organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

(E)-1-(5-Bromo­thio­phen-2-yl)-3-(3,4,5-trimeth­­oxy­phen­yl)prop-2-en-1-one

aInstitute of Pharmacy, GITAM University, Visakhapatnam-45, Andhrapradesh, India, bDepartment of Physics, Yuvaraja's College (Constituent College), University of Mysore, Mysore 570 005, Karnataka, India, and cKaruna College of Pharmacy, Thirumittacode, Palakad 679 533, Kerala, India
*Correspondence e-mail: vsb.gip@gitam.in

(Received 14 November 2011; accepted 18 November 2011; online 30 November 2011)

In the title compound, C16H15BrO4S, the dihedral angle between the thio­phene and benzene rings is 13.08 (16)°. The C atoms of the meta meth­oxy groups of the substituted benzene ring lie close to the plane of the ring [displacements = 0.049 (5) and −0.022 (4) Å], whereas the para-C atom is significantly displaced [−1.052 (4) Å]. In the crystal, mol­ecules are linked by weak C—H⋯O hydrogen bonds, forming C(11) chains propagating in [100].

Related literature

For general background to chalcones see: Chun et al. (2001[Chun, N. L., Hsin, K. H., Horng, H. K., Mei, F. H., Hsien, C. L., Ya, L. C., Mei, I. C., Jaw, J. K., Jih, P. W. & Che, M. T. (2001). Drug Dev Res. 53, 9-14.]); Horng et al. (2003[Horng, H. K., Lo, T. T., Kun, L. Y., Cheng, T. L., Jih, P. W. & Chun, N. L. (2003). Bioorg. Med. Chem. 1, 105-111.]); Mei et al. (2003[Mei, L., Prapon, W., Simon, L. C., Agnes, L. C. T. & Mei, L. G. (2003). Bioorg. Med. Chem. 11, 2729-2738.]).

[Scheme 1]

Experimental

Crystal data
  • C16H15BrO4S

  • Mr = 383.25

  • Orthorhombic, P b c a

  • a = 16.8923 (7) Å

  • b = 8.0793 (6) Å

  • c = 23.6427 (17) Å

  • V = 3226.7 (4) Å3

  • Z = 8

  • Mo Kα radiation

  • μ = 2.69 mm−1

  • T = 293 K

  • 0.22 × 0.15 × 0.12 mm

Data collection
  • Oxford Diffraction Xcalibur diffractometer

  • Absorption correction: multi-scan (CrysAlis PRO RED; Oxford Diffraction, 2010[Oxford Diffraction (2010). CrysAlis PRO CCD and CrysAlis PRO RED. Oxford Diffraction Ltd, Yarnton, England.]) Tmin = 0.625, Tmax = 1.000

  • 17608 measured reflections

  • 2833 independent reflections

  • 1944 reflections with I > 2σ(I)

  • Rint = 0.055

Refinement
  • R[F2 > 2σ(F2)] = 0.042

  • wR(F2) = 0.074

  • S = 0.99

  • 2833 reflections

  • 200 parameters

  • H-atom parameters constrained

  • Δρmax = 0.37 e Å−3

  • Δρmin = −0.30 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C21—H21⋯O6i 0.93 2.46 3.320 (4) 155
Symmetry code: (i) [x-{\script{1\over 2}}, y, -z+{\script{1\over 2}}].

Data collection: CrysAlis PRO CCD (Oxford Diffraction, 2010[Oxford Diffraction (2010). CrysAlis PRO CCD and CrysAlis PRO RED. Oxford Diffraction Ltd, Yarnton, England.]); cell refinement: CrysAlis PRO CCD; data reduction: CrysAlis PRO RED (Oxford Diffraction, 2010[Oxford Diffraction (2010). CrysAlis PRO CCD and CrysAlis PRO RED. Oxford Diffraction Ltd, Yarnton, England.]); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]) and CAMERON (Watkin et al., 1993[Watkin, D. J., Pearce, L. & Prout, C. K. (1993). CAMERON. Chemical Crystallography Laboratory, University of Oxford, England.]); software used to prepare material for publication: WinGX (Farrugia, 1999[Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.]).

Supporting information


Comment top

Chalcones are alpha beta unsaturated ketones, widely distributed in nature and are extensively studied for their biological activity (e.g. Chun et al., 2001; Horng et al., 2003; Mei et al., 2003). In this paper we report the crystal structure of the title chalcone derivative, (I) (Fig. 1).

The unit cell contains eight molecules. The five-membered thiophene ring (S2\C19\···C22) is not coplanar with the phenyl ring (C10\C11\···C15) system; the dihedral angle between the two planes is 13.08 (16)°. The crystal structure displays intermolecular C21—H21···O6 and weak intramolecular C8—H8B···O5 and C9—H9B···O4 hydrogen bonds (Table 1). The packing of molecules in the crystal structure is depicted in Fig. 2.

Related literature top

For general background to chalcones see: Chun et al. (2001); Horng et al. (2003); Mei et al. (2003).

Experimental top

A mixture of 2-acetyl-5-BromoThiophene (0.01 mole) and 3,4,5-trimethoxybenzaldehyde (0.01 mole) were stirred in ethanol (30 ml) and then an aqueous solution of potassium hydroxide (40%,15 ml)was added to it. The mixture was kept over night at room temperature and then it was poured into crushed ice and acidified with dilute hydrochloric acid. The precipiteted chalcone was filtered and crystallized from ethanol to yield colourless prisms of (I).

Refinement top

All H atoms were positioned at calculated positions C—H = 0.93Å for aromatic H and C—H = 0.96Å for methyl H and refined using a riding model with Uiso(H) = 1.2Ueq(C)for aromatic and Uiso(H) = 1.2Ueq(C)for for methyl H.

Structure description top

Chalcones are alpha beta unsaturated ketones, widely distributed in nature and are extensively studied for their biological activity (e.g. Chun et al., 2001; Horng et al., 2003; Mei et al., 2003). In this paper we report the crystal structure of the title chalcone derivative, (I) (Fig. 1).

The unit cell contains eight molecules. The five-membered thiophene ring (S2\C19\···C22) is not coplanar with the phenyl ring (C10\C11\···C15) system; the dihedral angle between the two planes is 13.08 (16)°. The crystal structure displays intermolecular C21—H21···O6 and weak intramolecular C8—H8B···O5 and C9—H9B···O4 hydrogen bonds (Table 1). The packing of molecules in the crystal structure is depicted in Fig. 2.

For general background to chalcones see: Chun et al. (2001); Horng et al. (2003); Mei et al. (2003).

Computing details top

Data collection: CrysAlis PRO CCD (Oxford Diffraction, 2010); cell refinement: CrysAlis PRO CCD (Oxford Diffraction, 2010); data reduction: CrysAlis PRO RED (Oxford Diffraction, 2010); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997) and CAMERON (Watkin et al., 1993); software used to prepare material for publication: WinGX (Farrugia, 1999).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound. Displacement ellipsoids are drawn at the 50% probability level. The H atoms are shown as spheres of arbitrary radii.
[Figure 2] Fig. 2. Packing of the molecules when viewed down the b axis.
(E)-1-(5-Bromothiophen-2-yl)-3-(3,4,5-trimethoxyphenyl)prop-2-en-1-one top
Crystal data top
C16H15BrO4SDx = 1.578 Mg m3
Mr = 383.25Melting point: 421 K
Orthorhombic, PbcaMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ac 2abCell parameters from 2833 reflections
a = 16.8923 (7) Åθ = 2.4–25.0°
b = 8.0793 (6) ŵ = 2.69 mm1
c = 23.6427 (17) ÅT = 293 K
V = 3226.7 (4) Å3Prism, colourless
Z = 80.22 × 0.15 × 0.12 mm
F(000) = 1552
Data collection top
Oxford Diffraction Xcalibur
diffractometer
2833 independent reflections
Radiation source: Mova (Mo) X-ray Source1944 reflections with I > 2σ(I)
Mirror monochromatorRint = 0.055
Detector resolution: 16.0839 pixels mm-1θmax = 25.0°, θmin = 2.4°
ω scansh = 2020
Absorption correction: multi-scan
(CrysAlis PRO RED; Oxford Diffraction, 2010)
k = 98
Tmin = 0.625, Tmax = 1.000l = 2827
17608 measured reflections
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.042H-atom parameters constrained
wR(F2) = 0.074 w = 1/[σ2(Fo2) + (0.0142P)2]
where P = (Fo2 + 2Fc2)/3
S = 0.99(Δ/σ)max = 0.001
2833 reflectionsΔρmax = 0.37 e Å3
200 parametersΔρmin = 0.30 e Å3
0 restraintsExtinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.00037 (6)
Crystal data top
C16H15BrO4SV = 3226.7 (4) Å3
Mr = 383.25Z = 8
Orthorhombic, PbcaMo Kα radiation
a = 16.8923 (7) ŵ = 2.69 mm1
b = 8.0793 (6) ÅT = 293 K
c = 23.6427 (17) Å0.22 × 0.15 × 0.12 mm
Data collection top
Oxford Diffraction Xcalibur
diffractometer
2833 independent reflections
Absorption correction: multi-scan
(CrysAlis PRO RED; Oxford Diffraction, 2010)
1944 reflections with I > 2σ(I)
Tmin = 0.625, Tmax = 1.000Rint = 0.055
17608 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0420 restraints
wR(F2) = 0.074H-atom parameters constrained
S = 0.99Δρmax = 0.37 e Å3
2833 reflectionsΔρmin = 0.30 e Å3
200 parameters
Special details top

Experimental. CrysAlis PRO, Oxford Diffraction Ltd., Version 1.171.33.55 (release 05–01–2010 CrysAlis171. NET) Empirical absorption correction using spherical harmonics, implemented in SCALE3 ABSPACK scaling algorithm.

IR (KBr) 1653.9, 1597.8, 1071.2, 811.3 cm-1. 1H-NMR (300 MHz, CDCl3): δ 7.755–7.806 (s, 2 H, Ar–H), 7.114–7.251 (m, 4H, Ar–H and HC=CH), 3.922–3.942 (s, 9 H, OCH3).

Geometry. All s.u.'s (except the s.u. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell s.u.'s are taken into account individually in the estimation of s.u.'s in distances, angles and torsion angles; correlations between s.u.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell s.u.'s is used for estimating s.u.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Br10.22995 (2)0.12039 (5)0.462527 (19)0.05957 (17)
S20.40847 (5)0.19214 (12)0.47450 (4)0.0457 (3)
O30.58044 (13)0.2459 (3)0.47770 (11)0.0554 (7)
O40.97395 (13)0.0142 (3)0.35359 (11)0.0548 (7)
O50.93207 (14)0.0951 (3)0.25109 (10)0.0536 (7)
O60.78125 (15)0.1434 (3)0.22387 (10)0.0584 (8)
C70.7010 (2)0.1558 (6)0.20613 (17)0.0786 (15)
H7A0.69880.20540.16930.118*
H7B0.67790.04730.20470.118*
H7C0.67210.22310.23250.118*
C80.9680 (2)0.2507 (5)0.25738 (19)0.0836 (16)
H8A1.00710.26550.22830.125*
H8B0.92850.33580.25430.125*
H8C0.99290.25720.29380.125*
C90.9990 (2)0.0853 (5)0.40581 (16)0.0609 (12)
H9A1.05570.08250.40800.091*
H9B0.97700.02330.43670.091*
H9C0.98110.19790.40790.091*
C100.8948 (2)0.0080 (4)0.34261 (15)0.0413 (9)
C110.8748 (2)0.0580 (4)0.29009 (14)0.0394 (9)
C120.7953 (2)0.0746 (5)0.27587 (15)0.0451 (10)
C130.7371 (2)0.0232 (4)0.31290 (15)0.0433 (10)
H130.68410.03550.30310.052*
C140.7572 (2)0.0468 (4)0.36467 (15)0.0379 (9)
C150.8364 (2)0.0618 (4)0.37962 (14)0.0420 (9)
H150.85020.10780.41430.050*
C160.69605 (19)0.1080 (4)0.40313 (15)0.0426 (9)
H160.71330.17050.43380.051*
C170.61970 (19)0.0843 (4)0.39899 (14)0.0424 (9)
H170.60110.01880.36950.051*
C180.5618 (2)0.1556 (4)0.43846 (15)0.0402 (9)
C190.47821 (19)0.1147 (4)0.42830 (14)0.0364 (9)
C200.4436 (2)0.0223 (4)0.38785 (14)0.0448 (10)
H200.47180.02890.35900.054*
C210.3606 (2)0.0105 (4)0.39334 (15)0.0482 (10)
H210.32810.04900.36900.058*
C220.3348 (2)0.0965 (4)0.43839 (15)0.0418 (9)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Br10.0319 (2)0.0731 (3)0.0738 (3)0.0005 (2)0.0004 (2)0.0001 (3)
S20.0331 (5)0.0599 (7)0.0441 (6)0.0009 (5)0.0020 (4)0.0137 (5)
O30.0377 (14)0.0760 (19)0.0525 (17)0.0036 (14)0.0002 (13)0.0232 (15)
O40.0358 (15)0.081 (2)0.0480 (16)0.0026 (14)0.0056 (13)0.0046 (15)
O50.0545 (16)0.0651 (18)0.0411 (15)0.0098 (15)0.0226 (14)0.0057 (14)
O60.0559 (17)0.083 (2)0.0363 (15)0.0106 (16)0.0095 (14)0.0114 (15)
C70.066 (3)0.115 (4)0.055 (3)0.029 (3)0.000 (3)0.023 (3)
C80.089 (4)0.075 (4)0.086 (4)0.025 (3)0.039 (3)0.003 (3)
C90.043 (2)0.078 (3)0.062 (3)0.010 (2)0.008 (2)0.001 (3)
C100.035 (2)0.050 (2)0.038 (2)0.0007 (19)0.0063 (18)0.0078 (19)
C110.042 (2)0.043 (2)0.033 (2)0.0036 (19)0.0108 (18)0.0094 (18)
C120.054 (2)0.047 (2)0.034 (2)0.002 (2)0.006 (2)0.0072 (19)
C130.034 (2)0.055 (3)0.041 (2)0.0011 (19)0.0045 (18)0.004 (2)
C140.037 (2)0.040 (2)0.037 (2)0.0061 (18)0.0056 (18)0.0036 (18)
C150.039 (2)0.053 (2)0.034 (2)0.0055 (19)0.0024 (18)0.0007 (19)
C160.040 (2)0.053 (3)0.034 (2)0.005 (2)0.0021 (18)0.0043 (19)
C170.036 (2)0.052 (2)0.039 (2)0.0002 (19)0.0052 (18)0.0038 (19)
C180.036 (2)0.049 (2)0.036 (2)0.0041 (19)0.0008 (18)0.0045 (19)
C190.0360 (19)0.040 (2)0.0327 (19)0.0027 (18)0.0062 (17)0.0003 (18)
C200.045 (2)0.054 (3)0.036 (2)0.001 (2)0.0046 (18)0.0100 (19)
C210.045 (2)0.062 (3)0.037 (2)0.011 (2)0.0103 (19)0.006 (2)
C220.0327 (19)0.047 (2)0.045 (2)0.0008 (18)0.0077 (18)0.003 (2)
Geometric parameters (Å, º) top
Br1—C221.871 (3)C10—C151.389 (4)
S2—C221.695 (3)C10—C111.393 (5)
S2—C191.724 (3)C11—C121.390 (5)
O3—C181.221 (4)C12—C131.381 (5)
O4—C101.363 (4)C13—C141.390 (5)
O4—C91.426 (4)C13—H130.9300
O5—C111.370 (4)C14—C151.389 (4)
O5—C81.404 (4)C14—C161.462 (4)
O6—C121.370 (4)C15—H150.9300
O6—C71.423 (4)C16—C171.308 (4)
C7—H7A0.9600C16—H160.9300
C7—H7B0.9600C17—C181.469 (4)
C7—H7C0.9600C17—H170.9300
C8—H8A0.9600C18—C191.470 (4)
C8—H8B0.9600C19—C201.347 (4)
C8—H8C0.9600C20—C211.410 (5)
C9—H9A0.9600C20—H200.9300
C9—H9B0.9600C21—C221.344 (5)
C9—H9C0.9600C21—H210.9300
C22—S2—C1990.97 (17)C12—C13—C14120.5 (3)
C10—O4—C9118.1 (3)C12—C13—H13119.7
C11—O5—C8115.5 (3)C14—C13—H13119.7
C12—O6—C7117.3 (3)C15—C14—C13119.6 (3)
O6—C7—H7A109.5C15—C14—C16119.5 (3)
O6—C7—H7B109.5C13—C14—C16120.9 (3)
H7A—C7—H7B109.5C14—C15—C10119.8 (3)
O6—C7—H7C109.5C14—C15—H15120.1
H7A—C7—H7C109.5C10—C15—H15120.1
H7B—C7—H7C109.5C17—C16—C14126.9 (4)
O5—C8—H8A109.5C17—C16—H16116.6
O5—C8—H8B109.5C14—C16—H16116.6
H8A—C8—H8B109.5C16—C17—C18123.4 (3)
O5—C8—H8C109.5C16—C17—H17118.3
H8A—C8—H8C109.5C18—C17—H17118.3
H8B—C8—H8C109.5O3—C18—C17123.1 (3)
O4—C9—H9A109.5O3—C18—C19120.4 (3)
O4—C9—H9B109.5C17—C18—C19116.6 (3)
H9A—C9—H9B109.5C20—C19—C18131.1 (3)
O4—C9—H9C109.5C20—C19—S2110.7 (3)
H9A—C9—H9C109.5C18—C19—S2118.1 (3)
H9B—C9—H9C109.5C19—C20—C21113.8 (3)
O4—C10—C15124.5 (3)C19—C20—H20123.1
O4—C10—C11115.0 (3)C21—C20—H20123.1
C15—C10—C11120.6 (3)C22—C21—C20111.1 (3)
O5—C11—C12119.9 (3)C22—C21—H21124.4
O5—C11—C10120.8 (3)C20—C21—H21124.4
C12—C11—C10119.2 (3)C21—C22—S2113.3 (3)
O6—C12—C13124.6 (4)C21—C22—Br1127.0 (3)
O6—C12—C11115.1 (3)S2—C22—Br1119.6 (2)
C13—C12—C11120.3 (4)
C9—O4—C10—C152.0 (5)O4—C10—C15—C14178.7 (3)
C9—O4—C10—C11178.0 (3)C11—C10—C15—C141.3 (5)
C8—O5—C11—C12100.4 (4)C15—C14—C16—C17170.3 (4)
C8—O5—C11—C1084.3 (4)C13—C14—C16—C1710.9 (6)
O4—C10—C11—O56.9 (5)C14—C16—C17—C18177.6 (3)
C15—C10—C11—O5173.1 (3)C16—C17—C18—O31.6 (6)
O4—C10—C11—C12177.8 (3)C16—C17—C18—C19179.1 (3)
C15—C10—C11—C122.2 (5)O3—C18—C19—C20178.5 (4)
C7—O6—C12—C132.8 (5)C17—C18—C19—C200.8 (6)
C7—O6—C12—C11177.0 (3)O3—C18—C19—S22.1 (5)
O5—C11—C12—O65.8 (5)C17—C18—C19—S2178.6 (2)
C10—C11—C12—O6178.8 (3)C22—S2—C19—C200.5 (3)
O5—C11—C12—C13174.0 (3)C22—S2—C19—C18179.1 (3)
C10—C11—C12—C131.3 (5)C18—C19—C20—C21178.9 (3)
O6—C12—C13—C14179.4 (3)S2—C19—C20—C210.5 (4)
C11—C12—C13—C140.4 (6)C19—C20—C21—C220.3 (5)
C12—C13—C14—C151.4 (5)C20—C21—C22—S20.1 (4)
C12—C13—C14—C16177.4 (3)C20—C21—C22—Br1179.2 (3)
C13—C14—C15—C100.5 (5)C19—S2—C22—C210.3 (3)
C16—C14—C15—C10178.3 (3)C19—S2—C22—Br1179.5 (2)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C21—H21···O6i0.932.463.320 (4)155
Symmetry code: (i) x1/2, y, z+1/2.

Experimental details

Crystal data
Chemical formulaC16H15BrO4S
Mr383.25
Crystal system, space groupOrthorhombic, Pbca
Temperature (K)293
a, b, c (Å)16.8923 (7), 8.0793 (6), 23.6427 (17)
V3)3226.7 (4)
Z8
Radiation typeMo Kα
µ (mm1)2.69
Crystal size (mm)0.22 × 0.15 × 0.12
Data collection
DiffractometerOxford Diffraction Xcalibur
Absorption correctionMulti-scan
(CrysAlis PRO RED; Oxford Diffraction, 2010)
Tmin, Tmax0.625, 1.000
No. of measured, independent and
observed [I > 2σ(I)] reflections
17608, 2833, 1944
Rint0.055
(sin θ/λ)max1)0.595
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.042, 0.074, 0.99
No. of reflections2833
No. of parameters200
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.37, 0.30

Computer programs: CrysAlis PRO CCD (Oxford Diffraction, 2010), CrysAlis PRO RED (Oxford Diffraction, 2010), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 (Farrugia, 1997) and CAMERON (Watkin et al., 1993), WinGX (Farrugia, 1999).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C21—H21···O6i0.932.463.320 (4)155
Symmetry code: (i) x1/2, y, z+1/2.
 

Acknowledgements

The authors thank Professor T. N. Guru Row, SSCU, IISc, Bangalore, for support of the data collection. SBV thanks the Acharya Nagarjuna University, Gutntur, Andhrapradesh, for support of the part-time PhD programme in Pharmacy.

References

First citationChun, N. L., Hsin, K. H., Horng, H. K., Mei, F. H., Hsien, C. L., Ya, L. C., Mei, I. C., Jaw, J. K., Jih, P. W. & Che, M. T. (2001). Drug Dev Res. 53, 9–14.  Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationFarrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838.  CrossRef CAS IUCr Journals Google Scholar
First citationHorng, H. K., Lo, T. T., Kun, L. Y., Cheng, T. L., Jih, P. W. & Chun, N. L. (2003). Bioorg. Med. Chem. 1, 105–111.  Google Scholar
First citationMei, L., Prapon, W., Simon, L. C., Agnes, L. C. T. & Mei, L. G. (2003). Bioorg. Med. Chem. 11, 2729–2738.  Web of Science PubMed Google Scholar
First citationOxford Diffraction (2010). CrysAlis PRO CCD and CrysAlis PRO RED. Oxford Diffraction Ltd, Yarnton, England.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWatkin, D. J., Pearce, L. & Prout, C. K. (1993). CAMERON. Chemical Crystallography Laboratory, University of Oxford, England.  Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds