organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

2-[(3,5-Di­methyl-1-phenyl-1H-pyrazol-4-yl)methyl­­idene]indan-1,3-dione

aDepartment of Chemistry, Faculty of Science, King Abdulaziz University, Jeddah 21589, PO Box 80203, Saudi Arabia, bThe Center of Excellence for Advanced Materials Research, King Abdulaziz University, Jeddah 21589, PO Box 80203, Saudi Arabia, and cUniversity of Sargodha, Department of Physics, Sargodha, Pakistan
*Correspondence e-mail: dmntahir_uos@yahoo.com

(Received 12 November 2011; accepted 19 November 2011; online 25 November 2011)

In the title compound, C21H16N2O2, the five-membered heterocyclic ring makes a dihedral angle of 47.06 (6)° with the attached benzene ring, whereas the indan-1,3-dione ring system and the benzene ring are oriented at a dihedral angle of 21.92 (7)°. In the crystal, inversion dimers linked by pairs of C—H⋯O hydrogen bonds generate R22(22) loops. Aromatic ππ stacking inter­actions [centroid–centroid distances = 3.8325 (12)–3.8600 (12) Å] also occur.

Related literature

For background to donor–acceptor chromophores, see: Asiri et al. (2006[Asiri, A. M., Bahajaj, A. A., Ismail, I. M. I. & Fatani, N. A. (2006). Dyes Pigments, 71, 103-108.]); Asiri & Khan (2009[Asiri, M. A. & Khan, S. A. (2009). Molbank, M635.]); Koyuncu et al. (2010[Koyuncu, F. B., Koyuncu, S. & Ozdemir, E. (2010). Electrochim. Acta, 55, 4935-4941.]); Kulhanek et al. (2011[Kulhanek, J., Bures, F., Mikysek, T., Ludvik, J. & Pytela, O. (2011). Dyes Pigments, 90, 48-55.]); Wang et al. (2011[Wang, H.-Y., Chen, G., Xu, X.-P., Chen, H. & Ji, S.-J. (2011). Dyes Pigments, 88, 358-365.]). For related structures, see: Belyakov et al. (2008[Belyakov, S., Kampars, V., Pastors, P. J. & Tokmakov, A. (2008). Acta Cryst. E64, o1200.]); Fun et al. (2010[Fun, H.-K., Hemamalini, M., Asiri, A. M. & Khan, S. A. (2010). Acta Cryst. E66, o1602-o1603.]). For graph-set notation, see: Bernstein et al. (1995[Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555-1573.]).

[Scheme 1]

Experimental

Crystal data
  • C21H16N2O2

  • Mr = 328.36

  • Monoclinic, C 2/c

  • a = 14.6655 (3) Å

  • b = 7.8902 (2) Å

  • c = 28.6651 (7) Å

  • β = 98.251 (1)°

  • V = 3282.61 (13) Å3

  • Z = 8

  • Mo Kα radiation

  • μ = 0.09 mm−1

  • T = 296 K

  • 0.26 × 0.23 × 0.21 mm

Data collection
  • Bruker Kappa APEXII CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2005[Bruker (2005). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.975, Tmax = 0.985

  • 12302 measured reflections

  • 2970 independent reflections

  • 2106 reflections with I > 2σ(I)

  • Rint = 0.034

Refinement
  • R[F2 > 2σ(F2)] = 0.042

  • wR(F2) = 0.112

  • S = 1.01

  • 2970 reflections

  • 228 parameters

  • H-atom parameters constrained

  • Δρmax = 0.12 e Å−3

  • Δρmin = −0.23 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C18—H18⋯O1i 0.93 2.58 3.377 (3) 145
Symmetry code: (i) [-x, y, -z+{\script{1\over 2}}].

Data collection: APEX2 (Bruker, 2009[Bruker (2009). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2009[Bruker (2009). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]) and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]); software used to prepare material for publication: WinGX (Farrugia, 1999[Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.]) and PLATON.

Supporting information


Comment top

Formation of the donor acceptor chromophores by the nucleophilic addition of an active hydrogen compound to a carbonyl group followed by a dehydration reaction is known as knoevenagel condensation (Asiri & Khan, 2009). Donor acceptor chromophores are applicable in the field of materials science such as third order non-linear optical (NLO) (Asiri et al. 2006), photonic materials and devices, optical limiting (Kulhanek et al. 2011), electrochemical sensing (Koyuncu et al. 2010) and langmuir film (Wang et al. 2011). Due to wide application of donor acceptor chromophores, we are reporting here the synthesiz and crystal structure of the title compound (I), (Fig. 1).

The crystal structures of (II) i.e., 2-(4,5,6,7,8,9-hexahydro-6a-azaphenylen-2-ylmethylene)indan-1,3-dione (Belyakov et al., 2008) and (III) i.e., 4-((E)((3,5-dimethyl- 1-phenyl-1H-pyrazol-4-yl)methylene)amino)-1,5-dimethyl-2-phenyl -1,2-dihydro-3H-pyrazol-3-one have been published which contain the moities present in (I).

In (I), the group A (C1—C9/O1/O2) of indan-1, 3-dione, the heterocyclic five membered ring B (C11/C12/C14/N1/N2) and the benzene ring C (C16—C21) of the aldehyde moiety are planar with r. m. s. deviation of 0.0345, 0.0099 and 0.0035 Å, respectively. The dihedral angle between A/B, A/C and B/C is 39.77 (4), 21.92 (7) and 47.06 (6)°, respectively. The title compound consists of dimers due to intermolecular H-bonds of C—H···O type, where O-atom is of carbonyl and H-atom is of benzene ring. This H-bondings form a R22(22) (Fig. 2) ring motif (Bernstein et al., 1995). There exists ππ interactions between the centroids of the rings of indan-1, 3-dione moieties at the separation of 3.8325 (12)–3.8600 (12) A°.

Related literature top

For background to donor–acceptor chromophores, see: Asiri et al. (2006); Asiri & Khan (2009); Koyuncu et al. (2010); Kulhanek et al. (2011); Wang et al. (2011). For related structures, see: Belyakov et al. (2008); Fun et al. (2010). For graph-set notation, see: Bernstein et al. (1995).

Experimental top

A mixture of 3,5-dimethyl-1-phenylpyrazole-4-carbaldehyde (1.0 g, 5.0 mmol), indan-1, 3-dione (0.73 g, 5.0 mmol) and a few drops of pyridine in ethanol (15 ml) was heated for 3 h. The progress of the reaction was monitored by TLC. The solid that separated from the cooled mixture was collected and recrystallized from a methanol-chloroform mixture to give the yellow prisms of (I).

Yellow: 85%, m.p. 469–470 K.

IR (KBr) νmax cm-1: 3035 (Ar—H), 2859 (C—H), 1663 (CO), 1578 (CC).

Refinement top

The H-atoms were positioned geometrically (C–H = 0.93–0.96 Å) and refined as riding with Uiso(H) = xUeq(C), where x = 1.5 for methyl and x = 1.2 for aryl H-atoms.

Structure description top

Formation of the donor acceptor chromophores by the nucleophilic addition of an active hydrogen compound to a carbonyl group followed by a dehydration reaction is known as knoevenagel condensation (Asiri & Khan, 2009). Donor acceptor chromophores are applicable in the field of materials science such as third order non-linear optical (NLO) (Asiri et al. 2006), photonic materials and devices, optical limiting (Kulhanek et al. 2011), electrochemical sensing (Koyuncu et al. 2010) and langmuir film (Wang et al. 2011). Due to wide application of donor acceptor chromophores, we are reporting here the synthesiz and crystal structure of the title compound (I), (Fig. 1).

The crystal structures of (II) i.e., 2-(4,5,6,7,8,9-hexahydro-6a-azaphenylen-2-ylmethylene)indan-1,3-dione (Belyakov et al., 2008) and (III) i.e., 4-((E)((3,5-dimethyl- 1-phenyl-1H-pyrazol-4-yl)methylene)amino)-1,5-dimethyl-2-phenyl -1,2-dihydro-3H-pyrazol-3-one have been published which contain the moities present in (I).

In (I), the group A (C1—C9/O1/O2) of indan-1, 3-dione, the heterocyclic five membered ring B (C11/C12/C14/N1/N2) and the benzene ring C (C16—C21) of the aldehyde moiety are planar with r. m. s. deviation of 0.0345, 0.0099 and 0.0035 Å, respectively. The dihedral angle between A/B, A/C and B/C is 39.77 (4), 21.92 (7) and 47.06 (6)°, respectively. The title compound consists of dimers due to intermolecular H-bonds of C—H···O type, where O-atom is of carbonyl and H-atom is of benzene ring. This H-bondings form a R22(22) (Fig. 2) ring motif (Bernstein et al., 1995). There exists ππ interactions between the centroids of the rings of indan-1, 3-dione moieties at the separation of 3.8325 (12)–3.8600 (12) A°.

For background to donor–acceptor chromophores, see: Asiri et al. (2006); Asiri & Khan (2009); Koyuncu et al. (2010); Kulhanek et al. (2011); Wang et al. (2011). For related structures, see: Belyakov et al. (2008); Fun et al. (2010). For graph-set notation, see: Bernstein et al. (1995).

Computing details top

Data collection: APEX2 (Bruker, 2009); cell refinement: SAINT (Bruker, 2009); data reduction: SAINT (Bruker, 2009); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997) and PLATON (Spek, 2009); software used to prepare material for publication: WinGX (Farrugia, 1999) and PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. View of the title compound with displacement ellipsoids drawn at the 50% probability level. H-atoms are shown as small spheres of arbitrary radii.
[Figure 2] Fig. 2. The partial packing (PLATON; Spek, 2009) which shows that molecules form dimers with R22(22) ring motif.
2-[(3,5-Dimethyl-1-phenyl-1H-pyrazol-4-yl)methylidene]indan-1,3-dione top
Crystal data top
C21H16N2O2F(000) = 1376
Mr = 328.36Dx = 1.329 Mg m3
Monoclinic, C2/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -C 2ycCell parameters from 2106 reflections
a = 14.6655 (3) Åθ = 1.4–25.3°
b = 7.8902 (2) ŵ = 0.09 mm1
c = 28.6651 (7) ÅT = 296 K
β = 98.251 (1)°Prism, yellow
V = 3282.61 (13) Å30.26 × 0.23 × 0.21 mm
Z = 8
Data collection top
Bruker Kappa APEXII CCD
diffractometer
2970 independent reflections
Radiation source: fine-focus sealed tube2106 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.034
Detector resolution: 8.00 pixels mm-1θmax = 25.3°, θmin = 1.4°
ω scansh = 1717
Absorption correction: multi-scan
(SADABS; Bruker, 2005)
k = 69
Tmin = 0.975, Tmax = 0.985l = 3434
12302 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.042Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.112H-atom parameters constrained
S = 1.01 w = 1/[σ2(Fo2) + (0.0522P)2 + 0.9126P]
where P = (Fo2 + 2Fc2)/3
2970 reflections(Δ/σ)max < 0.001
228 parametersΔρmax = 0.12 e Å3
0 restraintsΔρmin = 0.23 e Å3
Crystal data top
C21H16N2O2V = 3282.61 (13) Å3
Mr = 328.36Z = 8
Monoclinic, C2/cMo Kα radiation
a = 14.6655 (3) ŵ = 0.09 mm1
b = 7.8902 (2) ÅT = 296 K
c = 28.6651 (7) Å0.26 × 0.23 × 0.21 mm
β = 98.251 (1)°
Data collection top
Bruker Kappa APEXII CCD
diffractometer
2970 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2005)
2106 reflections with I > 2σ(I)
Tmin = 0.975, Tmax = 0.985Rint = 0.034
12302 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0420 restraints
wR(F2) = 0.112H-atom parameters constrained
S = 1.01Δρmax = 0.12 e Å3
2970 reflectionsΔρmin = 0.23 e Å3
228 parameters
Special details top

Geometry. Bond distances, angles etc. have been calculated using the rounded fractional coordinates. All su's are estimated from the variances of the (full) variance-covariance matrix. The cell e.s.d.'s are taken into account in the estimation of distances, angles and torsion angles

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.07106 (8)0.30881 (19)0.11877 (4)0.0564 (5)
O20.23637 (9)0.04176 (19)0.00898 (4)0.0608 (5)
N10.34865 (9)0.1867 (2)0.23313 (5)0.0473 (5)
N20.25797 (9)0.1475 (2)0.23590 (5)0.0439 (5)
C10.17883 (11)0.1490 (2)0.07845 (6)0.0419 (6)
C20.09301 (11)0.2414 (3)0.08361 (6)0.0423 (6)
C30.03786 (11)0.2486 (2)0.03591 (6)0.0403 (6)
C40.04905 (12)0.3164 (3)0.02282 (6)0.0475 (6)
C50.08681 (13)0.3072 (3)0.02408 (7)0.0537 (7)
C60.03758 (14)0.2345 (3)0.05695 (7)0.0557 (7)
C70.04935 (13)0.1681 (3)0.04398 (6)0.0519 (7)
C80.08677 (11)0.1748 (2)0.00319 (6)0.0414 (6)
C90.17632 (12)0.1113 (3)0.02737 (6)0.0450 (6)
C100.25407 (11)0.1176 (2)0.11037 (6)0.0441 (6)
C110.26939 (11)0.1368 (2)0.16062 (6)0.0418 (6)
C120.35529 (11)0.1768 (2)0.18786 (6)0.0441 (6)
C130.44513 (12)0.2131 (3)0.17115 (7)0.0616 (8)
C140.20881 (11)0.1150 (2)0.19334 (6)0.0418 (6)
C150.11558 (11)0.0380 (3)0.18802 (6)0.0559 (7)
C160.22738 (12)0.1517 (2)0.28101 (6)0.0440 (6)
C170.14828 (13)0.2378 (3)0.28667 (7)0.0577 (8)
C180.12018 (16)0.2438 (3)0.33060 (9)0.0709 (9)
C190.17138 (19)0.1645 (3)0.36842 (8)0.0743 (10)
C200.25092 (17)0.0804 (3)0.36263 (7)0.0682 (9)
C210.27950 (13)0.0733 (3)0.31885 (6)0.0536 (7)
H40.081040.366720.044930.0570*
H50.145570.349960.033770.0644*
H60.063920.230490.088440.0668*
H70.081890.120170.066240.0623*
H100.304490.076470.097560.0529*
H13A0.493790.209060.197380.0924*
H13B0.443090.323790.157120.0924*
H13C0.456280.129890.148200.0924*
H15A0.070180.125810.187720.0838*
H15B0.111460.037370.213920.0838*
H15C0.104770.024200.158970.0838*
H170.113930.291660.261110.0693*
H180.066570.301450.334660.0850*
H190.152050.167940.397920.0891*
H200.285680.027960.388310.0818*
H210.333350.016220.314880.0643*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0561 (8)0.0723 (10)0.0421 (7)0.0083 (7)0.0117 (6)0.0049 (7)
O20.0533 (8)0.0730 (11)0.0585 (8)0.0118 (7)0.0158 (6)0.0066 (7)
N10.0349 (8)0.0581 (11)0.0483 (9)0.0067 (7)0.0035 (6)0.0007 (8)
N20.0348 (8)0.0530 (10)0.0433 (8)0.0046 (7)0.0032 (6)0.0014 (7)
C10.0384 (9)0.0464 (11)0.0407 (9)0.0030 (8)0.0053 (7)0.0007 (9)
C20.0416 (10)0.0472 (12)0.0390 (10)0.0033 (8)0.0087 (8)0.0025 (9)
C30.0412 (10)0.0400 (11)0.0402 (10)0.0041 (8)0.0076 (7)0.0044 (8)
C40.0455 (10)0.0516 (13)0.0465 (10)0.0007 (9)0.0106 (8)0.0068 (9)
C50.0453 (11)0.0605 (14)0.0532 (12)0.0008 (10)0.0001 (9)0.0100 (10)
C60.0595 (12)0.0637 (15)0.0407 (10)0.0042 (11)0.0038 (9)0.0023 (10)
C70.0575 (12)0.0560 (14)0.0424 (10)0.0013 (10)0.0076 (9)0.0030 (9)
C80.0417 (10)0.0424 (12)0.0402 (10)0.0053 (8)0.0062 (7)0.0013 (8)
C90.0428 (10)0.0458 (12)0.0476 (10)0.0032 (9)0.0103 (8)0.0001 (9)
C100.0392 (10)0.0460 (12)0.0474 (10)0.0028 (8)0.0073 (8)0.0007 (9)
C110.0359 (9)0.0448 (12)0.0436 (10)0.0005 (8)0.0020 (7)0.0018 (8)
C120.0369 (9)0.0488 (12)0.0463 (10)0.0027 (8)0.0045 (7)0.0022 (9)
C130.0403 (10)0.0857 (17)0.0585 (12)0.0126 (11)0.0060 (9)0.0028 (11)
C140.0341 (9)0.0442 (12)0.0456 (10)0.0015 (8)0.0006 (7)0.0042 (9)
C150.0423 (10)0.0678 (15)0.0557 (11)0.0129 (10)0.0009 (8)0.0091 (11)
C160.0419 (10)0.0437 (12)0.0471 (10)0.0080 (9)0.0089 (8)0.0040 (9)
C170.0499 (12)0.0578 (14)0.0670 (13)0.0009 (10)0.0136 (10)0.0003 (11)
C180.0641 (14)0.0630 (16)0.0935 (18)0.0102 (12)0.0383 (13)0.0158 (14)
C190.1054 (19)0.0613 (16)0.0645 (15)0.0224 (14)0.0406 (14)0.0123 (13)
C200.0982 (18)0.0600 (16)0.0470 (12)0.0066 (13)0.0127 (11)0.0033 (11)
C210.0598 (12)0.0527 (13)0.0483 (11)0.0012 (10)0.0073 (9)0.0045 (10)
Geometric parameters (Å, º) top
O1—C21.223 (2)C16—C171.374 (3)
O2—C91.220 (2)C16—C211.380 (3)
N1—N21.3787 (19)C17—C181.381 (3)
N1—C121.318 (2)C18—C191.377 (3)
N2—C141.350 (2)C19—C201.373 (4)
N2—C161.429 (2)C20—C211.380 (3)
C1—C21.480 (2)C4—H40.9300
C1—C91.489 (2)C5—H50.9300
C1—C101.351 (2)C6—H60.9300
C2—C31.487 (2)C7—H70.9300
C3—C41.384 (2)C10—H100.9300
C3—C81.388 (2)C13—H13A0.9600
C4—C51.381 (3)C13—H13B0.9600
C5—C61.390 (3)C13—H13C0.9600
C6—C71.379 (3)C15—H15A0.9600
C7—C81.385 (2)C15—H15B0.9600
C8—C91.482 (2)C15—H15C0.9600
C10—C111.434 (2)C17—H170.9300
C11—C121.419 (2)C18—H180.9300
C11—C141.392 (2)C19—H190.9300
C12—C131.493 (2)C20—H200.9300
C14—C151.484 (2)C21—H210.9300
N2—N1—C12104.58 (13)C17—C18—C19120.1 (2)
N1—N2—C14112.65 (13)C18—C19—C20120.1 (2)
N1—N2—C16118.54 (13)C19—C20—C21120.3 (2)
C14—N2—C16128.77 (14)C16—C21—C20119.35 (19)
C2—C1—C9107.17 (14)C3—C4—H4121.00
C2—C1—C10130.24 (16)C5—C4—H4121.00
C9—C1—C10122.11 (15)C4—C5—H5120.00
O1—C2—C1128.67 (16)C6—C5—H5120.00
O1—C2—C3124.66 (16)C5—C6—H6119.00
C1—C2—C3106.57 (14)C7—C6—H6119.00
C2—C3—C4128.51 (16)C6—C7—H7121.00
C2—C3—C8109.87 (14)C8—C7—H7121.00
C4—C3—C8121.62 (16)C1—C10—H10115.00
C3—C4—C5117.97 (17)C11—C10—H10115.00
C4—C5—C6120.46 (18)C12—C13—H13A109.00
C5—C6—C7121.59 (18)C12—C13—H13B109.00
C6—C7—C8118.03 (17)C12—C13—H13C109.00
C3—C8—C7120.32 (16)H13A—C13—H13B109.00
C3—C8—C9109.58 (15)H13A—C13—H13C109.00
C7—C8—C9130.10 (16)H13B—C13—H13C109.00
O2—C9—C1126.67 (16)C14—C15—H15A109.00
O2—C9—C8126.62 (16)C14—C15—H15B109.00
C1—C9—C8106.71 (15)C14—C15—H15C109.00
C1—C10—C11130.99 (16)H15A—C15—H15B109.00
C10—C11—C12125.10 (15)H15A—C15—H15C109.00
C10—C11—C14129.85 (15)H15B—C15—H15C109.00
C12—C11—C14105.00 (15)C16—C17—H17120.00
N1—C12—C11111.71 (14)C18—C17—H17120.00
N1—C12—C13119.87 (15)C17—C18—H18120.00
C11—C12—C13128.37 (16)C19—C18—H18120.00
N2—C14—C11106.01 (14)C18—C19—H19120.00
N2—C14—C15122.38 (15)C20—C19—H19120.00
C11—C14—C15130.47 (15)C19—C20—H20120.00
N2—C16—C17119.90 (16)C21—C20—H20120.00
N2—C16—C21119.37 (16)C16—C21—H21120.00
C17—C16—C21120.70 (17)C20—C21—H21120.00
C16—C17—C18119.49 (19)
C12—N1—N2—C140.43 (19)C4—C3—C8—C70.4 (3)
C12—N1—N2—C16178.29 (15)C4—C3—C8—C9179.10 (18)
N2—N1—C12—C111.86 (19)C3—C4—C5—C61.2 (3)
N2—N1—C12—C13179.52 (16)C4—C5—C6—C70.7 (4)
N1—N2—C14—C111.14 (19)C5—C6—C7—C80.3 (3)
N1—N2—C14—C15167.82 (16)C6—C7—C8—C30.8 (3)
C16—N2—C14—C11176.44 (16)C6—C7—C8—C9178.5 (2)
C16—N2—C14—C1514.6 (3)C3—C8—C9—O2179.0 (2)
N1—N2—C16—C17130.59 (19)C3—C8—C9—C11.0 (2)
N1—N2—C16—C2147.4 (2)C7—C8—C9—O21.7 (4)
C14—N2—C16—C1746.9 (3)C7—C8—C9—C1178.41 (19)
C14—N2—C16—C21135.2 (2)C1—C10—C11—C12148.87 (18)
C9—C1—C2—O1173.0 (2)C1—C10—C11—C1434.2 (3)
C9—C1—C2—C33.3 (2)C10—C11—C12—N1179.86 (16)
C10—C1—C2—O10.9 (4)C10—C11—C12—C132.4 (3)
C10—C1—C2—C3175.33 (17)C14—C11—C12—N12.57 (19)
C2—C1—C9—O2177.3 (2)C14—C11—C12—C13180.00 (19)
C2—C1—C9—C82.7 (2)C10—C11—C14—N2179.55 (16)
C10—C1—C9—O24.5 (3)C10—C11—C14—C1511.8 (3)
C10—C1—C9—C8175.48 (16)C12—C11—C14—N22.13 (18)
C2—C1—C10—C1112.2 (3)C12—C11—C14—C15165.60 (18)
C9—C1—C10—C11176.81 (18)N2—C16—C17—C18178.80 (19)
O1—C2—C3—C46.1 (3)C21—C16—C17—C180.9 (3)
O1—C2—C3—C8173.65 (19)N2—C16—C21—C20178.66 (19)
C1—C2—C3—C4177.46 (18)C17—C16—C21—C200.7 (3)
C1—C2—C3—C82.8 (2)C16—C17—C18—C190.2 (3)
C2—C3—C4—C5179.6 (2)C17—C18—C19—C200.5 (4)
C8—C3—C4—C50.7 (3)C18—C19—C20—C210.7 (4)
C2—C3—C8—C7179.42 (18)C19—C20—C21—C160.1 (3)
C2—C3—C8—C91.1 (2)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C18—H18···O1i0.932.583.377 (3)145
Symmetry code: (i) x, y, z+1/2.

Experimental details

Crystal data
Chemical formulaC21H16N2O2
Mr328.36
Crystal system, space groupMonoclinic, C2/c
Temperature (K)296
a, b, c (Å)14.6655 (3), 7.8902 (2), 28.6651 (7)
β (°) 98.251 (1)
V3)3282.61 (13)
Z8
Radiation typeMo Kα
µ (mm1)0.09
Crystal size (mm)0.26 × 0.23 × 0.21
Data collection
DiffractometerBruker Kappa APEXII CCD
Absorption correctionMulti-scan
(SADABS; Bruker, 2005)
Tmin, Tmax0.975, 0.985
No. of measured, independent and
observed [I > 2σ(I)] reflections
12302, 2970, 2106
Rint0.034
(sin θ/λ)max1)0.600
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.042, 0.112, 1.01
No. of reflections2970
No. of parameters228
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.12, 0.23

Computer programs: APEX2 (Bruker, 2009), SAINT (Bruker, 2009), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 for Windows (Farrugia, 1997) and PLATON (Spek, 2009), WinGX (Farrugia, 1999) and PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C18—H18···O1i0.932.583.377 (3)145
Symmetry code: (i) x, y, z+1/2.
 

Acknowledgements

The authors would like to thank the Chemistry Department, King Abdulaziz University, Jeddah, Saudi Arabia, for providing research facilities.

References

First citationAsiri, A. M., Bahajaj, A. A., Ismail, I. M. I. & Fatani, N. A. (2006). Dyes Pigments, 71, 103–108.  CrossRef CAS Google Scholar
First citationAsiri, M. A. & Khan, S. A. (2009). Molbank, M635.  CrossRef Google Scholar
First citationBelyakov, S., Kampars, V., Pastors, P. J. & Tokmakov, A. (2008). Acta Cryst. E64, o1200.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationBernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555-1573.  CrossRef CAS Web of Science Google Scholar
First citationBruker (2005). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBruker (2009). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationFarrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838.  CrossRef CAS IUCr Journals Google Scholar
First citationFun, H.-K., Hemamalini, M., Asiri, A. M. & Khan, S. A. (2010). Acta Cryst. E66, o1602–o1603.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationKoyuncu, F. B., Koyuncu, S. & Ozdemir, E. (2010). Electrochim. Acta, 55, 4935–4941.  Web of Science CrossRef CAS Google Scholar
First citationKulhanek, J., Bures, F., Mikysek, T., Ludvik, J. & Pytela, O. (2011). Dyes Pigments, 90, 48–55.  CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWang, H.-Y., Chen, G., Xu, X.-P., Chen, H. & Ji, S.-J. (2011). Dyes Pigments, 88, 358–365.  Web of Science CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds