1156.43 (11)
C17—C12—C13—C140.0 (2)C20—O2—P1—O3173.99 (10)
C11—C12—C13—C14177.67 (15)C20—O2—P1—O148.64 (11)
C12—C13—C14—C150.8 (2)C20—O2—P1—N160.22 (12)
C13—C14—C15—C161.2 (3)C21—N1—P1—O3154.28 (14)
C14—C15—C16—C170.6 (3)C21—N1—P1—O124.77 (16)
C13—C12—C17—C18179.16 (14)C21—N1—P1—O284.31 (15)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1N···O3i0.90 (2)2.01 (2)2.9015 (17)170.2 (18)
Symmetry code: (i) x, y+1, z+1.

Experimental details

Crystal data
Chemical formulaC27H20NO3P
Mr437.41
Crystal system, space groupMonoclinic, P21/c
Temperature (K)298
a, b, c (Å)13.7998 (4), 11.0667 (3), 14.7487 (5)
β (°) 112.674 (1)
V3)2078.31 (11)
Z4
Radiation typeMo Kα
µ (mm1)0.16
Crystal size (mm)0.35 × 0.27 × 0.22
Data collection
DiffractometerBruker APEXII CCD
Absorption correctionMulti-scan
(SADABS; Bruker, 2004)
Tmin, Tmax0.945, 0.965
No. of measured, independent and
observed [I > 2σ(I)] reflections
29246, 5053, 3766
Rint0.053
(sin θ/λ)max1)0.667
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.039, 0.104, 1.03
No. of reflections5053
No. of parameters293
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.32, 0.51

Computer programs: APEX2 (Bruker, 2004), SAINT (Bruker, 2004), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 (Farrugia, 1997).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1N···O3i0.90 (2)2.01 (2)2.9015 (17)170.2 (18)
Symmetry code: (i) x, y+1, z+1.
 

Acknowledgements

The authors acknowledge the Department of Chemistry, IIT Madras, for the X-ray data collection.

References

First citationBruker (2004). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationGowda, R. R., Chakraborty, D. & Ramkumar, V. (2011). Inorg. Chim. Acta, 372, 88-93.  Web of Science CSD CrossRef CAS Google Scholar
First citationGowda, R. R., Ramkumar, V. & Chakraborty, D. (2010a). Acta Cryst. E66, o1625.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationGowda, R. R., Ramkumar, V. & Chakraborty, D. (2010b). Acta Cryst. E66, o3049.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationMalik, P., Chakraborty, D. & Ramkumar, V. (2010). Polyhedron, 29, 2142–2148.  Web of Science CSD CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds