organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

2-(3,4-Dimeth­­oxy­phen­yl)-1H-benzimidazole

aDepartment of Chemistry, Faculty of Science, Golestan University, Gorgan, Iran, bDepartment of Chemistry, Islamic Azad University, Qaemshahr, Iran, and cInstitute of Physics of the ASCR, v.v.i, Na Slovance 2, 182 21 Praha 8, Czech Republic
*Correspondence e-mail: fejfarov@fzu.cz

(Received 1 November 2011; accepted 7 November 2011; online 9 November 2011)

In title compound, C15H14N2O2, the dihedral angle between the 3,4-dimeth­oxy­phenyl group and the benzimidazole system is 26.47 (6)°. In the crystal, neighbouring mol­ecules are linked by N—H⋯N hydrogen bonds into C(4) chains propagating along the c-axis direction. The crystal structure also features weak C—H⋯O inter­actions.

Related literature

For a related structure, further synthetic details and background references to imidazolines, see: Khalaji et al. (2008[Khalaji, A. D., Jian, F., Xiao, H. & Harrison, W. T. A. (2008). Acta Cryst. E64, o1093.]). For related structures, see: Kia et al. (2008[Kia, R., Fun, H.-K. & Kargar, H. (2008). Acta Cryst. E64, o2406.], 2009[Kia, R., Fun, H.-K. & Kargar, H. (2009). Acta Cryst. E65, o338-o339.]); Rashid et al. (2007[Rashid, N., Tahir, M. K., Kanwal, S., Yusof, N. M. & Yamin, B. M. (2007). Acta Cryst. E63, o1402-o1403.]).

[Scheme 1]

Experimental

Crystal data
  • C15H14N2O2

  • Mr = 254.3

  • Orthorhombic, P c a 21

  • a = 9.2274 (8) Å

  • b = 15.0109 (9) Å

  • c = 9.2681 (3) Å

  • V = 1283.74 (14) Å3

  • Z = 4

  • Cu Kα radiation

  • μ = 0.72 mm−1

  • T = 120 K

  • 0.40 × 0.21 × 0.09 mm

Data collection
  • Agilent Xcalibur diffractometer with an Atlas (Gemini ultra Cu) detector

  • Absorption correction: multi-scan (CrysAlis PRO; Agilent, 2010[Agilent (2010). CrysAlis PRO. Agilent Technologies, Yarnton, England.]) Tmin = 0.75, Tmax = 1

  • 12506 measured reflections

  • 1982 independent reflections

  • 1919 reflections with I > 3σ(I)

  • Rint = 0.024

Refinement
  • R[F2 > 3σ(F2)] = 0.026

  • wR(F2) = 0.072

  • S = 1.46

  • 1982 reflections

  • 174 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.08 e Å−3

  • Δρmin = −0.11 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C14—H14c⋯O2i 0.96 2.49 3.224 (2) 133
C15—H15b⋯O1ii 0.96 2.50 3.372 (2) 151
N1—H1⋯N2iii 0.903 (19) 2.01 (2) 2.887 (2) 164.6 (16)
Symmetry codes: (i) [x+{\script{1\over 2}}, -y+2, z]; (ii) [-x+{\script{1\over 2}}, y, z-{\script{1\over 2}}]; (iii) [-x+{\script{3\over 2}}, y, z-{\script{1\over 2}}].

Data collection: CrysAlis PRO (Agilent, 2010[Agilent (2010). CrysAlis PRO. Agilent Technologies, Yarnton, England.]); cell refinement: CrysAlis PRO; data reduction: CrysAlis PRO; program(s) used to solve structure: SIR2002 (Burla et al., 2003[Burla, M. C., Camalli, M., Carrozzini, B., Cascarano, G. L., Giacovazzo, C., Polidori, G. & Spagna, R. (2003). J. Appl. Cryst. 36, 1103.]); program(s) used to refine structure: JANA2006 (Petříček et al., 2006[Petříček, V., Dušek, M. & Palatinus, L. (2006). JANA2006. Institute of Physics, Praha, Czech Republic.]); molecular graphics: DIAMOND (Brandenburg & Putz, 2005[Brandenburg, K. & Putz, H. (2005). DIAMOND. Crystal Impact GbR, Bonn, Germany.]); software used to prepare material for publication: JANA2006.

Supporting information


Comment top

As part of our ongoing studies of imidazoline derivatives (Khalaji et al., 2008), we now report the synthesis and structure of the title compound, (I).

The dihedral angle between the N1/N2/C1—C7 and C8—C13 aromatic ring planes in (I) is 26.47 (6)°, which is comparable with related structures (Khalaji et al., 2008; Kia et al., 2008, 2009; Rashid et al., 2007). Atoms C14 and C15 in (I) are displaced from the mean plane of the C8—C13 ring by 0.1134 (17) Å and 0.1756 (18) Å, respectively.

In the crystal of (I), an N—H···N hydrogen bond links the molecules into chains propagating in [001] direction (Fig. 2). There are no aromatic π-π stacking interactions in (I) as the closest centroid-centroid separation of aromatic rings is 4.419 (1) Å, which contrasts with the situation in 2-(4-fluorophenyl)-1H-benzimidazole (Rashid et al., 2007) in which both N—H···N and π-π stacking help to establish the packing. The crystal structure of (I) is further stabilized by weak C—H···O interactions.

Related literature top

For a related structure, further synthetic details and background references to imidazolines, see: Khalaji et al. (2008). For related structures, see: Kia et al. (2008, 2009); Rashid et al. (2007).

Experimental top

The synthetic method used for the preparation of (I) was based on previous work (Khalaji et al., 2008), except that 3,4-dimethoxybenzaldehyde (2 mmol) was used. Light yellow slabs of (I) were obtained by evaporation of a methanol solution of (I) held at room temperature. Anal. Calc. for C15H14N2O2 (MW: 254.30): C, 70.85; H, 5.55; N, 11.01%. Found: C, 70.92; H, 5.65; N, 11.08%. Yield: 73%. IR (KBr pellet, cm-1): 2941, 2977, 3006 (CH aliphatic and aromatic), 3054 (s, –C—HN–), 1624 (s, C=N), 1504, 1588, 1606 (C—C aromatic). 1H-NMR (500 MHz, CDCl3, δ(p.p.m.)): 3.82 (s, 3H), 3.87 (s, 3H), 7.11 (d, 1H), 7.17 (dd, 2H), 7.57 (s, 2H), 7.57–7.79 (m, 2H), 12.78 (s, 1H).

Refinement top

All hydrogen atoms were discernible in difference Fourier maps and could be refined to reasonable geometry. According to common practice they were nevertheless kept in ideal positions with C–H distance 0.96 Å during the refinement. The isotropic atomic displacement parameters of hydrogen atoms were evaluated as 1.5×Ueq(C) for methyl groups and 1.2×Ueq(C, N) for all other hydrogen atoms.

Structure description top

As part of our ongoing studies of imidazoline derivatives (Khalaji et al., 2008), we now report the synthesis and structure of the title compound, (I).

The dihedral angle between the N1/N2/C1—C7 and C8—C13 aromatic ring planes in (I) is 26.47 (6)°, which is comparable with related structures (Khalaji et al., 2008; Kia et al., 2008, 2009; Rashid et al., 2007). Atoms C14 and C15 in (I) are displaced from the mean plane of the C8—C13 ring by 0.1134 (17) Å and 0.1756 (18) Å, respectively.

In the crystal of (I), an N—H···N hydrogen bond links the molecules into chains propagating in [001] direction (Fig. 2). There are no aromatic π-π stacking interactions in (I) as the closest centroid-centroid separation of aromatic rings is 4.419 (1) Å, which contrasts with the situation in 2-(4-fluorophenyl)-1H-benzimidazole (Rashid et al., 2007) in which both N—H···N and π-π stacking help to establish the packing. The crystal structure of (I) is further stabilized by weak C—H···O interactions.

For a related structure, further synthetic details and background references to imidazolines, see: Khalaji et al. (2008). For related structures, see: Kia et al. (2008, 2009); Rashid et al. (2007).

Computing details top

Data collection: CrysAlis PRO (Agilent, 2010); cell refinement: CrysAlis PRO (Agilent, 2010); data reduction: CrysAlis PRO (Agilent, 2010); program(s) used to solve structure: SIR2002 (Burla et al., 2003); program(s) used to refine structure: JANA2006 (Petříček et al., 2006); molecular graphics: DIAMOND (Brandenburg & Putz, 2005); software used to prepare material for publication: JANA2006 (Petříček et al., 2006).

Figures top
[Figure 1] Fig. 1. The structure of the title compound. Displacement ellipsoids are drawn at the 50% probability level.
[Figure 2] Fig. 2. The crystal packing of the title compound, viewed along the a axis. Hydrogen bonds are drawn as dashed lines. Hydrogen atoms not participating in hydrogen bonds were omitted for clarity.
2-(3,4-Dimethoxyphenyl)-1H-benzimidazole top
Crystal data top
C15H14N2O2F(000) = 536
Mr = 254.3Dx = 1.315 Mg m3
Orthorhombic, Pca21Cu Kα radiation, λ = 1.5418 Å
Hall symbol: P 2c -2acCell parameters from 8286 reflections
a = 9.2274 (8) Åθ = 2.9–67°
b = 15.0109 (9) ŵ = 0.72 mm1
c = 9.2681 (3) ÅT = 120 K
V = 1283.74 (14) Å3Slab, light yellow
Z = 40.40 × 0.21 × 0.09 mm
Data collection top
Agilent Xcalibur
diffractometer with an Atlas (Gemini ultra Cu) detector
1982 independent reflections
Radiation source: Enhance Ultra (Cu) X-ray Source1919 reflections with I > 3σ(I)
Mirror monochromatorRint = 0.024
Detector resolution: 10.3784 pixels mm-1θmax = 67.1°, θmin = 2.9°
Rotation method data acquisition using ω scansh = 1111
Absorption correction: multi-scan
(CrysAlis PRO; Agilent, 2010)
k = 1717
Tmin = 0.75, Tmax = 1l = 911
12506 measured reflections
Refinement top
Refinement on F254 constraints
R[F > 3σ(F)] = 0.026H atoms treated by a mixture of independent and constrained refinement
wR(F) = 0.072Weighting scheme based on measured s.u.'s w = 1/[σ2(I) + 0.0016I2]
S = 1.46(Δ/σ)max = 0.047
1982 reflectionsΔρmax = 0.08 e Å3
174 parametersΔρmin = 0.11 e Å3
0 restraints
Crystal data top
C15H14N2O2V = 1283.74 (14) Å3
Mr = 254.3Z = 4
Orthorhombic, Pca21Cu Kα radiation
a = 9.2274 (8) ŵ = 0.72 mm1
b = 15.0109 (9) ÅT = 120 K
c = 9.2681 (3) Å0.40 × 0.21 × 0.09 mm
Data collection top
Agilent Xcalibur
diffractometer with an Atlas (Gemini ultra Cu) detector
1982 independent reflections
Absorption correction: multi-scan
(CrysAlis PRO; Agilent, 2010)
1919 reflections with I > 3σ(I)
Tmin = 0.75, Tmax = 1Rint = 0.024
12506 measured reflections
Refinement top
R[F > 3σ(F)] = 0.0260 restraints
wR(F) = 0.072H atoms treated by a mixture of independent and constrained refinement
S = 1.46Δρmax = 0.08 e Å3
1982 reflectionsΔρmin = 0.11 e Å3
174 parameters
Special details top

Experimental. CrysAlisPro, Agilent Technologies (2010), Empirical absorption correction using spherical harmonics, implemented in SCALE3 ABSPACK scaling algorithm.

Refinement. The refinement was carried out against all reflections. The conventional R-factor is always based on F. The goodness of fit as well as the weighted R-factor are based on F and F2 for refinement carried out on F and F2, respectively. The threshold expression is used only for calculating R-factors etc. and it is not relevant to the choice of reflections for refinement.

The program used for refinement, Jana2006, uses the weighting scheme based on the experimental expectations, see _refine_ls_weighting_details, that does not force S to be one. Therefore the values of S are usually larger than the ones from the SHELX program.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.50788 (10)0.93193 (6)0.50931 (11)0.0289 (3)
O20.26137 (11)0.89618 (7)0.39223 (16)0.0325 (3)
N10.77384 (12)0.66702 (8)0.08732 (18)0.0233 (3)
N20.86211 (11)0.69056 (8)0.30939 (17)0.0238 (3)
C10.75266 (14)0.70471 (9)0.21870 (18)0.0226 (4)
C20.90804 (14)0.62618 (9)0.09065 (19)0.0228 (4)
C30.98463 (15)0.57777 (9)0.01205 (19)0.0264 (4)
C41.11744 (15)0.54402 (10)0.0297 (2)0.0281 (4)
C51.17424 (16)0.55964 (9)0.1677 (2)0.0285 (4)
C61.09725 (15)0.60805 (9)0.2701 (2)0.0268 (4)
C70.96186 (14)0.64097 (9)0.2299 (2)0.0228 (4)
C80.62258 (13)0.75563 (9)0.25552 (18)0.0238 (4)
C90.63170 (14)0.82035 (9)0.36407 (19)0.0238 (4)
C100.51002 (15)0.86699 (9)0.4062 (2)0.0244 (4)
C110.37543 (14)0.84855 (10)0.34023 (19)0.0261 (4)
C120.36736 (14)0.78589 (11)0.2312 (2)0.0293 (4)
C130.49052 (15)0.73941 (10)0.1886 (2)0.0277 (4)
C140.63841 (15)0.94452 (11)0.5909 (2)0.0311 (4)
C150.12101 (16)0.87431 (12)0.3367 (2)0.0413 (5)
H30.9470180.5682530.1073860.0316*
H41.1722830.5089550.0375580.0337*
H51.2680950.536470.1919410.0342*
H61.1358360.6183970.3648210.0322*
H90.7231980.8323160.4093970.0286*
H120.2763060.7744170.1846480.0352*
H130.484240.6960240.1127220.0333*
H14a0.622630.9891680.6633530.0467*
H14b0.6651290.8894410.6363060.0467*
H14c0.7148230.9633710.5275590.0467*
H15a0.0493590.911360.3818530.062*
H15b0.1195320.8839950.2343220.062*
H15c0.100020.8128940.3566830.062*
H10.7167 (18)0.6702 (11)0.008 (2)0.028*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0310 (5)0.0286 (5)0.0270 (6)0.0021 (4)0.0007 (4)0.0067 (4)
O20.0253 (5)0.0362 (6)0.0359 (6)0.0074 (4)0.0002 (4)0.0064 (5)
N10.0238 (5)0.0285 (6)0.0176 (6)0.0003 (4)0.0005 (5)0.0009 (5)
N20.0239 (5)0.0289 (6)0.0186 (6)0.0017 (4)0.0007 (4)0.0010 (5)
C10.0249 (6)0.0252 (6)0.0178 (6)0.0029 (5)0.0022 (5)0.0003 (5)
C20.0240 (6)0.0233 (6)0.0209 (7)0.0025 (5)0.0012 (6)0.0026 (5)
C30.0316 (7)0.0282 (7)0.0193 (7)0.0032 (6)0.0030 (5)0.0011 (5)
C40.0299 (7)0.0274 (7)0.0268 (7)0.0015 (5)0.0081 (6)0.0009 (6)
C50.0260 (7)0.0315 (7)0.0281 (7)0.0037 (6)0.0017 (6)0.0022 (6)
C60.0262 (6)0.0319 (7)0.0224 (8)0.0003 (5)0.0016 (5)0.0005 (6)
C70.0241 (6)0.0250 (7)0.0193 (7)0.0016 (5)0.0035 (6)0.0004 (5)
C80.0255 (7)0.0255 (7)0.0205 (7)0.0008 (5)0.0008 (5)0.0014 (5)
C90.0247 (6)0.0264 (7)0.0204 (7)0.0004 (5)0.0001 (5)0.0020 (6)
C100.0304 (7)0.0236 (7)0.0193 (7)0.0002 (5)0.0023 (5)0.0015 (6)
C110.0265 (7)0.0280 (7)0.0238 (7)0.0028 (5)0.0033 (5)0.0019 (6)
C120.0259 (7)0.0362 (8)0.0258 (8)0.0018 (5)0.0037 (6)0.0014 (6)
C130.0303 (7)0.0314 (7)0.0215 (7)0.0001 (6)0.0013 (5)0.0030 (6)
C140.0336 (7)0.0308 (8)0.0291 (8)0.0019 (5)0.0021 (6)0.0070 (6)
C150.0282 (8)0.0531 (10)0.0428 (11)0.0092 (7)0.0067 (7)0.0144 (8)
Geometric parameters (Å, º) top
O1—C101.3651 (18)C6—C71.3942 (19)
O1—C141.4345 (18)C6—H60.96
O2—C111.3606 (18)C8—C91.401 (2)
O2—C151.4319 (19)C8—C131.389 (2)
N1—C11.357 (2)C9—C101.380 (2)
N1—C21.3820 (17)C9—H90.96
N1—H10.903 (19)C10—C111.412 (2)
N2—C11.331 (2)C11—C121.383 (2)
N2—C71.3943 (19)C12—C131.391 (2)
C1—C81.4633 (19)C12—H120.96
C2—C31.391 (2)C13—H130.96
C2—C71.401 (2)C14—H14a0.96
C3—C41.381 (2)C14—H14b0.96
C3—H30.96C14—H14c0.96
C4—C51.402 (3)C15—H15a0.96
C4—H40.96C15—H15b0.96
C5—C61.391 (2)C15—H15c0.96
C5—H50.96
C10—O1—C14116.79 (11)C9—C8—C13119.67 (12)
C11—O2—C15116.86 (13)C8—C9—C10120.42 (13)
C1—N1—C2107.09 (13)C8—C9—H9119.7897
C1—N1—H1128.4 (11)C10—C9—H9119.7883
C2—N1—H1124.4 (11)O1—C10—C9124.92 (13)
C1—N2—C7104.62 (14)O1—C10—C11115.50 (12)
N1—C1—N2113.01 (12)C9—C10—C11119.59 (15)
N1—C1—C8123.04 (13)O2—C11—C10115.09 (14)
N2—C1—C8123.95 (15)O2—C11—C12125.08 (13)
N1—C2—C3132.21 (16)C10—C11—C12119.83 (13)
N1—C2—C7105.55 (13)C11—C12—C13120.32 (13)
C3—C2—C7122.23 (13)C11—C12—H12119.839
C2—C3—C4116.80 (16)C13—C12—H12119.8382
C2—C3—H3121.5999C8—C13—C12120.14 (15)
C4—C3—H3121.5996C8—C13—H13119.9308
C3—C4—C5121.72 (15)C12—C13—H13119.9316
C3—C4—H4119.1383O1—C14—H14a109.4704
C5—C4—H4119.138O1—C14—H14b109.4712
C4—C5—C6121.28 (14)O1—C14—H14c109.4714
C4—C5—H5119.362H14a—C14—H14b109.4712
C6—C5—H5119.3623H14a—C14—H14c109.471
C5—C6—C7117.42 (16)H14b—C14—H14c109.4722
C5—C6—H6121.2877O2—C15—H15a109.4714
C7—C6—H6121.2879O2—C15—H15b109.4715
N2—C7—C2109.72 (12)O2—C15—H15c109.4712
N2—C7—C6129.76 (16)H15a—C15—H15b109.4715
C2—C7—C6120.52 (14)H15a—C15—H15c109.4712
C1—C8—C9118.71 (12)H15b—C15—H15c109.4705
C1—C8—C13121.59 (14)
C9—C10—O1—C147.8 (2)N1—C1—C8—C9154.38 (14)
C10—C11—O2—C15174.97 (15)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C14—H14c···O2i0.962.493.224 (2)133
C15—H15b···O1ii0.962.503.372 (2)151
N1—H1···N2iii0.903 (19)2.01 (2)2.887 (2)164.6 (16)
Symmetry codes: (i) x+1/2, y+2, z; (ii) x+1/2, y, z1/2; (iii) x+3/2, y, z1/2.

Experimental details

Crystal data
Chemical formulaC15H14N2O2
Mr254.3
Crystal system, space groupOrthorhombic, Pca21
Temperature (K)120
a, b, c (Å)9.2274 (8), 15.0109 (9), 9.2681 (3)
V3)1283.74 (14)
Z4
Radiation typeCu Kα
µ (mm1)0.72
Crystal size (mm)0.40 × 0.21 × 0.09
Data collection
DiffractometerAgilent Xcalibur
diffractometer with an Atlas (Gemini ultra Cu) detector
Absorption correctionMulti-scan
(CrysAlis PRO; Agilent, 2010)
Tmin, Tmax0.75, 1
No. of measured, independent and
observed [I > 3σ(I)] reflections
12506, 1982, 1919
Rint0.024
(sin θ/λ)max1)0.598
Refinement
R[F > 3σ(F)], wR(F), S 0.026, 0.072, 1.46
No. of reflections1982
No. of parameters174
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.08, 0.11

Computer programs: CrysAlis PRO (Agilent, 2010), SIR2002 (Burla et al., 2003), JANA2006 (Petříček et al., 2006), DIAMOND (Brandenburg & Putz, 2005).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C14—H14c···O2i0.962.493.224 (2)133
C15—H15b···O1ii0.962.503.372 (2)151
N1—H1···N2iii0.903 (19)2.01 (2)2.887 (2)164.6 (16)
Symmetry codes: (i) x+1/2, y+2, z; (ii) x+1/2, y, z1/2; (iii) x+3/2, y, z1/2.
 

Acknowledgements

We acknowledge Golestan University and the Islamic Azad University, Qaemshahr, for partial support of this work, the Institutional Research Plan No. AVOZ10100521 of the Institute of Physics and the Praemium Academiae Project of the Academy of Sciences of the Czech Republic.

References

First citationAgilent (2010). CrysAlis PRO. Agilent Technologies, Yarnton, England.  Google Scholar
First citationBrandenburg, K. & Putz, H. (2005). DIAMOND. Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationBurla, M. C., Camalli, M., Carrozzini, B., Cascarano, G. L., Giacovazzo, C., Polidori, G. & Spagna, R. (2003). J. Appl. Cryst. 36, 1103.  CrossRef IUCr Journals Google Scholar
First citationKhalaji, A. D., Jian, F., Xiao, H. & Harrison, W. T. A. (2008). Acta Cryst. E64, o1093.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationKia, R., Fun, H.-K. & Kargar, H. (2008). Acta Cryst. E64, o2406.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationKia, R., Fun, H.-K. & Kargar, H. (2009). Acta Cryst. E65, o338–o339.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationPetříček, V., Dušek, M. & Palatinus, L. (2006). JANA2006. Institute of Physics, Praha, Czech Republic.  Google Scholar
First citationRashid, N., Tahir, M. K., Kanwal, S., Yusof, N. M. & Yamin, B. M. (2007). Acta Cryst. E63, o1402–o1403.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds