organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

5-(4,4′′-Di­fluoro-5′-hy­dr­oxy-1,1′:3′,1′′-terphenyl-4′-yl)-3-(morpholin-4-ylmeth­yl)-1,3,4-oxa­diazole-2(3H)-thione

aX-ray Crystallography Unit, School of Physics, Universiti Sains Malaysia, 11800 USM, Penang, Malaysia, bDepartment of Studies in Chemistry, Mangalore University, Mangalagangotri 574 199, India, and cDepartment of Chemistry, P. A. College of Engineering, Nadupadavu, Mangalore 574 153, India
*Correspondence e-mail: hkfun@usm.my

(Received 11 November 2011; accepted 15 November 2011; online 19 November 2011)

In the title compound, C25H21F2N3O3S, the morpholine ring adopts a chair conformation. The 1,3,4-oxadiazole-2(3H)-thione group makes dihedral angles of 78.69 (8), 53.56 (7) and 55.30 (9)° with the benzene rings. In the crystal, O—H⋯O, C—H⋯S and C—H⋯F hydrogen bonds linked the mol­ecules into layers lying parallel to the ab plane. Weak C—H⋯π inter­actions also occur.

Related literature

For pharmacological background, see: Bhatia & Gupta (2011[Bhatia, S. & Gupta, M. (2011). J. Chem. Pharm. Res. 3, 137-147.]); Liu (2006[Liu, J. K. (2006). Chem. Rev., 106, 2209-2223.]). For ring conformations, see: Cremer & Pople (1975[Cremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354-1358.]). For bond-length data, see: Allen et al. (1987[Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1-19.]).

[Scheme 1]

Experimental

Crystal data
  • C25H21F2N3O3S

  • Mr = 481.51

  • Monoclinic, C 2/c

  • a = 16.0547 (14) Å

  • b = 11.4125 (11) Å

  • c = 25.364 (2) Å

  • β = 94.202 (2)°

  • V = 4634.9 (7) Å3

  • Z = 8

  • Mo Kα radiation

  • μ = 0.19 mm−1

  • T = 296 K

  • 0.48 × 0.25 × 0.17 mm

Data collection
  • Bruker SMART APEXII DUO CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2009[Bruker (2009). SADABS, APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.916, Tmax = 0.969

  • 23057 measured reflections

  • 6182 independent reflections

  • 4139 reflections with I > 2σ(I)

  • Rint = 0.029

Refinement
  • R[F2 > 2σ(F2)] = 0.044

  • wR(F2) = 0.143

  • S = 1.03

  • 6182 reflections

  • 311 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.24 e Å−3

  • Δρmin = −0.24 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

Cg1 is the centroid of the C7–C12 ring.

D—H⋯A D—H H⋯A DA D—H⋯A
O3—H1O3⋯O2i 0.79 (2) 1.95 (2) 2.728 (2) 167 (2)
C5—H5A⋯S1ii 0.93 2.80 3.639 (2) 151
C12—H12A⋯F1iii 0.93 2.47 3.292 (2) 148
C23—H23A⋯F1iv 0.97 2.51 3.462 (3) 167
C1—H1ACg1v 0.93 2.91 3.414 (2) 115
Symmetry codes: (i) x, y-1, z; (ii) [x+{\script{1\over 2}}, y-{\script{1\over 2}}, z]; (iii) [-x+{\script{3\over 2}}, y+{\script{1\over 2}}, -z+{\script{1\over 2}}]; (iv) [-x+1, y+1, -z+{\script{1\over 2}}]; (v) [-x+1, y, -z+{\script{1\over 2}}].

Data collection: APEX2 (Bruker, 2009[Bruker (2009). SADABS, APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2009[Bruker (2009). SADABS, APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Supporting information


Comment top

Substituted 1,3,4-oxadiazoles are of considerable pharmaceutical interest. For a recent review, see: Bhatia & Gupta (2011). Polysubstituted aromatics such as terphenyls exhibit considerable biological properties, e.g., potent anticoagulant, immunosuppressants, antithrombotic, neuroprotective, specific 5-lipoxygenase inhibitory and cytotoxic activities (Liu, 2006). Encouraged by these diverse biological activities of 1,3,4-oxadiazoles and terphenyls, our research group has decided to prepare terphenyl derivative bearing the oxadiazole moiety, thus bringing both types of functional groups together in a single molecule: we now report the synthesis and structure of the title compound, (I). The precursor of the title compound was prepared from 4,4'-difluorochalcone by several steps.

The molecular structure is shown in Fig. 1. The morpholine ring adopts a chair conformation with puckering parameters Q= 0.579 (2) Å, Θ= 2.9 (2)° and φ= 247 (5)° (Cremer & Pople, 1975). The 1,3,4-oxadiazole-2(3H)-thione (S1/C20/O1/C19/N1/N2) group makes dihedral angles of 78.69 (8), 53.56 (7) and 55.30 (9) ° with the benzene (C1–C6, C7–C12 & C13–C18) rings, respectively. Bond lengths (Allen et al., 1987) and angles are within normal ranges.

The crystal packing is shown in Fig. 2. Intermolecular O3—H1O3···O2, C5—H5A···S1, C12—H12A···F1 and C23—H23A···F1 hydrogen bonds (Table 1) linked the molecules into layers parallel to ab plane. C—H···π interactions (Table 1) which involves C1 and phenyl ring (Cg1 = C7–C12) further stabilize the crystal structure.

Related literature top

For pharmacological background, see: Bhatia & Gupta (2011); Liu (2006). For ring conformations, see: Cremer & Pople (1975). For bond-length data, see: Allen et al. (1987).

Experimental top

To a solution of 5-(4,4''-difluoro-5'-hydroxy-1,1':3',1''-terphenyl-4'-yl) -1,3,4-oxadiazole-2(3H)-thione (3.82 g, 0.01 mol) in ethanol (5 ml) was added formaldehyde (0.5 ml, 37%) and morpholine (0.01 mol). The reaction mixture was stirred overnight. After cooling, the precipitate was filtered and crystallized from ethanol. Colourless blocks of (I) were grown from 1:1 mixture of ethanol and DMF by slow evaporation and the yield was 72%. M.p.: 475 K.

Refinement top

H1O3 atom attached to the O atom was located from the difference map and refined freely, [O–H = 0.78 (3) Å]. The remaining H atoms were positioned geometrically [C–H = 0.93 or 0.97 Å] and refined using a riding model with Uiso(H) = 1.2 Ueq(C).

Structure description top

Substituted 1,3,4-oxadiazoles are of considerable pharmaceutical interest. For a recent review, see: Bhatia & Gupta (2011). Polysubstituted aromatics such as terphenyls exhibit considerable biological properties, e.g., potent anticoagulant, immunosuppressants, antithrombotic, neuroprotective, specific 5-lipoxygenase inhibitory and cytotoxic activities (Liu, 2006). Encouraged by these diverse biological activities of 1,3,4-oxadiazoles and terphenyls, our research group has decided to prepare terphenyl derivative bearing the oxadiazole moiety, thus bringing both types of functional groups together in a single molecule: we now report the synthesis and structure of the title compound, (I). The precursor of the title compound was prepared from 4,4'-difluorochalcone by several steps.

The molecular structure is shown in Fig. 1. The morpholine ring adopts a chair conformation with puckering parameters Q= 0.579 (2) Å, Θ= 2.9 (2)° and φ= 247 (5)° (Cremer & Pople, 1975). The 1,3,4-oxadiazole-2(3H)-thione (S1/C20/O1/C19/N1/N2) group makes dihedral angles of 78.69 (8), 53.56 (7) and 55.30 (9) ° with the benzene (C1–C6, C7–C12 & C13–C18) rings, respectively. Bond lengths (Allen et al., 1987) and angles are within normal ranges.

The crystal packing is shown in Fig. 2. Intermolecular O3—H1O3···O2, C5—H5A···S1, C12—H12A···F1 and C23—H23A···F1 hydrogen bonds (Table 1) linked the molecules into layers parallel to ab plane. C—H···π interactions (Table 1) which involves C1 and phenyl ring (Cg1 = C7–C12) further stabilize the crystal structure.

For pharmacological background, see: Bhatia & Gupta (2011); Liu (2006). For ring conformations, see: Cremer & Pople (1975). For bond-length data, see: Allen et al. (1987).

Computing details top

Data collection: APEX2 (Bruker, 2009); cell refinement: SAINT (Bruker, 2009); data reduction: SAINT (Bruker, 2009); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound with 30% probability displacement ellipsoids.
[Figure 2] Fig. 2. The crystal packing of the title compound. Dashed lines represent the hydrogen bonds. Hydrogen atoms not involved in hydrogen bonding have been omitted for the sake of clarity.
5-(4,4''-Difluoro-5'-hydroxy-1,1':3',1''-terphenyl-4'-yl)-3-(morpholin-4- ylmethyl)-1,3,4-oxadiazole-2(3H)-thione top
Crystal data top
C25H21F2N3O3SF(000) = 2000
Mr = 481.51Dx = 1.380 Mg m3
Monoclinic, C2/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -C 2ycCell parameters from 6002 reflections
a = 16.0547 (14) Åθ = 2.3–27.3°
b = 11.4125 (11) ŵ = 0.19 mm1
c = 25.364 (2) ÅT = 296 K
β = 94.202 (2)°Block, colourless
V = 4634.9 (7) Å30.48 × 0.25 × 0.17 mm
Z = 8
Data collection top
Bruker SMART APEXII DUO CCD area-detector
diffractometer
6182 independent reflections
Radiation source: fine-focus sealed tube4139 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.029
φ and ω scansθmax = 29.1°, θmin = 1.6°
Absorption correction: multi-scan
(SADABS; Bruker, 2009)
h = 2021
Tmin = 0.916, Tmax = 0.969k = 1514
23057 measured reflectionsl = 3434
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.044Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.143H atoms treated by a mixture of independent and constrained refinement
S = 1.03 w = 1/[σ2(Fo2) + (0.0688P)2 + 1.531P]
where P = (Fo2 + 2Fc2)/3
6182 reflections(Δ/σ)max < 0.001
311 parametersΔρmax = 0.24 e Å3
0 restraintsΔρmin = 0.24 e Å3
Crystal data top
C25H21F2N3O3SV = 4634.9 (7) Å3
Mr = 481.51Z = 8
Monoclinic, C2/cMo Kα radiation
a = 16.0547 (14) ŵ = 0.19 mm1
b = 11.4125 (11) ÅT = 296 K
c = 25.364 (2) Å0.48 × 0.25 × 0.17 mm
β = 94.202 (2)°
Data collection top
Bruker SMART APEXII DUO CCD area-detector
diffractometer
6182 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2009)
4139 reflections with I > 2σ(I)
Tmin = 0.916, Tmax = 0.969Rint = 0.029
23057 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0440 restraints
wR(F2) = 0.143H atoms treated by a mixture of independent and constrained refinement
S = 1.03Δρmax = 0.24 e Å3
6182 reflectionsΔρmin = 0.24 e Å3
311 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
S10.15583 (3)0.82030 (5)0.44595 (2)0.06259 (17)
F10.77333 (9)0.33903 (13)0.20221 (6)0.0943 (5)
F20.46943 (11)1.25156 (10)0.31200 (6)0.1043 (5)
O10.29532 (7)0.74319 (10)0.40602 (4)0.0469 (3)
O20.38526 (11)1.29292 (12)0.42547 (7)0.0812 (5)
O30.39200 (10)0.53070 (12)0.41580 (6)0.0697 (5)
N10.39553 (9)0.85596 (11)0.44436 (5)0.0439 (3)
N20.31768 (8)0.88887 (11)0.45963 (5)0.0420 (3)
N30.32987 (9)1.09806 (11)0.48147 (6)0.0462 (3)
C10.64272 (12)0.56922 (18)0.24724 (7)0.0583 (5)
H1A0.62430.64330.23660.070*
C20.69619 (13)0.5084 (2)0.21659 (8)0.0673 (6)
H2A0.71410.54110.18580.081*
C30.72171 (12)0.4003 (2)0.23261 (8)0.0616 (5)
C40.69747 (13)0.34894 (18)0.27745 (9)0.0635 (5)
H4A0.71610.27440.28730.076*
C50.64462 (12)0.41028 (16)0.30795 (8)0.0569 (5)
H5A0.62770.37640.33880.068*
C60.61605 (10)0.52180 (14)0.29362 (6)0.0456 (4)
C70.55723 (10)0.58586 (14)0.32581 (6)0.0451 (4)
C80.50339 (11)0.52572 (14)0.35719 (7)0.0504 (4)
H8A0.50620.44450.35940.061*
C90.44575 (11)0.58574 (14)0.38513 (7)0.0498 (4)
C100.43949 (10)0.70772 (13)0.38186 (6)0.0432 (4)
C110.49340 (10)0.76946 (13)0.35017 (6)0.0428 (4)
C120.55155 (11)0.70777 (14)0.32334 (7)0.0473 (4)
H12A0.58780.74880.30310.057*
C130.48645 (11)0.89862 (13)0.34198 (6)0.0442 (4)
C140.41390 (13)0.94776 (16)0.31948 (8)0.0605 (5)
H14A0.36800.89980.31110.073*
C150.40759 (16)1.06664 (18)0.30901 (9)0.0715 (6)
H15A0.35851.09870.29350.086*
C160.47502 (17)1.13499 (16)0.32200 (9)0.0669 (6)
C170.54758 (16)1.09168 (18)0.34457 (10)0.0725 (6)
H17A0.59251.14120.35330.087*
C180.55406 (13)0.97158 (16)0.35447 (8)0.0591 (5)
H18A0.60380.94050.36950.071*
C190.37959 (10)0.77082 (13)0.41218 (6)0.0410 (3)
C200.25662 (11)0.82095 (14)0.43819 (6)0.0434 (4)
C210.30977 (12)0.98278 (14)0.49890 (7)0.0497 (4)
H21A0.25280.98330.50930.060*
H21B0.34600.96430.53010.060*
C220.28404 (13)1.13579 (17)0.43316 (8)0.0602 (5)
H22A0.22491.12040.43520.072*
H22B0.30301.09270.40330.072*
C230.29823 (15)1.26587 (18)0.42564 (9)0.0719 (6)
H23A0.26981.29080.39250.086*
H23B0.27441.30880.45390.086*
C240.42904 (15)1.25413 (18)0.47370 (12)0.0814 (7)
H24A0.40741.29460.50340.098*
H24B0.48791.27290.47310.098*
C250.41867 (12)1.12362 (16)0.48025 (10)0.0644 (5)
H25A0.44141.08250.45100.077*
H25B0.44841.09780.51290.077*
H1O30.3975 (15)0.462 (2)0.4167 (10)0.085 (8)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S10.0450 (3)0.0795 (4)0.0650 (3)0.0045 (2)0.0151 (2)0.0078 (2)
F10.0814 (9)0.1175 (12)0.0876 (9)0.0413 (8)0.0312 (7)0.0178 (8)
F20.1615 (16)0.0372 (6)0.1162 (11)0.0069 (7)0.0247 (11)0.0151 (7)
O10.0495 (7)0.0439 (6)0.0489 (6)0.0027 (5)0.0138 (5)0.0051 (5)
O20.0963 (12)0.0428 (7)0.1116 (12)0.0026 (7)0.0566 (10)0.0151 (8)
O30.0916 (11)0.0357 (7)0.0894 (10)0.0003 (7)0.0576 (9)0.0079 (6)
N10.0444 (7)0.0367 (7)0.0522 (7)0.0046 (5)0.0149 (6)0.0034 (6)
N20.0448 (8)0.0333 (6)0.0500 (7)0.0026 (5)0.0170 (6)0.0023 (5)
N30.0476 (8)0.0344 (7)0.0585 (8)0.0001 (6)0.0167 (6)0.0009 (6)
C10.0570 (11)0.0596 (11)0.0609 (10)0.0109 (9)0.0209 (9)0.0060 (9)
C20.0602 (13)0.0873 (15)0.0574 (10)0.0148 (11)0.0241 (9)0.0043 (10)
C30.0450 (10)0.0789 (14)0.0621 (11)0.0153 (9)0.0114 (8)0.0157 (10)
C40.0587 (12)0.0581 (11)0.0748 (13)0.0153 (9)0.0117 (10)0.0077 (10)
C50.0599 (11)0.0527 (10)0.0597 (10)0.0059 (8)0.0163 (9)0.0002 (8)
C60.0416 (9)0.0453 (9)0.0509 (8)0.0004 (7)0.0105 (7)0.0044 (7)
C70.0450 (9)0.0416 (8)0.0501 (8)0.0016 (7)0.0129 (7)0.0034 (7)
C80.0615 (11)0.0322 (8)0.0603 (10)0.0012 (7)0.0230 (8)0.0000 (7)
C90.0603 (11)0.0364 (8)0.0557 (9)0.0037 (7)0.0249 (8)0.0004 (7)
C100.0481 (9)0.0341 (8)0.0492 (8)0.0036 (6)0.0165 (7)0.0048 (6)
C110.0440 (9)0.0343 (8)0.0513 (8)0.0074 (6)0.0123 (7)0.0036 (6)
C120.0454 (9)0.0416 (8)0.0569 (9)0.0088 (7)0.0179 (8)0.0020 (7)
C130.0510 (10)0.0348 (8)0.0488 (8)0.0092 (7)0.0174 (7)0.0038 (6)
C140.0619 (12)0.0458 (10)0.0732 (12)0.0109 (9)0.0013 (10)0.0040 (9)
C150.0857 (16)0.0513 (11)0.0769 (13)0.0032 (11)0.0012 (12)0.0133 (10)
C160.0993 (17)0.0350 (9)0.0689 (12)0.0083 (10)0.0234 (12)0.0032 (8)
C170.0840 (16)0.0447 (11)0.0906 (15)0.0277 (11)0.0186 (13)0.0078 (10)
C180.0573 (11)0.0458 (10)0.0753 (12)0.0151 (8)0.0122 (9)0.0045 (9)
C190.0456 (9)0.0325 (7)0.0464 (8)0.0056 (6)0.0137 (7)0.0005 (6)
C200.0472 (9)0.0408 (8)0.0434 (8)0.0030 (7)0.0127 (7)0.0057 (6)
C210.0621 (11)0.0389 (8)0.0509 (9)0.0035 (7)0.0232 (8)0.0050 (7)
C220.0640 (12)0.0498 (10)0.0677 (12)0.0024 (9)0.0110 (10)0.0033 (9)
C230.0871 (16)0.0531 (11)0.0778 (13)0.0152 (11)0.0208 (12)0.0155 (10)
C240.0629 (13)0.0455 (11)0.139 (2)0.0091 (9)0.0271 (15)0.0061 (13)
C250.0505 (11)0.0415 (10)0.1024 (16)0.0016 (8)0.0153 (10)0.0027 (10)
Geometric parameters (Å, º) top
S1—C201.6445 (17)C8—H8A0.9300
F1—C31.365 (2)C9—C101.398 (2)
F2—C161.356 (2)C10—C111.412 (2)
O1—C201.3834 (18)C10—C191.464 (2)
O1—C191.3868 (19)C11—C121.387 (2)
O2—C231.431 (3)C11—C131.492 (2)
O2—C241.436 (3)C12—H12A0.9300
O3—C91.3577 (18)C13—C141.378 (3)
O3—H1O30.78 (3)C13—C181.386 (2)
N1—C191.283 (2)C14—C151.385 (3)
N1—N21.3871 (18)C14—H14A0.9300
N2—C201.334 (2)C15—C161.355 (3)
N2—C211.4749 (19)C15—H15A0.9300
N3—C211.432 (2)C16—C171.353 (3)
N3—C221.448 (3)C17—C181.396 (3)
N3—C251.458 (2)C17—H17A0.9300
C1—C21.386 (2)C18—H18A0.9300
C1—C61.391 (2)C21—H21A0.9700
C1—H1A0.9300C21—H21B0.9700
C2—C31.353 (3)C22—C231.516 (3)
C2—H2A0.9300C22—H22A0.9700
C3—C41.362 (3)C22—H22B0.9700
C4—C51.380 (2)C23—H23A0.9700
C4—H4A0.9300C23—H23B0.9700
C5—C61.392 (2)C24—C251.509 (3)
C5—H5A0.9300C24—H24A0.9700
C6—C71.485 (2)C24—H24B0.9700
C7—C121.395 (2)C25—H25A0.9700
C7—C81.397 (2)C25—H25B0.9700
C8—C91.387 (2)
C20—O1—C19105.32 (12)C13—C14—H14A119.1
C23—O2—C24110.36 (15)C15—C14—H14A119.1
C9—O3—H1O3113.7 (18)C16—C15—C14118.1 (2)
C19—N1—N2103.95 (13)C16—C15—H15A120.9
C20—N2—N1112.27 (12)C14—C15—H15A120.9
C20—N2—C21126.91 (14)C17—C16—C15122.69 (18)
N1—N2—C21120.62 (13)C17—C16—F2118.7 (2)
C21—N3—C22114.98 (15)C15—C16—F2118.6 (2)
C21—N3—C25115.67 (14)C16—C17—C18119.03 (19)
C22—N3—C25111.09 (15)C16—C17—H17A120.5
C2—C1—C6121.44 (18)C18—C17—H17A120.5
C2—C1—H1A119.3C13—C18—C17120.1 (2)
C6—C1—H1A119.3C13—C18—H18A119.9
C3—C2—C1118.32 (18)C17—C18—H18A119.9
C3—C2—H2A120.8N1—C19—O1113.05 (13)
C1—C2—H2A120.8N1—C19—C10126.79 (15)
C2—C3—C4123.01 (17)O1—C19—C10120.12 (13)
C2—C3—F1118.72 (18)N2—C20—O1105.36 (13)
C4—C3—F1118.27 (19)N2—C20—S1130.84 (12)
C3—C4—C5118.36 (19)O1—C20—S1123.79 (12)
C3—C4—H4A120.8N3—C21—N2115.25 (13)
C5—C4—H4A120.8N3—C21—H21A108.5
C4—C5—C6121.45 (17)N2—C21—H21A108.5
C4—C5—H5A119.3N3—C21—H21B108.5
C6—C5—H5A119.3N2—C21—H21B108.5
C1—C6—C5117.43 (15)H21A—C21—H21B107.5
C1—C6—C7121.40 (15)N3—C22—C23109.02 (18)
C5—C6—C7121.14 (15)N3—C22—H22A109.9
C12—C7—C8118.31 (14)C23—C22—H22A109.9
C12—C7—C6120.54 (14)N3—C22—H22B109.9
C8—C7—C6121.07 (14)C23—C22—H22B109.9
C9—C8—C7120.80 (15)H22A—C22—H22B108.3
C9—C8—H8A119.6O2—C23—C22111.55 (16)
C7—C8—H8A119.6O2—C23—H23A109.3
O3—C9—C8122.70 (15)C22—C23—H23A109.3
O3—C9—C10116.67 (14)O2—C23—H23B109.3
C8—C9—C10120.62 (14)C22—C23—H23B109.3
C9—C10—C11119.10 (14)H23A—C23—H23B108.0
C9—C10—C19120.39 (13)O2—C24—C25110.3 (2)
C11—C10—C19120.48 (14)O2—C24—H24A109.6
C12—C11—C10119.26 (14)C25—C24—H24A109.6
C12—C11—C13118.65 (13)O2—C24—H24B109.6
C10—C11—C13121.99 (13)C25—C24—H24B109.6
C11—C12—C7121.89 (14)H24A—C24—H24B108.1
C11—C12—H12A119.1N3—C25—C24108.40 (16)
C7—C12—H12A119.1N3—C25—H25A110.0
C14—C13—C18118.30 (16)C24—C25—H25A110.0
C14—C13—C11120.80 (15)N3—C25—H25B110.0
C18—C13—C11120.83 (17)C24—C25—H25B110.0
C13—C14—C15121.73 (19)H25A—C25—H25B108.4
C19—N1—N2—C202.31 (17)C18—C13—C14—C150.4 (3)
C19—N1—N2—C21177.47 (14)C11—C13—C14—C15176.60 (18)
C6—C1—C2—C30.5 (3)C13—C14—C15—C160.6 (3)
C1—C2—C3—C40.2 (3)C14—C15—C16—C170.1 (3)
C1—C2—C3—F1178.97 (19)C14—C15—C16—F2179.89 (19)
C2—C3—C4—C50.2 (3)C15—C16—C17—C180.7 (3)
F1—C3—C4—C5179.36 (19)F2—C16—C17—C18179.34 (19)
C3—C4—C5—C60.2 (3)C14—C13—C18—C170.4 (3)
C2—C1—C6—C50.5 (3)C11—C13—C18—C17177.39 (17)
C2—C1—C6—C7178.59 (18)C16—C17—C18—C130.9 (3)
C4—C5—C6—C10.1 (3)N2—N1—C19—O11.38 (17)
C4—C5—C6—C7178.19 (18)N2—N1—C19—C10176.19 (14)
C1—C6—C7—C1224.7 (3)C20—O1—C19—N10.08 (17)
C5—C6—C7—C12157.23 (18)C20—O1—C19—C10177.68 (13)
C1—C6—C7—C8152.03 (18)C9—C10—C19—N1125.76 (19)
C5—C6—C7—C826.0 (3)C11—C10—C19—N152.3 (2)
C12—C7—C8—C90.0 (3)C9—C10—C19—O156.8 (2)
C6—C7—C8—C9176.80 (17)C11—C10—C19—O1125.07 (16)
C7—C8—C9—O3179.61 (18)N1—N2—C20—O12.28 (16)
C7—C8—C9—C100.9 (3)C21—N2—C20—O1177.07 (14)
O3—C9—C10—C11179.50 (17)N1—N2—C20—S1176.89 (12)
C8—C9—C10—C110.8 (3)C21—N2—C20—S12.1 (2)
O3—C9—C10—C192.4 (3)C19—O1—C20—N21.33 (15)
C8—C9—C10—C19178.88 (17)C19—O1—C20—S1177.92 (12)
C9—C10—C11—C120.4 (3)C22—N3—C21—N254.9 (2)
C19—C10—C11—C12177.73 (16)C25—N3—C21—N276.8 (2)
C9—C10—C11—C13175.85 (17)C20—N2—C21—N3116.90 (18)
C19—C10—C11—C136.0 (3)N1—N2—C21—N368.7 (2)
C10—C11—C12—C71.4 (3)C21—N3—C22—C23168.57 (15)
C13—C11—C12—C7174.96 (17)C25—N3—C22—C2357.65 (19)
C8—C7—C12—C111.2 (3)C24—O2—C23—C2257.5 (2)
C6—C7—C12—C11175.63 (16)N3—C22—C23—O256.2 (2)
C12—C11—C13—C14116.54 (19)C23—O2—C24—C2559.3 (2)
C10—C11—C13—C1459.7 (2)C21—N3—C25—C24166.88 (18)
C12—C11—C13—C1860.4 (2)C22—N3—C25—C2459.7 (2)
C10—C11—C13—C18123.36 (18)O2—C24—C25—N359.7 (2)
Hydrogen-bond geometry (Å, º) top
Cg1 is the centroid of the C7–C12 ring.
D—H···AD—HH···AD···AD—H···A
O3—H1O3···O2i0.79 (2)1.95 (2)2.728 (2)167 (2)
C5—H5A···S1ii0.932.803.639 (2)151
C12—H12A···F1iii0.932.473.292 (2)148
C23—H23A···F1iv0.972.513.462 (3)167
C1—H1A···Cg1v0.932.913.414 (2)115
Symmetry codes: (i) x, y1, z; (ii) x+1/2, y1/2, z; (iii) x+3/2, y+1/2, z+1/2; (iv) x+1, y+1, z+1/2; (v) x+1, y, z+1/2.

Experimental details

Crystal data
Chemical formulaC25H21F2N3O3S
Mr481.51
Crystal system, space groupMonoclinic, C2/c
Temperature (K)296
a, b, c (Å)16.0547 (14), 11.4125 (11), 25.364 (2)
β (°) 94.202 (2)
V3)4634.9 (7)
Z8
Radiation typeMo Kα
µ (mm1)0.19
Crystal size (mm)0.48 × 0.25 × 0.17
Data collection
DiffractometerBruker SMART APEXII DUO CCD area-detector
Absorption correctionMulti-scan
(SADABS; Bruker, 2009)
Tmin, Tmax0.916, 0.969
No. of measured, independent and
observed [I > 2σ(I)] reflections
23057, 6182, 4139
Rint0.029
(sin θ/λ)max1)0.684
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.044, 0.143, 1.03
No. of reflections6182
No. of parameters311
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.24, 0.24

Computer programs: APEX2 (Bruker, 2009), SAINT (Bruker, 2009), SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
Cg1 is the centroid of the C7–C12 ring.
D—H···AD—HH···AD···AD—H···A
O3—H1O3···O2i0.79 (2)1.95 (2)2.728 (2)167 (2)
C5—H5A···S1ii0.932.803.639 (2)151
C12—H12A···F1iii0.932.473.292 (2)148
C23—H23A···F1iv0.972.513.462 (3)167
C1—H1A···Cg1v0.932.913.414 (2)115
Symmetry codes: (i) x, y1, z; (ii) x+1/2, y1/2, z; (iii) x+3/2, y+1/2, z+1/2; (iv) x+1, y+1, z+1/2; (v) x+1, y, z+1/2.
 

Footnotes

Thomson Reuters ResearcherID: A-3561-2009.

Acknowledgements

HKF and SA thank Universiti Sains Malaysia (USM) for the Research University Grant (1001/PFIZIK/811160). SA thanks the Malaysian Government and USM for the Academic Staff Training Scheme (ASTS) award. BN thanks the UGC for financial assistance through an SAP and BSR one-time grant for the purchase of chemicals. SS thanks Mangalore University for research facilities.

References

First citationAllen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.  CSD CrossRef Web of Science Google Scholar
First citationBhatia, S. & Gupta, M. (2011). J. Chem. Pharm. Res. 3, 137–147.  CAS Google Scholar
First citationBruker (2009). SADABS, APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationCremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354–1358.  CrossRef CAS Web of Science Google Scholar
First citationLiu, J. K. (2006). Chem. Rev., 106, 2209–2223.  Web of Science CrossRef PubMed CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds