organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Ethyl 7-pivaloyl­amino-1,8-naphthyridine-2-carboxyl­ate sesquihydrate

aX-ray Crystallography Unit, School of Physics, Universiti Sains Malaysia, 11800 USM, Penang, Malaysia, and bDepartment of Chemistry, Bengal Engineering and Science University, Shibpur, Howrah 711 103, India
*Correspondence e-mail: hkfun@usm.my

(Received 11 November 2011; accepted 18 November 2011; online 25 November 2011)

In the title hydrate, C16H19N3O3·1.5H2O, both water mol­ecules are disordered: one over two adjacent sites in a 0.498 (5):0.502 (5) ratio and one lying near a crystallographic twofold axis. The dihedral angle between the pyridine rings of the organic moleucle is 1.47 (6)°. In the crystal, the components are linked by N—H⋯O, O—H⋯N and C—H⋯O hydrogen bonds, forming sheets lying parallel to the ac plane.

Related literature

For further details of heterocyclic esters, see: Listvan et al. (2002[Listvan, V. N., Listvan, V. V. & Shekel, A. N. (2002). Chem. Heterocycl. Compd, 38, 1480-1483.]); Li et al. (2007[Li, D. Z., Li, Y., Chen, X. G., Zhu, C. G., Yang, J., Liu, H. Y. & Pan, X. D. (2007). Chin. Chem. Lett. 18, 1335-1338.]); Goswami & Hazra (2009[Goswami, S. & Hazra, A. (2009). Chem. Lett. 38, 484-490.]). For the stability of the temperature controller used in the data collection, see: Cosier & Glazer (1986[Cosier, J. & Glazer, A. M. (1986). J. Appl. Cryst. 19, 105-107.]).

[Scheme 1]

Experimental

Crystal data
  • C16H19N3O3·1.5H2O

  • Mr = 656.73

  • Monoclinic, C 2/c

  • a = 30.7759 (7) Å

  • b = 7.2406 (2) Å

  • c = 16.9271 (4) Å

  • β = 120.009 (1)°

  • V = 3266.32 (14) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.10 mm−1

  • T = 100 K

  • 0.41 × 0.31 × 0.24 mm

Data collection
  • Bruker SMART APEXII CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2009[Bruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.960, Tmax = 0.977

  • 16624 measured reflections

  • 3753 independent reflections

  • 3156 reflections with I > 2σ(I)

  • Rint = 0.030

Refinement
  • R[F2 > 2σ(F2)] = 0.039

  • wR(F2) = 0.108

  • S = 1.04

  • 3753 reflections

  • 228 parameters

  • H-atom parameters constrained

  • Δρmax = 0.34 e Å−3

  • Δρmin = −0.23 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N3—H1N3⋯O2W 0.85 2.39 3.051 (2) 135
N3—H1N3⋯O1WBi 0.85 2.40 3.095 (3) 140
O1WB—H2WB⋯N2 0.86 2.26 3.077 (3) 160
O2W—H1W2⋯N1i 0.83 2.13 2.948 (2) 167
C3—H3A⋯O3 0.93 2.23 2.8230 (17) 121
Symmetry code: (i) [-x, y, -z+{\script{1\over 2}}].

Data collection: APEX2 (Bruker, 2009[Bruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2009[Bruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Supporting information


Comment top

Heterocyclic esters are important synthons for the synthesis of different natural products, antimicrobial agents and pharmaceutical compositions (Listvan et al., 2002; Li et al., 2007). The heterocyclic esters are easily synthesized from their corresponding aldehydes by using thiamine hydrochloride as a catalyst in the presence of triethyl amine and alcohol (Goswami & Hazra, 2009). Herein we report the crystal structure of ethyl-7-pivaloylamino-[1,8]naphthyridine-2-carboxylate.

The asymmetric unit of the title compound, Fig. 1, consists of one ethyl-7-pivaloylamino-[1,8]naphthyridine-2-carboxylate molecule, one disordered water molecule over two orientations with a refined occupany ratio of 0.498 (5) : 0.502 (5) and a half-molecule of water (the O2W atom of the water molecule lies near a twofold axis (symmetry code: -x, y, -z+1/2). The dihedral angle between the two pyridine (N1/C1–C5 : N2/C1,C5–C8) rings is 1.47 (6)°.

In the crystal structure, (Fig. 2), the components are connected via intermolecular N—H···O, O—H···N and C—H···O hydrogen bonds (Table 1) to form two-dimensional networks parallel to the ac-plane.

Related literature top

For further details of heterocyclic esters, see: Listvan et al. (2002); Li et al. (2007); Goswami & Hazra (2009). For the stability of the temperature controller used in the data collection, see: Cosier & Glazer (1986).

Experimental top

Distilled triethylamine (0.6 ml) was added dropwise to a solution of 7-pivaloylamino-[1,8]naphthyridine-2-carbaldehyde (514 mg, 2 mmol) in dry ethanol. Then thiamine hydrochloride (30 mg, 15 mol) was added and the reaction mixture was refluxed for 2.5 h. Excess ethanol was distilled from the reaction mixture after completion of the reaction. Water was added to the reaction mixture and then extracted with chloroform and the organic layer was dried. The crude product was purified through column chromatography (silica gel, 100–200 mesh) eluting with ethyl acetate in petroleum ether (30%) to afford a colorless solid. Yield: 82%. Mp 168–170°C.

Refinement top

All hydrogen atoms were positioned geometrically [N–H = 0.8462 Å; O–H = 0.8078–0.9888 Å; C–H = 0.93–0.97 Å] and were refined using a riding model, with Uiso(H) = 1.2 or 1.5 Ueq(C,O). A rotating group model was applied to the methyl groups. One of the water molecule is disordered over two orientations, with an occupany ratio of 0.498 (5) : 0.502 (5). Another water molecule, 02W, lies near a twofold axis with symmetry -x, y, -z+1/2 .

Structure description top

Heterocyclic esters are important synthons for the synthesis of different natural products, antimicrobial agents and pharmaceutical compositions (Listvan et al., 2002; Li et al., 2007). The heterocyclic esters are easily synthesized from their corresponding aldehydes by using thiamine hydrochloride as a catalyst in the presence of triethyl amine and alcohol (Goswami & Hazra, 2009). Herein we report the crystal structure of ethyl-7-pivaloylamino-[1,8]naphthyridine-2-carboxylate.

The asymmetric unit of the title compound, Fig. 1, consists of one ethyl-7-pivaloylamino-[1,8]naphthyridine-2-carboxylate molecule, one disordered water molecule over two orientations with a refined occupany ratio of 0.498 (5) : 0.502 (5) and a half-molecule of water (the O2W atom of the water molecule lies near a twofold axis (symmetry code: -x, y, -z+1/2). The dihedral angle between the two pyridine (N1/C1–C5 : N2/C1,C5–C8) rings is 1.47 (6)°.

In the crystal structure, (Fig. 2), the components are connected via intermolecular N—H···O, O—H···N and C—H···O hydrogen bonds (Table 1) to form two-dimensional networks parallel to the ac-plane.

For further details of heterocyclic esters, see: Listvan et al. (2002); Li et al. (2007); Goswami & Hazra (2009). For the stability of the temperature controller used in the data collection, see: Cosier & Glazer (1986).

Computing details top

Data collection: APEX2 (Bruker, 2009); cell refinement: SAINT (Bruker, 2009); data reduction: SAINT (Bruker, 2009); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. The asymmetric unit of the title compound, showing 30% probability displacement ellipsoids. Open bonds reprents disorder components.
[Figure 2] Fig. 2. The crystal packing of the title compound (I). H atoms are not involing the hydrogen bond interactions are omitted for clarity.
Ethyl 7-pivaloylamino-1,8-naphthyridine-2-carboxylate sesquihydrate top
Crystal data top
C16H19N3O3·1.5H2OF(000) = 1400
Mr = 656.73Dx = 1.335 Mg m3
Monoclinic, C2/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -C 2ycCell parameters from 6305 reflections
a = 30.7759 (7) Åθ = 2.9–33.5°
b = 7.2406 (2) ŵ = 0.10 mm1
c = 16.9271 (4) ÅT = 100 K
β = 120.009 (1)°Block, colourless
V = 3266.32 (14) Å30.41 × 0.31 × 0.24 mm
Z = 4
Data collection top
Bruker SMART APEXII CCD
diffractometer
3753 independent reflections
Radiation source: fine-focus sealed tube3156 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.030
φ and ω scansθmax = 27.5°, θmin = 2.9°
Absorption correction: multi-scan
(SADABS; Bruker, 2009)
h = 3939
Tmin = 0.960, Tmax = 0.977k = 99
16624 measured reflectionsl = 2121
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.039Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.108H-atom parameters constrained
S = 1.04 w = 1/[σ2(Fo2) + (0.0531P)2 + 2.3589P]
where P = (Fo2 + 2Fc2)/3
3753 reflections(Δ/σ)max < 0.001
228 parametersΔρmax = 0.34 e Å3
0 restraintsΔρmin = 0.23 e Å3
Crystal data top
C16H19N3O3·1.5H2OV = 3266.32 (14) Å3
Mr = 656.73Z = 4
Monoclinic, C2/cMo Kα radiation
a = 30.7759 (7) ŵ = 0.10 mm1
b = 7.2406 (2) ÅT = 100 K
c = 16.9271 (4) Å0.41 × 0.31 × 0.24 mm
β = 120.009 (1)°
Data collection top
Bruker SMART APEXII CCD
diffractometer
3753 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2009)
3156 reflections with I > 2σ(I)
Tmin = 0.960, Tmax = 0.977Rint = 0.030
16624 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0390 restraints
wR(F2) = 0.108H-atom parameters constrained
S = 1.04Δρmax = 0.34 e Å3
3753 reflectionsΔρmin = 0.23 e Å3
228 parameters
Special details top

Experimental. The crystal was placed in the cold stream of an Oxford Cryosystems Cobra open-flow nitrogen cryostat (Cosier & Glazer, 1986) operating at 100.0 (1) K.

Geometry. All s.u.'s (except the s.u. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell s.u.'s are taken into account individually in the estimation of s.u.'s in distances, angles and torsion angles; correlations between s.u.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell s.u.'s is used for estimating s.u.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
O10.16006 (3)0.48093 (13)0.67950 (6)0.0212 (2)
O20.14079 (3)0.47791 (13)0.53237 (6)0.0232 (2)
O30.17328 (4)0.00262 (19)0.24944 (7)0.0422 (3)
N10.02737 (4)0.20833 (14)0.37662 (7)0.0172 (2)
N20.04907 (4)0.32379 (14)0.48603 (7)0.0166 (2)
N30.10204 (4)0.10828 (17)0.25947 (7)0.0245 (3)
H1N30.08790.13490.22900.029*
C10.00362 (4)0.25427 (15)0.46599 (8)0.0154 (2)
C20.07277 (4)0.14680 (16)0.35245 (8)0.0173 (2)
C30.09081 (4)0.12125 (17)0.41469 (8)0.0186 (2)
H3A0.12310.07740.39470.022*
C40.05950 (4)0.16280 (17)0.50400 (8)0.0186 (2)
H4A0.07010.14550.54620.022*
C50.01072 (4)0.23240 (16)0.53302 (8)0.0161 (2)
C60.02364 (4)0.28315 (17)0.62367 (8)0.0187 (2)
H6A0.01540.26980.66930.022*
C70.06941 (4)0.35249 (16)0.64349 (8)0.0182 (2)
H7A0.09280.38730.70270.022*
C80.08024 (4)0.36993 (15)0.57230 (8)0.0160 (2)
C90.12989 (4)0.44831 (16)0.59031 (8)0.0171 (2)
C100.20924 (4)0.55545 (19)0.70542 (9)0.0232 (3)
H10A0.20610.67970.68170.028*
H10B0.22580.47890.68130.028*
C110.23881 (5)0.5572 (2)0.80776 (9)0.0268 (3)
H11A0.27180.60460.82770.040*
H11B0.24130.43370.83030.040*
H11C0.22220.63430.83070.040*
C120.14904 (4)0.03205 (16)0.21292 (8)0.0180 (2)
C130.16825 (4)0.01579 (17)0.11242 (8)0.0194 (3)
C140.14824 (5)0.20988 (19)0.11108 (9)0.0266 (3)
H14A0.16030.29640.13860.040*
H14B0.11220.20840.14470.040*
H14C0.15970.24590.04920.040*
C150.15098 (5)0.1224 (2)0.06522 (9)0.0285 (3)
H15A0.15990.24520.07320.043*
H15B0.16690.09430.00130.043*
H15C0.11520.11440.09160.043*
C160.22570 (5)0.02054 (19)0.06234 (9)0.0243 (3)
H16A0.23820.09960.06450.037*
H16B0.23660.10860.09120.037*
H16C0.23830.05570.00010.037*
O1WB0.05785 (9)0.3977 (4)0.31552 (15)0.0289 (7)0.502 (5)
H1WB0.07550.49350.32170.035*0.502 (5)
H2WB0.04800.38690.35460.035*0.502 (5)
O1WA0.04715 (6)0.4721 (2)0.32308 (11)0.0310 (7)0.498 (5)
H1WA0.02270.42630.27430.037*0.498 (5)
H2WA0.06040.40320.37610.037*0.498 (5)
O2W0.01311 (6)0.0366 (2)0.23101 (11)0.0245 (5)0.50
H1W20.00040.09900.20650.029*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0167 (4)0.0275 (5)0.0172 (4)0.0053 (3)0.0067 (4)0.0017 (4)
O20.0228 (4)0.0271 (5)0.0213 (5)0.0056 (4)0.0122 (4)0.0029 (4)
O30.0269 (5)0.0798 (9)0.0222 (5)0.0244 (5)0.0140 (4)0.0140 (5)
N10.0174 (5)0.0176 (5)0.0162 (5)0.0011 (4)0.0081 (4)0.0005 (4)
N20.0170 (5)0.0149 (5)0.0173 (5)0.0006 (4)0.0081 (4)0.0004 (4)
N30.0195 (5)0.0393 (7)0.0165 (5)0.0083 (5)0.0104 (4)0.0046 (5)
C10.0174 (5)0.0120 (5)0.0167 (6)0.0013 (4)0.0084 (5)0.0010 (4)
C20.0178 (5)0.0163 (5)0.0172 (6)0.0003 (4)0.0082 (5)0.0010 (5)
C30.0164 (5)0.0189 (6)0.0218 (6)0.0005 (4)0.0104 (5)0.0006 (5)
C40.0202 (6)0.0192 (6)0.0199 (6)0.0002 (5)0.0126 (5)0.0005 (5)
C50.0174 (5)0.0143 (5)0.0171 (6)0.0013 (4)0.0089 (5)0.0004 (4)
C60.0220 (6)0.0196 (6)0.0160 (6)0.0004 (5)0.0107 (5)0.0005 (5)
C70.0189 (5)0.0176 (6)0.0153 (6)0.0000 (4)0.0065 (5)0.0006 (5)
C80.0172 (5)0.0119 (5)0.0176 (6)0.0013 (4)0.0077 (5)0.0004 (4)
C90.0188 (5)0.0134 (5)0.0181 (6)0.0006 (4)0.0084 (5)0.0004 (4)
C100.0164 (6)0.0280 (7)0.0234 (7)0.0057 (5)0.0085 (5)0.0015 (5)
C110.0202 (6)0.0318 (7)0.0237 (7)0.0012 (5)0.0074 (5)0.0044 (6)
C120.0157 (5)0.0180 (6)0.0180 (6)0.0006 (4)0.0066 (5)0.0008 (5)
C130.0180 (6)0.0212 (6)0.0177 (6)0.0023 (5)0.0080 (5)0.0019 (5)
C140.0286 (7)0.0278 (7)0.0238 (7)0.0021 (5)0.0134 (6)0.0053 (5)
C150.0275 (7)0.0350 (8)0.0178 (6)0.0094 (6)0.0075 (5)0.0013 (5)
C160.0180 (6)0.0298 (7)0.0205 (6)0.0023 (5)0.0061 (5)0.0036 (5)
O1WB0.0291 (12)0.0366 (15)0.0210 (11)0.0019 (10)0.0126 (9)0.0000 (10)
O1WA0.0325 (13)0.0350 (16)0.0315 (12)0.0090 (11)0.0204 (10)0.0005 (11)
O2W0.0314 (13)0.0251 (8)0.0243 (14)0.0066 (7)0.0193 (11)0.0056 (7)
Geometric parameters (Å, º) top
O1—C91.3397 (15)C11—H11A0.9600
O1—C101.4527 (14)C11—H11B0.9600
O2—C91.2038 (15)C11—H11C0.9600
O3—C121.2097 (15)C12—C131.5353 (17)
N1—C21.3213 (15)C13—C161.5319 (17)
N1—C11.3659 (15)C13—C151.5321 (17)
N2—C81.3278 (15)C13—C141.5392 (18)
N2—C11.3604 (15)C14—H14A0.9600
N3—C121.3703 (15)C14—H14B0.9600
N3—C21.3958 (15)C14—H14C0.9600
N3—H1N30.8462C15—H15A0.9600
C1—C51.4170 (16)C15—H15B0.9600
C2—C31.4275 (16)C15—H15C0.9600
C3—C41.3592 (17)C16—H16A0.9600
C3—H3A0.9300C16—H16B0.9600
C4—C51.4182 (16)C16—H16C0.9600
C4—H4A0.9300O1WB—H1WB0.8550
C5—C61.4089 (17)O1WB—H2WB0.8586
C6—C71.3698 (16)O1WB—H1WA0.9712
C6—H6A0.9300O1WB—H2WA0.9888
C7—C81.4073 (16)O1WA—H1WB0.8984
C7—H7A0.9300O1WA—H2WB0.8078
C8—C91.5114 (16)O1WA—H1WA0.8576
C10—C111.5008 (18)O1WA—H2WA0.9243
C10—H10A0.9700O2W—O2Wi0.739 (3)
C10—H10B0.9700O2W—H1W20.8319
C9—O1—C10115.85 (9)C10—C11—H11C109.5
C2—N1—C1118.01 (10)H11A—C11—H11C109.5
C8—N2—C1117.02 (10)H11B—C11—H11C109.5
C12—N3—C2129.00 (10)O3—C12—N3122.22 (12)
C12—N3—H1N3117.2O3—C12—C13121.68 (11)
C2—N3—H1N3113.8N3—C12—C13116.03 (10)
N2—C1—N1115.32 (10)C16—C13—C15109.37 (11)
N2—C1—C5122.34 (11)C16—C13—C12108.45 (10)
N1—C1—C5122.34 (10)C15—C13—C12112.87 (10)
N1—C2—N3113.75 (10)C16—C13—C14109.33 (10)
N1—C2—C3123.82 (11)C15—C13—C14110.05 (11)
N3—C2—C3122.44 (10)C12—C13—C14106.69 (10)
C4—C3—C2118.10 (10)C13—C14—H14A109.5
C4—C3—H3A121.0C13—C14—H14B109.5
C2—C3—H3A121.0H14A—C14—H14B109.5
C3—C4—C5120.18 (11)C13—C14—H14C109.5
C3—C4—H4A119.9H14A—C14—H14C109.5
C5—C4—H4A119.9H14B—C14—H14C109.5
C6—C5—C1118.57 (10)C13—C15—H15A109.5
C6—C5—C4123.90 (11)C13—C15—H15B109.5
C1—C5—C4117.52 (11)H15A—C15—H15B109.5
C7—C6—C5118.82 (11)C13—C15—H15C109.5
C7—C6—H6A120.6H15A—C15—H15C109.5
C5—C6—H6A120.6H15B—C15—H15C109.5
C6—C7—C8118.56 (11)C13—C16—H16A109.5
C6—C7—H7A120.7C13—C16—H16B109.5
C8—C7—H7A120.7H16A—C16—H16B109.5
N2—C8—C7124.68 (10)C13—C16—H16C109.5
N2—C8—C9114.68 (10)H16A—C16—H16C109.5
C7—C8—C9120.63 (11)H16B—C16—H16C109.5
O2—C9—O1124.63 (11)H1WB—O1WB—H2WB115.4
O2—C9—C8124.61 (11)H1WB—O1WB—H1WA109.0
O1—C9—C8110.76 (10)H2WB—O1WB—H1WA83.0
O1—C10—C11106.88 (10)H1WB—O1WB—H2WA97.1
O1—C10—H10A110.3H1WA—O1WB—H2WA102.7
C11—C10—H10A110.3H1WB—O1WA—H2WB116.1
O1—C10—H10B110.3H1WB—O1WA—H1WA115.9
C11—C10—H10B110.3H2WB—O1WA—H1WA93.6
H10A—C10—H10B108.6H1WB—O1WA—H2WA98.9
C10—C11—H11A109.5H1WA—O1WA—H2WA118.4
C10—C11—H11B109.5O2Wi—O2W—H1W281.5
H11A—C11—H11B109.5
C8—N2—C1—N1179.96 (10)C1—N2—C8—C70.23 (17)
C8—N2—C1—C50.51 (16)C1—N2—C8—C9179.34 (10)
C2—N1—C1—N2177.43 (10)C6—C7—C8—N20.02 (18)
C2—N1—C1—C52.10 (17)C6—C7—C8—C9179.08 (10)
C1—N1—C2—N3178.37 (10)C10—O1—C9—O20.67 (17)
C1—N1—C2—C31.63 (17)C10—O1—C9—C8179.55 (9)
C12—N3—C2—N1175.30 (12)N2—C8—C9—O23.82 (17)
C12—N3—C2—C34.7 (2)C7—C8—C9—O2175.33 (12)
N1—C2—C3—C40.06 (18)N2—C8—C9—O1176.40 (10)
N3—C2—C3—C4179.94 (11)C7—C8—C9—O14.45 (15)
C2—C3—C4—C51.06 (18)C9—O1—C10—C11172.58 (10)
N2—C1—C5—C60.57 (17)C2—N3—C12—O34.9 (2)
N1—C1—C5—C6179.93 (10)C2—N3—C12—C13172.27 (12)
N2—C1—C5—C4178.48 (10)O3—C12—C13—C1626.19 (17)
N1—C1—C5—C41.02 (17)N3—C12—C13—C16156.66 (11)
C3—C4—C5—C6178.40 (12)O3—C12—C13—C15147.54 (14)
C3—C4—C5—C10.60 (17)N3—C12—C13—C1535.32 (15)
C1—C5—C6—C70.34 (17)O3—C12—C13—C1491.47 (15)
C4—C5—C6—C7178.65 (11)N3—C12—C13—C1485.68 (13)
C5—C6—C7—C80.08 (17)
Symmetry code: (i) x, y, z+1/2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N3—H1N3···O2W0.852.393.051 (2)135
N3—H1N3···O1WBi0.852.403.095 (3)140
O1WB—H2WB···N20.862.263.077 (3)160
O2W—H1W2···N1i0.832.132.948 (2)167
C3—H3A···O30.932.232.8230 (17)121
Symmetry code: (i) x, y, z+1/2.

Experimental details

Crystal data
Chemical formulaC16H19N3O3·1.5H2O
Mr656.73
Crystal system, space groupMonoclinic, C2/c
Temperature (K)100
a, b, c (Å)30.7759 (7), 7.2406 (2), 16.9271 (4)
β (°) 120.009 (1)
V3)3266.32 (14)
Z4
Radiation typeMo Kα
µ (mm1)0.10
Crystal size (mm)0.41 × 0.31 × 0.24
Data collection
DiffractometerBruker SMART APEXII CCD
Absorption correctionMulti-scan
(SADABS; Bruker, 2009)
Tmin, Tmax0.960, 0.977
No. of measured, independent and
observed [I > 2σ(I)] reflections
16624, 3753, 3156
Rint0.030
(sin θ/λ)max1)0.649
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.039, 0.108, 1.04
No. of reflections3753
No. of parameters228
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.34, 0.23

Computer programs: APEX2 (Bruker, 2009), SAINT (Bruker, 2009), SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N3—H1N3···O2W0.852.393.051 (2)135
N3—H1N3···O1WBi0.852.403.095 (3)140
O1WB—H2WB···N20.862.263.077 (3)160
O2W—H1W2···N1i0.832.132.948 (2)167
C3—H3A···O30.932.232.8230 (17)121
Symmetry code: (i) x, y, z+1/2.
 

Footnotes

Thomson Reuters ResearcherID: A-3561-2009.

Acknowledgements

HKF and MH thank the Malaysian Government and Universiti Sains Malaysia for the Research University Grant No. 1001/PFIZIK/811160. MH also thanks Universiti Sains Malaysia for a post-doctoral research fellowship. SG and AH thank the CSIR [No. 01 (2292)/09/EMR-II], Government of India, for financial support.

References

First citationBruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationCosier, J. & Glazer, A. M. (1986). J. Appl. Cryst. 19, 105–107.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationGoswami, S. & Hazra, A. (2009). Chem. Lett. 38, 484–490.  Web of Science CrossRef CAS Google Scholar
First citationLi, D. Z., Li, Y., Chen, X. G., Zhu, C. G., Yang, J., Liu, H. Y. & Pan, X. D. (2007). Chin. Chem. Lett. 18, 1335–1338.  CrossRef CAS Google Scholar
First citationListvan, V. N., Listvan, V. V. & Shekel, A. N. (2002). Chem. Heterocycl. Compd, 38, 1480–1483.  CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds