organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

2-Nitro-N′-[1-(pyridin-2-yl)ethyl­­idene]benzohydrazide

aInstitute of Marine Materials Science and Engineering, Shanghai Maritime University, Shanghai 201306, People's Republic of China
*Correspondence e-mail: yanan@shmtu.edu.cn

(Received 1 November 2011; accepted 8 November 2011; online 19 November 2011)

In the title compound, C14H12N4O3, the dihedral angle between the benzene ring and the pyridine ring is 60.9 (2)°. The major twist in the mol­ecule occurs about the (NH)—(CO)—Car—Car (ar = aromatic) bond, the relevant torsion angle being 63.97 (12)°. In the crystal, inversion dimers linked by pairs of N—H⋯O hydrogen bonds generate R22(8) loops.

Related literature

For related structures, see: Mangalam et al. (2009[Mangalam, N. A., Sivakumar, S., Sheeja, S. R., Kurup, M. R. P. & Tiekink, E. R. T. (2009). Inorg. Chim. Acta, 362, 4191-4197.]); Tang (2011[Tang, C.-B. (2011). Acta Cryst. E67, o271.]).

[Scheme 1]

Experimental

Crystal data
  • C14H12N4O3

  • Mr = 284.28

  • Monoclinic, P 21 /n

  • a = 10.8303 (8) Å

  • b = 8.9112 (7) Å

  • c = 14.9437 (11) Å

  • β = 101.483 (1)°

  • V = 1413.36 (18) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.10 mm−1

  • T = 298 K

  • 0.20 × 0.20 × 0.18 mm

Data collection
  • Bruker SMART 1K CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996[Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.]) Tmin = 0.981, Tmax = 0.983

  • 7984 measured reflections

  • 3048 independent reflections

  • 2358 reflections with I > 2σ(I)

  • Rint = 0.015

Refinement
  • R[F2 > 2σ(F2)] = 0.043

  • wR(F2) = 0.126

  • S = 1.05

  • 3048 reflections

  • 194 parameters

  • 1 restraint

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.23 e Å−3

  • Δρmin = −0.19 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N3—H3⋯O1i 0.90 (1) 2.13 (1) 3.0290 (15) 173 (2)
Symmetry code: (i) -x, -y+1, -z.

Data collection: SMART (Bruker, 2007[Bruker (2007). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2007[Bruker (2007). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

As a continuation of the work on the structures of hydrazone compounds the title compound, (I), is now described.

The molecular structure of the title compound is shown as Fig. 1. The dihedral angle between the benzene ring and the pyridine ring is 60.9 (2)°, indicating the molecule of the compound is much distorted. The bond distances comparable to the values observed in similar compounds (Tang, 2011; Mangalam et al., 2009).

In the crystal structure of the compound, adjacent two molecules are linked through two intermolecular N—H···O hydrogen bonds (Table 1) to form a dimer (Fig. 2).

Related literature top

For related structures, see: Mangalam et al. (2009); Tang (2011).

Experimental top

Equimolar quantities (0.5 mmol each) of 2-acetylpyridine and 2-nitrobenzohydrazide were mixed in 30 ml me thanol. The mixture was stirred at reflux for 30 min and cooled to room temperature. Yellow block-shaped single crytals were formed by slow evaporation of the solvent in air.

Refinement top

H3 atom was located in a difference Fourier map and was refined with distance restraint, N—H = 0.90 (1) Å. The remaining H atoms were positioned geometrically and refined using a riding model, with C—H = 0.93–0.96 Å, and with Uiso(H) = 1.2Ueq(C) and 1.5Ueq(C7).

Structure description top

As a continuation of the work on the structures of hydrazone compounds the title compound, (I), is now described.

The molecular structure of the title compound is shown as Fig. 1. The dihedral angle between the benzene ring and the pyridine ring is 60.9 (2)°, indicating the molecule of the compound is much distorted. The bond distances comparable to the values observed in similar compounds (Tang, 2011; Mangalam et al., 2009).

In the crystal structure of the compound, adjacent two molecules are linked through two intermolecular N—H···O hydrogen bonds (Table 1) to form a dimer (Fig. 2).

For related structures, see: Mangalam et al. (2009); Tang (2011).

Computing details top

Data collection: SMART (Bruker, 2007); cell refinement: SAINT (Bruker, 2007); data reduction: SAINT (Bruker, 2007); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound, with the displacement ellipsoids drawn at the 30% probability level.
[Figure 2] Fig. 2. The molecular packing of the title compound, viewed along the c axis. Intermolecular N—H···O hydrogen-bonds are shown as dashed lines. H-atoms not involved in the hydrogen bonding have been omitted.
2-Nitro-N'-[1-(pyridin-2-yl)ethylidene]benzohydrazide top
Crystal data top
C14H12N4O3F(000) = 592
Mr = 284.28Dx = 1.336 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ynCell parameters from 3300 reflections
a = 10.8303 (8) Åθ = 2.6–28.3°
b = 8.9112 (7) ŵ = 0.10 mm1
c = 14.9437 (11) ÅT = 298 K
β = 101.483 (1)°Block, yellow
V = 1413.36 (18) Å30.20 × 0.20 × 0.18 mm
Z = 4
Data collection top
Bruker SMART 1K CCD
diffractometer
3048 independent reflections
Radiation source: fine-focus sealed tube2358 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.015
ω scanθmax = 27.0°, θmin = 2.1°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 139
Tmin = 0.981, Tmax = 0.983k = 1111
7984 measured reflectionsl = 1819
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.043Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.126H atoms treated by a mixture of independent and constrained refinement
S = 1.05 w = 1/[σ2(Fo2) + (0.0611P)2 + 0.2704P]
where P = (Fo2 + 2Fc2)/3
3048 reflections(Δ/σ)max < 0.001
194 parametersΔρmax = 0.23 e Å3
1 restraintΔρmin = 0.19 e Å3
Crystal data top
C14H12N4O3V = 1413.36 (18) Å3
Mr = 284.28Z = 4
Monoclinic, P21/nMo Kα radiation
a = 10.8303 (8) ŵ = 0.10 mm1
b = 8.9112 (7) ÅT = 298 K
c = 14.9437 (11) Å0.20 × 0.20 × 0.18 mm
β = 101.483 (1)°
Data collection top
Bruker SMART 1K CCD
diffractometer
3048 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
2358 reflections with I > 2σ(I)
Tmin = 0.981, Tmax = 0.983Rint = 0.015
7984 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0431 restraint
wR(F2) = 0.126H atoms treated by a mixture of independent and constrained refinement
S = 1.05Δρmax = 0.23 e Å3
3048 reflectionsΔρmin = 0.19 e Å3
194 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
N10.12218 (13)1.12660 (15)0.19162 (9)0.0549 (3)
N20.13344 (11)0.83590 (12)0.03440 (8)0.0444 (3)
N30.09007 (12)0.69373 (13)0.00993 (8)0.0476 (3)
N40.39424 (14)0.72128 (18)0.02669 (11)0.0702 (4)
O10.09268 (11)0.50167 (12)0.08683 (8)0.0591 (3)
O20.47052 (19)0.8063 (2)0.07159 (12)0.1265 (8)
O30.36144 (14)0.60537 (16)0.05665 (10)0.0845 (4)
C10.14756 (12)1.05765 (15)0.11797 (9)0.0416 (3)
C20.21742 (15)1.12613 (17)0.06083 (11)0.0535 (4)
H20.23561.07470.01090.064*
C30.25946 (17)1.27091 (18)0.07897 (13)0.0629 (4)
H3A0.30461.31940.04070.075*
C40.23368 (17)1.34274 (18)0.15460 (12)0.0631 (5)
H40.26101.44040.16860.076*
C50.16671 (18)1.26654 (19)0.20863 (12)0.0641 (5)
H50.15101.31470.26040.077*
C60.09516 (13)0.90373 (15)0.09935 (9)0.0416 (3)
C70.00521 (17)0.8435 (2)0.15426 (12)0.0616 (4)
H7A0.06850.80580.11400.092*
H7B0.01850.92220.19140.092*
H7C0.04480.76370.19280.092*
C80.13068 (14)0.62602 (15)0.05927 (10)0.0452 (3)
C90.21832 (14)0.71408 (15)0.10665 (10)0.0460 (3)
C100.33825 (15)0.76293 (16)0.06705 (11)0.0519 (4)
C110.41041 (18)0.8496 (2)0.11371 (14)0.0666 (5)
H110.48960.88320.08480.080*
C120.3637 (2)0.8853 (2)0.20298 (15)0.0751 (6)
H120.41200.94200.23540.090*
C130.2465 (2)0.8381 (2)0.24480 (14)0.0759 (6)
H130.21520.86280.30550.091*
C140.17386 (18)0.7532 (2)0.19668 (11)0.0611 (4)
H140.09390.72210.22570.073*
H30.0368 (15)0.640 (2)0.0371 (13)0.080*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
N10.0659 (8)0.0473 (7)0.0524 (7)0.0064 (6)0.0134 (6)0.0128 (6)
N20.0521 (7)0.0348 (6)0.0491 (7)0.0093 (5)0.0172 (5)0.0071 (5)
N30.0570 (7)0.0385 (6)0.0534 (7)0.0140 (5)0.0257 (6)0.0098 (5)
N40.0666 (9)0.0687 (10)0.0739 (10)0.0229 (8)0.0109 (8)0.0082 (8)
O10.0779 (8)0.0422 (6)0.0646 (7)0.0196 (5)0.0320 (6)0.0173 (5)
O20.1304 (14)0.1325 (16)0.0997 (12)0.0800 (12)0.0180 (11)0.0141 (11)
O30.0905 (10)0.0725 (9)0.0852 (9)0.0211 (7)0.0049 (7)0.0280 (7)
C10.0429 (7)0.0365 (7)0.0433 (7)0.0008 (5)0.0038 (5)0.0034 (5)
C20.0646 (9)0.0412 (8)0.0570 (9)0.0072 (7)0.0176 (7)0.0042 (7)
C30.0719 (11)0.0439 (9)0.0733 (11)0.0115 (7)0.0154 (9)0.0046 (8)
C40.0726 (11)0.0378 (8)0.0733 (11)0.0093 (7)0.0007 (9)0.0071 (8)
C50.0777 (11)0.0503 (9)0.0618 (10)0.0057 (8)0.0077 (8)0.0203 (8)
C60.0445 (7)0.0398 (7)0.0410 (7)0.0042 (5)0.0094 (5)0.0038 (5)
C70.0698 (10)0.0616 (10)0.0604 (10)0.0224 (8)0.0298 (8)0.0164 (8)
C80.0539 (8)0.0367 (7)0.0481 (8)0.0081 (6)0.0179 (6)0.0062 (6)
C90.0601 (8)0.0325 (7)0.0516 (8)0.0031 (6)0.0258 (7)0.0049 (6)
C100.0611 (9)0.0394 (8)0.0607 (9)0.0077 (6)0.0255 (7)0.0005 (7)
C110.0694 (11)0.0533 (10)0.0869 (13)0.0105 (8)0.0394 (10)0.0058 (9)
C120.0996 (15)0.0567 (11)0.0852 (13)0.0009 (10)0.0576 (12)0.0125 (9)
C130.1131 (17)0.0669 (12)0.0576 (10)0.0116 (11)0.0404 (11)0.0133 (9)
C140.0751 (11)0.0581 (10)0.0540 (10)0.0025 (8)0.0225 (8)0.0023 (7)
Geometric parameters (Å, º) top
N1—C11.3360 (18)C4—H40.9300
N1—C51.343 (2)C5—H50.9300
N2—C61.2805 (17)C6—C71.493 (2)
N2—N31.3752 (15)C7—H7A0.9600
N3—C81.3446 (18)C7—H7B0.9600
N3—H30.903 (9)C7—H7C0.9600
N4—O31.2071 (19)C8—C91.5118 (19)
N4—O21.219 (2)C9—C141.380 (2)
N4—C101.459 (2)C9—C101.386 (2)
O1—C81.2245 (16)C10—C111.382 (2)
C1—C21.390 (2)C11—C121.367 (3)
C1—C61.4892 (19)C11—H110.9300
C2—C31.377 (2)C12—C131.365 (3)
C2—H20.9300C12—H120.9300
C3—C41.375 (3)C13—C141.391 (3)
C3—H3A0.9300C13—H130.9300
C4—C51.368 (3)C14—H140.9300
C1—N1—C5117.26 (14)C6—C7—H7B109.5
C6—N2—N3119.44 (11)H7A—C7—H7B109.5
C8—N3—N2118.11 (11)C6—C7—H7C109.5
C8—N3—H3116.5 (13)H7A—C7—H7C109.5
N2—N3—H3125.4 (13)H7B—C7—H7C109.5
O3—N4—O2123.02 (17)O1—C8—N3121.68 (13)
O3—N4—C10118.49 (14)O1—C8—C9120.83 (12)
O2—N4—C10118.48 (15)N3—C8—C9117.34 (11)
N1—C1—C2122.05 (13)C14—C9—C10116.89 (14)
N1—C1—C6116.38 (12)C14—C9—C8117.24 (14)
C2—C1—C6121.56 (12)C10—C9—C8125.84 (14)
C3—C2—C1119.31 (15)C11—C10—C9122.42 (16)
C3—C2—H2120.3C11—C10—N4117.24 (15)
C1—C2—H2120.3C9—C10—N4120.33 (13)
C4—C3—C2119.00 (16)C12—C11—C10119.04 (18)
C4—C3—H3A120.5C12—C11—H11120.5
C2—C3—H3A120.5C10—C11—H11120.5
C5—C4—C3118.18 (15)C13—C12—C11120.35 (17)
C5—C4—H4120.9C13—C12—H12119.8
C3—C4—H4120.9C11—C12—H12119.8
N1—C5—C4124.17 (16)C12—C13—C14120.08 (18)
N1—C5—H5117.9C12—C13—H13120.0
C4—C5—H5117.9C14—C13—H13120.0
N2—C6—C1114.05 (12)C9—C14—C13121.19 (18)
N2—C6—C7126.30 (12)C9—C14—H14119.4
C1—C6—C7119.65 (12)C13—C14—H14119.4
C6—C7—H7A109.5
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N3—H3···O1i0.90 (1)2.13 (1)3.0290 (15)173 (2)
Symmetry code: (i) x, y+1, z.

Experimental details

Crystal data
Chemical formulaC14H12N4O3
Mr284.28
Crystal system, space groupMonoclinic, P21/n
Temperature (K)298
a, b, c (Å)10.8303 (8), 8.9112 (7), 14.9437 (11)
β (°) 101.483 (1)
V3)1413.36 (18)
Z4
Radiation typeMo Kα
µ (mm1)0.10
Crystal size (mm)0.20 × 0.20 × 0.18
Data collection
DiffractometerBruker SMART 1K CCD
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.981, 0.983
No. of measured, independent and
observed [I > 2σ(I)] reflections
7984, 3048, 2358
Rint0.015
(sin θ/λ)max1)0.639
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.043, 0.126, 1.05
No. of reflections3048
No. of parameters194
No. of restraints1
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.23, 0.19

Computer programs: SMART (Bruker, 2007), SAINT (Bruker, 2007), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N3—H3···O1i0.903 (9)2.131 (10)3.0290 (15)173.1 (19)
Symmetry code: (i) x, y+1, z.
 

Acknowledgements

The authors thank the National Natural Science Foundation of China (21141007), the Shanghai Natural Science Foundation (11ZR1414800), the `Chen Guang' project supported by the Shanghai Municipal Education Commission and the Shanghai Education Development Foundation (09 C G52), the Project of the Shanghai Municipal Education Commission (09YZ245, 10YZ111) and Shanghai Maritime University (20110017, 20110013) for financial support.

References

First citationBruker (2007). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationMangalam, N. A., Sivakumar, S., Sheeja, S. R., Kurup, M. R. P. & Tiekink, E. R. T. (2009). Inorg. Chim. Acta, 362, 4191–4197.  Web of Science CSD CrossRef CAS Google Scholar
First citationSheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationTang, C.-B. (2011). Acta Cryst. E67, o271.  Web of Science CSD CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds