organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

2-Amino­pyridinium 5-(5-chloro-2,4-di­nitro­phen­yl)-1,3-di­methyl-2,4-dioxo-1,2,3,4-tetra­hydro­pyrimidin-6-olate

aPG & Research Department of Chemistry, Seethalakshmi Ramaswami College, Tiruchirappalli 620 002, Tamil Nadu, India
*Correspondence e-mail: kalaivbalaj@yahoo.co.in

(Received 12 November 2011; accepted 19 November 2011; online 30 November 2011)

In the title mol­ecular salt, C5H7N2+·C12H8ClN4O7, the dihedral angle between the aromatic rings of the anion is 51.88 (6)°. One of the nitro groups is disordered over two orientations in a 0.710 (6):0.290 (6) ratio. In the crystal, the cations and anions are linked by N—H⋯O hydrogen bonds, generating infinite ribbons extending along [100] which incorporate R44(22) ring motifs. Weak C—H⋯O inter­actions also occur.

Related literature

For our previous work in this area and background to barbiturate drugs, see: Kalaivani & Buvaneswari (2010[Kalaivani, D. & Buvaneswari, M. (2010). Recent Advances in Clinical Medicine, pp. 255-260. UK: WSEAS Publication.]); Kalaivani et al. (2008[Kalaivani, D., Malarvizhi, R. & Subbulakshmi, R. (2008). Med. Chem. Res. 17, 369-373.]). For a related structure, see: Swamy et al. (2008[Swamy, G. Y. S. K., Sridhar, B., Ravikumar, K. & Sadanandam, Y. S. (2008). Acta Cryst. C64, o80-o83.]).

[Scheme 1]

Experimental

Crystal data
  • C5H7N2+·C12H8ClN4O7

  • Mr = 450.80

  • Monoclinic, P 21 /c

  • a = 8.578 (5) Å

  • b = 11.229 (5) Å

  • c = 19.952 (5) Å

  • β = 94.952 (5)°

  • V = 1914.7 (15) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.26 mm−1

  • T = 293 K

  • 0.30 × 0.20 × 0.20 mm

Data collection
  • Bruker Kappa APEXII CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2004[Bruker (2004). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.882, Tmax = 0.941

  • 19182 measured reflections

  • 4053 independent reflections

  • 2996 reflections with I > 2σ(I)

  • Rint = 0.032

Refinement
  • R[F2 > 2σ(F2)] = 0.044

  • wR(F2) = 0.124

  • S = 1.06

  • 4053 reflections

  • 315 parameters

  • 28 restraints

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.38 e Å−3

  • Δρmin = −0.25 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N5—H5A⋯O1i 0.856 (19) 1.882 (19) 2.730 (3) 170.8 (19)
N6—H6A⋯O2ii 0.85 (2) 1.976 (19) 2.805 (3) 163 (3)
N6—H6B⋯O3 0.85 (2) 2.12 (2) 2.883 (3) 150 (2)
C9—H9⋯O2iii 0.93 2.51 3.097 (3) 121
C9—H9⋯O7iv 0.93 2.57 3.285 (3) 134
C11—H11C⋯O5v 0.96 2.59 3.241 (4) 126
Symmetry codes: (i) -x+2, -y+1, -z; (ii) x-1, y, z; (iii) -x+2, -y, -z; (iv) -x+1, -y, -z; (v) [x, -y+{\script{1\over 2}}, z-{\script{1\over 2}}].

Data collection: APEX2 (Bruker, 2004[Bruker (2004). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2004[Bruker (2004). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SIR92 (Altomare et al., 1993[Altomare, A., Cascarano, G., Giacovazzo, C. & Guagliardi, A. (1993). J. Appl. Cryst. 26, 343-350.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]) and Mercury (Macrae et al., 2006[Macrae, C. F., Edgington, P. R., McCabe, P., Pidcock, E., Shields, G. P., Taylor, R., Towler, M. & van de Streek, J. (2006). J. Appl. Cryst. 39, 453-457.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

As part of our ongoing studies of water soluble barbiturates (Kalaivani et al.,2008; Kalaivani & Buvaneswari, 2010), we now report the title barbiturate salt, (I), which has reasonable solubility in polar solvents (water 0.5 g/100 ml; ethanol 1.3 g/100 ml; DMSO 10.1 g/100 ml). As single-crystal X-ray diffraction studies help to understand drug-target interaction (Swamy et al., 2008), the present study may probably help to understand the mechanism of action of barbiturates with biological systems. The cation and anion parts of the title molecule are shown in the Scheme. Fig.1 and Fig.2 are the ORTEP and packing views of the title molecular salt respectively. The dihedral angle between the chlorodinitrophenyl ring and 1,3-dimethylbarbiturate ring is observed to be 51.88 (6)°. The nitro group at the para position is disordered over two positions with percentage of occupancy 71 and 29.

Related literature top

For our previous work in this area and background to barbiturate drugs, see: Kalaivani & Buvaneswari (2010); Kalaivani et al. (2008). For a related structure, see: Swamy et al. (2008).

Experimental top

1,3-Dichloro-4,6-dinitrobenzene (1.18 g, 0.005 mol) was dissolved in 20 ml of absolute alcohol. To this, 0.78 g (0.005 mol) of 1,3-dimethylbarbituric acid was added and the temperature of the mixture was raised to 50°C. To this mixture 1.88 g (0.02 mol) of 2-aminopyridine in 20 ml of absolute alcohol was added. This mixture was shaken well for 2–5 h and kept as such at 25°C for 2 days. On standing, crystals came out from the solution which were filtered and dried. The dry orange colored crystals obtained were powdered well, washed with absolute alcohol and dry ether and then recrystallized from absolute alcohol (yield: 70%; m.pt: 233°C (decomposes at its melting point). Colourless blocks of (I) were obtained by slow evaporation of ethanol at room temperature.

Refinement top

The H atoms of the pyridine nitrogen atoms (H5A, H6A & H6B) were located in difference Fourier maps and refined as riding in their as-found relative positions. The other H atoms were positioned geometrically and were refined using a riding model.

Structure description top

As part of our ongoing studies of water soluble barbiturates (Kalaivani et al.,2008; Kalaivani & Buvaneswari, 2010), we now report the title barbiturate salt, (I), which has reasonable solubility in polar solvents (water 0.5 g/100 ml; ethanol 1.3 g/100 ml; DMSO 10.1 g/100 ml). As single-crystal X-ray diffraction studies help to understand drug-target interaction (Swamy et al., 2008), the present study may probably help to understand the mechanism of action of barbiturates with biological systems. The cation and anion parts of the title molecule are shown in the Scheme. Fig.1 and Fig.2 are the ORTEP and packing views of the title molecular salt respectively. The dihedral angle between the chlorodinitrophenyl ring and 1,3-dimethylbarbiturate ring is observed to be 51.88 (6)°. The nitro group at the para position is disordered over two positions with percentage of occupancy 71 and 29.

For our previous work in this area and background to barbiturate drugs, see: Kalaivani & Buvaneswari (2010); Kalaivani et al. (2008). For a related structure, see: Swamy et al. (2008).

Computing details top

Data collection: APEX2 (Bruker, 2004); cell refinement: SAINT (Bruker, 2004); data reduction: SAINT (Bruker, 2004); program(s) used to solve structure: SIR92 (Altomare et al., 1993); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997) and Mercury (Macrae et al., 2006); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound showing 30% displacement ellipsoids. Only one orientation of the disordered nitro group is shown.
[Figure 2] Fig. 2. Packing view of (I).
2-Aminopyridinium 5-(5-chloro-2,4-dinitrophenyl)-1,3-dimethyl-2,4-dioxo- 1,2,3,4-tetrahydropyrimidin-6-olate top
Crystal data top
C5H7N2+·C12H8ClN4O7F(000) = 928
Mr = 450.80Dx = 1.564 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 4951 reflections
a = 8.578 (5) Åθ = 2.4–25.1°
b = 11.229 (5) ŵ = 0.26 mm1
c = 19.952 (5) ÅT = 293 K
β = 94.952 (5)°Block, colourless
V = 1914.7 (15) Å30.30 × 0.20 × 0.20 mm
Z = 4
Data collection top
Bruker Kappa APEXII CCD
diffractometer
4053 independent reflections
Radiation source: fine-focus sealed tube2996 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.032
ω and φ scanθmax = 26.7°, θmin = 2.1°
Absorption correction: multi-scan
(SADABS; Bruker, 2004)
h = 910
Tmin = 0.882, Tmax = 0.941k = 1414
19182 measured reflectionsl = 1825
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.044H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.124 w = 1/[σ2(Fo2) + (0.0563P)2 + 0.6796P]
where P = (Fo2 + 2Fc2)/3
S = 1.06(Δ/σ)max = 0.001
4053 reflectionsΔρmax = 0.38 e Å3
315 parametersΔρmin = 0.25 e Å3
28 restraintsExtinction correction: SHELXL97 (Sheldrick, 2008), FC*=KFC[1+0.001XFC2Λ3/SIN(2Θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.0051 (11)
Crystal data top
C5H7N2+·C12H8ClN4O7V = 1914.7 (15) Å3
Mr = 450.80Z = 4
Monoclinic, P21/cMo Kα radiation
a = 8.578 (5) ŵ = 0.26 mm1
b = 11.229 (5) ÅT = 293 K
c = 19.952 (5) Å0.30 × 0.20 × 0.20 mm
β = 94.952 (5)°
Data collection top
Bruker Kappa APEXII CCD
diffractometer
4053 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2004)
2996 reflections with I > 2σ(I)
Tmin = 0.882, Tmax = 0.941Rint = 0.032
19182 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.04428 restraints
wR(F2) = 0.124H atoms treated by a mixture of independent and constrained refinement
S = 1.06Δρmax = 0.38 e Å3
4053 reflectionsΔρmin = 0.25 e Å3
315 parameters
Special details top

Geometry. Bond distances, angles etc. have been calculated using the rounded fractional coordinates. All su's are estimated from the variances of the (full) variance-covariance matrix. The cell e.s.d.'s are taken into account in the estimation of distances, angles and torsion angles

Refinement. Refinement on F2 for ALL reflections except those flagged by the user for potential systematic errors. Weighted R-factors wR and all goodnesses of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The observed criterion of F2 > σ(F2) is used only for calculating -R-factor-obs etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R-factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
Cl11.03304 (8)0.08804 (7)0.22906 (3)0.0650 (2)
O11.11087 (18)0.53725 (16)0.12650 (8)0.0532 (6)
O21.24783 (16)0.23068 (14)0.01566 (8)0.0460 (5)
O30.72232 (15)0.33672 (15)0.03589 (7)0.0459 (5)
O40.7709 (6)0.1850 (3)0.15232 (19)0.1030 (18)0.710 (6)
O50.7145 (5)0.0500 (3)0.22061 (16)0.0947 (14)0.710 (6)
O60.8277 (2)0.09835 (17)0.09732 (8)0.0562 (6)
O70.6060 (2)0.0610 (2)0.05967 (10)0.0784 (8)
N10.91735 (19)0.43435 (15)0.08264 (8)0.0365 (5)
N21.17873 (18)0.38319 (16)0.05623 (8)0.0388 (5)
N30.7806 (3)0.0840 (2)0.17169 (11)0.0648 (9)
N40.7452 (2)0.08402 (17)0.05157 (9)0.0448 (6)
C11.0719 (2)0.4558 (2)0.09035 (10)0.0381 (6)
C21.1398 (2)0.29008 (19)0.01345 (10)0.0365 (6)
C30.9800 (2)0.27172 (18)0.00748 (10)0.0350 (6)
C40.8653 (2)0.34440 (18)0.04092 (9)0.0351 (6)
C50.9311 (2)0.17671 (18)0.03654 (10)0.0345 (6)
C60.9943 (2)0.1711 (2)0.10340 (10)0.0398 (6)
C70.9474 (2)0.0883 (2)0.14804 (10)0.0408 (7)
C80.8320 (2)0.00736 (19)0.12644 (11)0.0423 (7)
C90.7662 (2)0.00879 (19)0.06162 (11)0.0417 (7)
C100.8161 (2)0.09193 (18)0.01787 (10)0.0355 (6)
C110.8007 (3)0.5095 (2)0.11964 (11)0.0456 (7)
C121.3446 (2)0.4019 (2)0.06582 (13)0.0545 (8)
O4'0.6703 (16)0.1204 (15)0.1656 (8)0.152 (5)0.290 (6)
O5'0.8902 (10)0.1336 (8)0.2104 (5)0.102 (3)0.290 (6)
N50.6809 (2)0.31348 (18)0.17967 (10)0.0481 (6)
N60.5498 (2)0.2728 (2)0.07658 (10)0.0532 (7)
C130.5615 (2)0.2616 (2)0.14244 (11)0.0400 (7)
C140.4528 (3)0.1982 (2)0.17685 (12)0.0495 (8)
C150.4704 (3)0.1919 (3)0.24481 (13)0.0594 (9)
C160.5962 (3)0.2470 (3)0.28138 (13)0.0619 (9)
C170.6990 (3)0.3063 (2)0.24771 (13)0.0575 (9)
H61.071200.225700.118200.0480*
H11B0.711600.462000.135100.0680*
H11C0.845100.544400.157600.0680*
H12A1.353900.436700.109200.0820*
H12B1.398400.326900.063000.0820*
H12C1.390000.454400.031500.0820*
H90.688700.045700.047400.0500*
H11A0.768600.571400.090600.0680*
H5A0.744 (2)0.3561 (18)0.1589 (10)0.049 (7)*
H6A0.467 (2)0.249 (3)0.0536 (13)0.073 (9)*
H6B0.623 (2)0.302 (2)0.0556 (12)0.069 (8)*
H140.368700.160500.153100.0590*
H150.397400.150200.267500.0710*
H160.608000.242500.328100.0740*
H170.784100.343200.271200.0690*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cl10.0728 (4)0.0825 (5)0.0377 (3)0.0051 (3)0.0068 (3)0.0101 (3)
O10.0544 (9)0.0594 (11)0.0458 (9)0.0187 (8)0.0043 (7)0.0157 (8)
O20.0325 (7)0.0504 (9)0.0544 (9)0.0007 (6)0.0004 (6)0.0074 (8)
O30.0312 (7)0.0556 (10)0.0516 (9)0.0007 (7)0.0071 (6)0.0137 (8)
O40.186 (4)0.0408 (19)0.091 (3)0.016 (2)0.063 (3)0.0045 (17)
O50.149 (3)0.082 (2)0.0616 (19)0.041 (2)0.058 (2)0.0098 (17)
O60.0605 (10)0.0705 (12)0.0379 (9)0.0008 (8)0.0061 (7)0.0040 (8)
O70.0489 (10)0.1158 (18)0.0668 (12)0.0312 (11)0.0159 (8)0.0137 (12)
N10.0365 (8)0.0383 (10)0.0345 (9)0.0047 (7)0.0023 (7)0.0049 (8)
N20.0319 (8)0.0457 (11)0.0397 (9)0.0083 (7)0.0079 (7)0.0043 (8)
N30.0844 (17)0.0585 (16)0.0519 (14)0.0244 (13)0.0078 (12)0.0123 (12)
N40.0436 (10)0.0453 (11)0.0443 (10)0.0049 (8)0.0024 (8)0.0028 (9)
C10.0434 (11)0.0418 (12)0.0292 (10)0.0116 (9)0.0035 (8)0.0015 (9)
C20.0334 (10)0.0394 (12)0.0368 (11)0.0061 (8)0.0030 (8)0.0013 (9)
C30.0322 (10)0.0380 (11)0.0347 (10)0.0040 (8)0.0027 (8)0.0035 (9)
C40.0349 (10)0.0370 (11)0.0338 (10)0.0045 (8)0.0049 (8)0.0015 (9)
C50.0285 (9)0.0361 (11)0.0390 (11)0.0009 (8)0.0040 (8)0.0023 (9)
C60.0370 (10)0.0408 (12)0.0408 (11)0.0062 (9)0.0003 (8)0.0027 (10)
C70.0460 (11)0.0416 (12)0.0345 (11)0.0016 (9)0.0015 (9)0.0038 (10)
C80.0479 (12)0.0378 (12)0.0426 (12)0.0017 (9)0.0113 (9)0.0075 (10)
C90.0379 (10)0.0377 (12)0.0495 (12)0.0060 (9)0.0047 (9)0.0010 (10)
C100.0330 (9)0.0382 (11)0.0349 (10)0.0002 (8)0.0011 (8)0.0017 (9)
C110.0496 (12)0.0420 (13)0.0441 (12)0.0024 (10)0.0028 (9)0.0092 (10)
C120.0361 (11)0.0690 (17)0.0598 (15)0.0140 (11)0.0121 (10)0.0068 (13)
O4'0.117 (7)0.166 (9)0.170 (9)0.057 (7)0.003 (6)0.078 (8)
O5'0.096 (5)0.092 (6)0.116 (6)0.000 (4)0.007 (4)0.078 (5)
N50.0361 (9)0.0528 (12)0.0555 (12)0.0102 (8)0.0046 (8)0.0082 (10)
N60.0390 (11)0.0754 (15)0.0458 (12)0.0071 (10)0.0080 (9)0.0075 (11)
C130.0328 (10)0.0425 (12)0.0451 (12)0.0019 (9)0.0066 (8)0.0022 (10)
C140.0414 (11)0.0566 (15)0.0512 (14)0.0118 (10)0.0081 (10)0.0022 (12)
C150.0610 (15)0.0685 (18)0.0508 (14)0.0150 (13)0.0166 (12)0.0058 (13)
C160.0702 (16)0.0725 (18)0.0429 (13)0.0057 (14)0.0048 (12)0.0003 (13)
C170.0535 (14)0.0628 (17)0.0542 (15)0.0091 (12)0.0064 (11)0.0014 (13)
Geometric parameters (Å, º) top
Cl1—C71.717 (2)C3—C41.402 (3)
O1—C11.229 (3)C3—C51.466 (3)
O2—C21.244 (3)C5—C61.397 (3)
O3—C41.242 (2)C5—C101.398 (3)
O4—N31.199 (4)C6—C71.372 (3)
O4'—N31.028 (15)C7—C81.385 (3)
O5—N31.231 (4)C8—C91.366 (3)
O5'—N31.290 (10)C9—C101.372 (3)
O6—N41.213 (3)C6—H60.9300
O7—N41.219 (3)C9—H90.9300
N1—C41.406 (3)C11—H11C0.9600
N1—C11.369 (3)C11—H11A0.9600
N1—C111.460 (3)C11—H11B0.9600
N2—C121.467 (2)C12—H12A0.9600
N2—C21.408 (3)C12—H12B0.9600
N2—C11.364 (3)C12—H12C0.9600
N3—C81.460 (3)C13—C141.399 (3)
N4—C101.467 (3)C14—C151.353 (4)
N5—C131.345 (3)C15—C161.394 (4)
N5—C171.355 (3)C16—C171.332 (4)
N6—C131.315 (3)C14—H140.9300
N5—H5A0.856 (19)C15—H150.9300
N6—H6B0.85 (2)C16—H160.9300
N6—H6A0.85 (2)C17—H170.9300
C2—C31.401 (3)
C1—N1—C4123.57 (17)C6—C7—C8118.99 (19)
C1—N1—C11118.01 (17)N3—C8—C7121.0 (2)
C4—N1—C11118.42 (16)N3—C8—C9118.15 (19)
C1—N2—C2124.21 (16)C7—C8—C9120.85 (19)
C1—N2—C12117.82 (17)C8—C9—C10118.98 (18)
C2—N2—C12117.96 (16)C5—C10—C9123.07 (19)
O4—N3—O5121.7 (3)N4—C10—C5121.22 (18)
O4—N3—C8118.8 (3)N4—C10—C9115.67 (17)
O5—N3—C8117.2 (2)C5—C6—H6119.00
O4'—N3—C8122.0 (9)C7—C6—H6119.00
O5'—N3—C8115.5 (4)C10—C9—H9121.00
O4'—N3—O5'121.0 (10)C8—C9—H9120.00
O6—N4—O7123.84 (19)H11A—C11—H11C110.00
O6—N4—C10118.78 (17)N1—C11—H11A109.00
O7—N4—C10117.37 (17)N1—C11—H11B109.00
C13—N5—C17122.9 (2)H11A—C11—H11B110.00
C17—N5—H5A119.7 (13)H11B—C11—H11C109.00
C13—N5—H5A117.3 (13)N1—C11—H11C109.00
C13—N6—H6B122.2 (15)H12B—C12—H12C109.00
C13—N6—H6A119.6 (17)H12A—C12—H12C109.00
H6A—N6—H6B118 (2)N2—C12—H12A109.00
O1—C1—N1120.80 (18)N2—C12—H12B109.00
N1—C1—N2117.01 (18)N2—C12—H12C109.00
O1—C1—N2122.19 (17)H12A—C12—H12B109.00
O2—C2—N2118.36 (16)N5—C13—C14117.2 (2)
O2—C2—C3125.17 (19)N6—C13—C14122.84 (19)
N2—C2—C3116.47 (17)N5—C13—N6119.95 (19)
C4—C3—C5118.91 (16)C13—C14—C15119.8 (2)
C2—C3—C4121.69 (18)C14—C15—C16121.0 (3)
C2—C3—C5119.38 (17)C15—C16—C17118.3 (2)
O3—C4—C3125.33 (18)N5—C17—C16120.8 (2)
O3—C4—N1117.64 (17)C13—C14—H14120.00
N1—C4—C3117.02 (16)C15—C14—H14120.00
C3—C5—C10124.59 (18)C14—C15—H15120.00
C6—C5—C10115.49 (18)C16—C15—H15119.00
C3—C5—C6119.82 (17)C15—C16—H16121.00
C5—C6—C7122.62 (18)C17—C16—H16121.00
Cl1—C7—C8121.88 (17)N5—C17—H17120.00
Cl1—C7—C6119.14 (15)C16—C17—H17120.00
C4—N1—C1—O1178.55 (19)O2—C2—C3—C50.7 (3)
C11—N1—C1—O11.2 (3)C2—C3—C4—O3176.86 (19)
C4—N1—C1—N21.4 (3)C4—C3—C5—C1050.9 (3)
C11—N1—C1—N2178.89 (18)C2—C3—C5—C10131.1 (2)
C1—N1—C4—C31.9 (3)C4—C3—C5—C6125.3 (2)
C11—N1—C4—C3178.34 (18)C5—C3—C4—O31.1 (3)
C1—N1—C4—O3177.10 (18)C2—C3—C5—C652.7 (3)
C11—N1—C4—O32.6 (3)C2—C3—C4—N12.1 (3)
C1—N2—C2—O2179.13 (19)C5—C3—C4—N1179.97 (18)
C2—N2—C1—N11.0 (3)C6—C5—C10—N4177.07 (17)
C12—N2—C1—N1177.76 (18)C3—C5—C10—N46.6 (3)
C2—N2—C1—O1178.9 (2)C3—C5—C10—C9175.78 (18)
C12—N2—C1—O12.3 (3)C6—C5—C10—C90.5 (3)
C12—N2—C2—C3177.59 (19)C10—C5—C6—C70.0 (3)
C12—N2—C2—O22.2 (3)C3—C5—C6—C7176.49 (18)
C1—N2—C2—C31.1 (3)C5—C6—C7—Cl1179.60 (16)
O5—N3—C8—C9116.6 (3)C5—C6—C7—C80.5 (3)
O4—N3—C8—C946.4 (4)C6—C7—C8—C90.5 (3)
O5—N3—C8—C765.2 (3)Cl1—C7—C8—C9179.60 (16)
O4—N3—C8—C7131.8 (3)C6—C7—C8—N3178.68 (19)
O6—N4—C10—C538.9 (3)Cl1—C7—C8—N31.4 (3)
O7—N4—C10—C5142.5 (2)N3—C8—C9—C10178.23 (19)
O7—N4—C10—C939.8 (3)C7—C8—C9—C100.0 (3)
O6—N4—C10—C9138.9 (2)C8—C9—C10—C50.5 (3)
C13—N5—C17—C160.6 (4)C8—C9—C10—N4177.19 (17)
C17—N5—C13—C140.1 (3)N5—C13—C14—C150.4 (3)
C17—N5—C13—N6179.4 (2)N6—C13—C14—C15178.9 (2)
N2—C2—C3—C5179.65 (17)C13—C14—C15—C160.5 (4)
O2—C2—C3—C4178.6 (2)C14—C15—C16—C170.0 (5)
N2—C2—C3—C41.7 (3)C15—C16—C17—N50.5 (4)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N5—H5A···O1i0.856 (19)1.882 (19)2.730 (3)170.8 (19)
N6—H6A···O2ii0.85 (2)1.976 (19)2.805 (3)163 (3)
N6—H6B···O30.85 (2)2.12 (2)2.883 (3)150 (2)
C9—H9···O2iii0.932.513.097 (3)121
C9—H9···O7iv0.932.573.285 (3)134
C11—H11C···O5v0.962.593.241 (4)126
Symmetry codes: (i) x+2, y+1, z; (ii) x1, y, z; (iii) x+2, y, z; (iv) x+1, y, z; (v) x, y+1/2, z1/2.

Experimental details

Crystal data
Chemical formulaC5H7N2+·C12H8ClN4O7
Mr450.80
Crystal system, space groupMonoclinic, P21/c
Temperature (K)293
a, b, c (Å)8.578 (5), 11.229 (5), 19.952 (5)
β (°) 94.952 (5)
V3)1914.7 (15)
Z4
Radiation typeMo Kα
µ (mm1)0.26
Crystal size (mm)0.30 × 0.20 × 0.20
Data collection
DiffractometerBruker Kappa APEXII CCD
Absorption correctionMulti-scan
(SADABS; Bruker, 2004)
Tmin, Tmax0.882, 0.941
No. of measured, independent and
observed [I > 2σ(I)] reflections
19182, 4053, 2996
Rint0.032
(sin θ/λ)max1)0.633
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.044, 0.124, 1.06
No. of reflections4053
No. of parameters315
No. of restraints28
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.38, 0.25

Computer programs: APEX2 (Bruker, 2004), SAINT (Bruker, 2004), SIR92 (Altomare et al., 1993), SHELXL97 (Sheldrick, 2008), ORTEP-3 (Farrugia, 1997) and Mercury (Macrae et al., 2006).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N5—H5A···O1i0.856 (19)1.882 (19)2.730 (3)170.8 (19)
N6—H6A···O2ii0.85 (2)1.976 (19)2.805 (3)163 (3)
N6—H6B···O30.85 (2)2.12 (2)2.883 (3)150 (2)
C9—H9···O2iii0.93002.513.097 (3)121
C9—H9···O7iv0.93002.573.285 (3)134
C11—H11C···O5v0.96002.593.241 (4)126
Symmetry codes: (i) x+2, y+1, z; (ii) x1, y, z; (iii) x+2, y, z; (iv) x+1, y, z; (v) x, y+1/2, z1/2.
 

Acknowledgements

The authors are thankful to the SAIF, IIT Madras, for the data collection.

References

First citationAltomare, A., Cascarano, G., Giacovazzo, C. & Guagliardi, A. (1993). J. Appl. Cryst. 26, 343–350.  CrossRef Web of Science IUCr Journals Google Scholar
First citationBruker (2004). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationKalaivani, D. & Buvaneswari, M. (2010). Recent Advances in Clinical Medicine, pp. 255-260. UK: WSEAS Publication.  Google Scholar
First citationKalaivani, D., Malarvizhi, R. & Subbulakshmi, R. (2008). Med. Chem. Res. 17, 369–373.  Web of Science CrossRef CAS Google Scholar
First citationMacrae, C. F., Edgington, P. R., McCabe, P., Pidcock, E., Shields, G. P., Taylor, R., Towler, M. & van de Streek, J. (2006). J. Appl. Cryst. 39, 453–457.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSwamy, G. Y. S. K., Sridhar, B., Ravikumar, K. & Sadanandam, Y. S. (2008). Acta Cryst. C64, o80–o83.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds