organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

1-Benzyl-6-chloro­indoline-2,3-dione

aSate Key Laboratory of Materials-Oriented Chemcial Engineering, College of Life Science and Pharmaceutical Engineering, Nanjing University of Technology, Xinmofan Road No. 5 Nanjing, Nanjing 210009, People's Republic of China
*Correspondence e-mail: dc_wang@hotmail.com

(Received 15 November 2011; accepted 16 November 2011; online 25 November 2011)

In the title compound, C15H10ClNO2,the dihedral angle between the mean planes of the benzene and 6-chloro­indoline-2,3-dione ring systems, linked through a methyl­ene group, is 81.68 (10)°. In the crystal, mol­ecules are connected by C—H⋯O hydrogen bonds, generating C(6) chains propagating in [010].

Related literature

For general background to isatin derivatives, see: Vine et al. (2007[Vine, K. L., Locke, J. M., Ranson, M., Pyne, S. G. & Bremner, J. B. (2007). Bioorg. Med. Chem. 15, 931-938.]); Matesic et al. (2008[Matesic, L., Locke, J. M., Bremner, J. B., Pyne, S. G., Skropeta, D., Ranson, M. & Vine, K. L. (2008). Bioorg. Med. Chem. 16, 3118-3124.]). For further synthetic details, see: Bouhfid et al. (2005[Bouhfid, R., Joly, N., Massoui, M., Cecchelli, R., Lequart, V., Martin, P. & Essassi, E. M. (2005). Heterocycles, 65, 2949-2955.]).

[Scheme 1]

Experimental

Crystal data
  • C15H10ClNO2

  • Mr = 271.69

  • Triclinic, [P \overline 1]

  • a = 7.1870 (14) Å

  • b = 7.5800 (15) Å

  • c = 12.012 (2) Å

  • α = 80.24 (3)°

  • β = 84.90 (3)°

  • γ = 79.74 (3)°

  • V = 633.4 (2) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.30 mm−1

  • T = 293 K

  • 0.30 × 0.20 × 0.10 mm

Data collection
  • Enraf–Nonius CAD-4 diffractometer

  • Absorption correction: ψ scan (North et al., 1968[North, A. C. T., Phillips, D. C. & Mathews, F. S. (1968). Acta Cryst. A24, 351-359.]) Tmin = 0.916, Tmax = 0.971

  • 2520 measured reflections

  • 2322 independent reflections

  • 1837 reflections with I > 2σ(I)

  • Rint = 0.015

  • 3 standard reflections every 200 reflections intensity decay: 1%

Refinement
  • R[F2 > 2σ(F2)] = 0.045

  • wR(F2) = 0.155

  • S = 1.00

  • 2322 reflections

  • 172 parameters

  • 1 restraint

  • H-atom parameters constrained

  • Δρmax = 0.19 e Å−3

  • Δρmin = −0.25 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C9—H9A⋯O1i 0.93 2.58 3.431 (3) 152
Symmetry code: (i) x, y+1, z.

Data collection: CAD-4 EXPRESS (Enraf–Nonius, 1994[Enraf-Nonius (1994). CAD-4 EXPRESS. Enraf-Nonius, Delft, The Netherlands.]); cell refinement: CAD-4 EXPRESS; data reduction: XCAD4 (Harms & Wocadlo, 1995[Harms, K. & Wocadlo, S. (1995). XCAD4. University of Marburg, Germany.]); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Supporting information


Comment top

Halogenated derivatives of isatin have been found to exhibit cytotoxic and antineoplastic activity(Vine et al., 2007; Matesic et al., 2008). As a part of our studies into the synthesis of isatin derivatives, the title compound (I) 1-benzyl-6-chloroindoline-2,3-dione was synthesized (Bouhfid et al. (2005)). We report herein its crystal structure.

In the title compound, C15H10ClNO2, the indoline and benzene moieties are linked by a methylene group with a C6—C7(methylene)-N angle of 112.49 (2)° (Fig. 1). The dihedral angle between the mean planes of the benzene and 6-chloroindoline-2,3-dione is 81.68 (10) °. In the crystal structure, C—H···O hydrogen bonds link the molecules (Fig. 2 and Table 1).

Related literature top

For general background to isatin derivatives, see: Vine et al. (2007); Matesic et al. (2008). For further synthetic details, see: Bouhfid et al. (2005).

Experimental top

Isatin(1.47 g, 0.01 mol) was reacted with benzyl bromide (0.02 mol) in the presence of K2CO3 (2.76 g, 0.02 mol) and tetrabutylammonium bromide (0.32 g, 0.001 mol) in DMF (60 ml). After 12 h stirring at rt, the precipitate was removed by filtration and purified by recrystallization from ethanol(m.p. 175.2–176.1 °C; yield 70%). The yellow blocks of the title compound were obtained by slow evaporation from ethanol at room temperature.

Refinement top

All H atoms were placed geometrically (C—H = 0.93–0.96 Å) and refined as riding with Uiso(H) = 1.2Ueq(carrier) or 1.5Ueq(methyl carrier).

Structure description top

Halogenated derivatives of isatin have been found to exhibit cytotoxic and antineoplastic activity(Vine et al., 2007; Matesic et al., 2008). As a part of our studies into the synthesis of isatin derivatives, the title compound (I) 1-benzyl-6-chloroindoline-2,3-dione was synthesized (Bouhfid et al. (2005)). We report herein its crystal structure.

In the title compound, C15H10ClNO2, the indoline and benzene moieties are linked by a methylene group with a C6—C7(methylene)-N angle of 112.49 (2)° (Fig. 1). The dihedral angle between the mean planes of the benzene and 6-chloroindoline-2,3-dione is 81.68 (10) °. In the crystal structure, C—H···O hydrogen bonds link the molecules (Fig. 2 and Table 1).

For general background to isatin derivatives, see: Vine et al. (2007); Matesic et al. (2008). For further synthetic details, see: Bouhfid et al. (2005).

Computing details top

Data collection: CAD-4 EXPRESS (Enraf–Nonius, 1994); cell refinement: CAD-4 EXPRESS (Enraf–Nonius, 1994); data reduction: XCAD4 (Harms & Wocadlo, 1995); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. The molecular structure of (I), showing displacement ellipsoids at the 30% probability level.
[Figure 2] Fig. 2. A packing diagram of (I). The intermolecular hydrogen bonds are shown as dashed lines.
1-Benzyl-6-chloroindoline-2,3-dione top
Crystal data top
C15H10ClNO2Z = 2
Mr = 271.69F(000) = 280
Triclinic, P1Dx = 1.424 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 7.1870 (14) ÅCell parameters from 25 reflections
b = 7.5800 (15) Åθ = 10–13°
c = 12.012 (2) ŵ = 0.30 mm1
α = 80.24 (3)°T = 293 K
β = 84.90 (3)°Block, yellow
γ = 79.74 (3)°0.30 × 0.20 × 0.10 mm
V = 633.4 (2) Å3
Data collection top
Enraf–Nonius CAD-4
diffractometer
1837 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.015
Graphite monochromatorθmax = 25.4°, θmin = 1.7°
ω/2θ scansh = 08
Absorption correction: ψ scan
(North et al., 1968)
k = 89
Tmin = 0.916, Tmax = 0.971l = 1414
2520 measured reflections3 standard reflections every 200 reflections
2322 independent reflections intensity decay: 1%
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.045Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.155H-atom parameters constrained
S = 1.00 w = 1/[σ2(Fo2) + (0.1P)2 + 0.160P]
where P = (Fo2 + 2Fc2)/3
2322 reflections(Δ/σ)max < 0.001
172 parametersΔρmax = 0.19 e Å3
1 restraintΔρmin = 0.25 e Å3
Crystal data top
C15H10ClNO2γ = 79.74 (3)°
Mr = 271.69V = 633.4 (2) Å3
Triclinic, P1Z = 2
a = 7.1870 (14) ÅMo Kα radiation
b = 7.5800 (15) ŵ = 0.30 mm1
c = 12.012 (2) ÅT = 293 K
α = 80.24 (3)°0.30 × 0.20 × 0.10 mm
β = 84.90 (3)°
Data collection top
Enraf–Nonius CAD-4
diffractometer
1837 reflections with I > 2σ(I)
Absorption correction: ψ scan
(North et al., 1968)
Rint = 0.015
Tmin = 0.916, Tmax = 0.9713 standard reflections every 200 reflections
2520 measured reflections intensity decay: 1%
2322 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0451 restraint
wR(F2) = 0.155H-atom parameters constrained
S = 1.00Δρmax = 0.19 e Å3
2322 reflectionsΔρmin = 0.25 e Å3
172 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cl0.15893 (11)0.74198 (12)0.63411 (6)0.0780 (3)
N0.3532 (3)0.5031 (3)0.25370 (16)0.0484 (5)
O10.3966 (3)0.0350 (3)0.3312 (2)0.0835 (7)
C10.0178 (3)0.6495 (3)0.1103 (2)0.0534 (6)
H1A0.06670.53100.09990.064*
O20.4404 (3)0.3028 (3)0.12621 (18)0.0805 (7)
C20.1670 (4)0.7221 (4)0.0844 (2)0.0599 (7)
H2A0.24130.65260.05670.072*
C30.2404 (4)0.8970 (4)0.0998 (2)0.0608 (7)
H3A0.36440.94610.08230.073*
C40.1308 (4)0.9994 (4)0.1409 (2)0.0640 (7)
H4A0.18091.11770.15150.077*
C50.0548 (4)0.9268 (3)0.1666 (2)0.0562 (6)
H5A0.12830.99730.19420.067*
C60.1314 (3)0.7513 (3)0.15178 (18)0.0446 (5)
C70.3348 (3)0.6736 (3)0.1755 (2)0.0514 (6)
H7A0.40570.65380.10490.062*
H7B0.38960.76090.20710.062*
C80.3061 (3)0.4880 (3)0.37094 (19)0.0432 (5)
C90.2568 (3)0.6255 (3)0.4348 (2)0.0477 (6)
H9A0.24890.74700.40270.057*
C100.2197 (3)0.5730 (4)0.5496 (2)0.0528 (6)
C110.2296 (4)0.3939 (4)0.6003 (2)0.0634 (7)
H11A0.20300.36500.67780.076*
C120.2797 (4)0.2591 (4)0.5343 (3)0.0622 (7)
H12A0.28750.13780.56680.075*
C130.3180 (3)0.3053 (3)0.4202 (2)0.0502 (6)
C140.3748 (3)0.1993 (3)0.3277 (2)0.0582 (7)
C150.3958 (3)0.3341 (3)0.2226 (2)0.0569 (7)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cl0.0726 (5)0.1012 (7)0.0686 (5)0.0153 (4)0.0032 (4)0.0405 (4)
N0.0482 (11)0.0473 (11)0.0489 (11)0.0000 (8)0.0083 (9)0.0108 (8)
O10.0867 (15)0.0451 (11)0.1232 (19)0.0015 (10)0.0367 (13)0.0231 (11)
C10.0524 (14)0.0538 (14)0.0537 (14)0.0048 (11)0.0034 (11)0.0114 (11)
O20.0847 (14)0.0836 (15)0.0721 (14)0.0207 (11)0.0193 (11)0.0381 (11)
C20.0532 (15)0.0760 (18)0.0523 (15)0.0125 (13)0.0058 (11)0.0116 (12)
C30.0512 (14)0.0773 (18)0.0454 (13)0.0050 (13)0.0029 (11)0.0023 (12)
C40.0730 (18)0.0544 (15)0.0553 (15)0.0097 (13)0.0018 (13)0.0051 (12)
C50.0682 (16)0.0525 (14)0.0487 (14)0.0091 (12)0.0068 (12)0.0094 (11)
C60.0498 (13)0.0476 (13)0.0342 (11)0.0078 (10)0.0002 (9)0.0016 (9)
C70.0474 (13)0.0574 (14)0.0489 (13)0.0112 (11)0.0016 (10)0.0055 (11)
C80.0347 (11)0.0441 (12)0.0510 (13)0.0048 (9)0.0096 (9)0.0066 (9)
C90.0441 (12)0.0449 (12)0.0550 (14)0.0073 (10)0.0075 (10)0.0077 (10)
C100.0415 (12)0.0674 (16)0.0533 (14)0.0119 (11)0.0056 (10)0.0156 (12)
C110.0532 (15)0.083 (2)0.0517 (15)0.0192 (13)0.0068 (12)0.0057 (13)
C120.0577 (15)0.0552 (15)0.0711 (18)0.0142 (12)0.0175 (13)0.0090 (13)
C130.0419 (12)0.0435 (13)0.0656 (16)0.0075 (9)0.0162 (11)0.0027 (11)
C140.0484 (13)0.0441 (13)0.0858 (19)0.0003 (10)0.0270 (13)0.0175 (12)
C150.0471 (13)0.0589 (15)0.0652 (16)0.0085 (11)0.0178 (11)0.0216 (12)
Geometric parameters (Å, º) top
Cl—C101.739 (3)C5—H5A0.9300
N—C151.370 (3)C6—C71.509 (3)
N—C81.409 (3)C7—H7A0.9700
N—C71.456 (3)C7—H7B0.9700
O1—C141.221 (3)C8—C91.375 (3)
C1—C21.385 (4)C8—C131.402 (3)
C1—C61.391 (3)C9—C101.385 (4)
C1—H1A0.9300C9—H9A0.9300
O2—C151.224 (3)C10—C111.383 (4)
C2—C31.374 (4)C11—C121.377 (4)
C2—H2A0.9300C11—H11A0.9300
C3—C41.372 (4)C12—C131.372 (4)
C3—H3A0.9300C12—H12A0.9300
C4—C51.390 (4)C13—C141.467 (4)
C4—H4A0.9300C14—C151.498 (3)
C5—C61.381 (3)
C15—N—C8110.1 (2)H7A—C7—H7B107.8
C15—N—C7125.0 (2)C9—C8—C13121.4 (2)
C8—N—C7124.52 (19)C9—C8—N128.0 (2)
C2—C1—C6121.0 (2)C13—C8—N110.6 (2)
C2—C1—H1A119.5C8—C9—C10116.3 (2)
C6—C1—H1A119.5C8—C9—H9A121.9
C3—C2—C1119.8 (3)C10—C9—H9A121.9
C3—C2—H2A120.1C11—C10—C9123.5 (2)
C1—C2—H2A120.1C11—C10—Cl118.5 (2)
C4—C3—C2120.0 (2)C9—C10—Cl118.0 (2)
C4—C3—H3A120.0C12—C11—C10118.9 (3)
C2—C3—H3A120.0C12—C11—H11A120.5
C3—C4—C5120.1 (3)C10—C11—H11A120.5
C3—C4—H4A119.9C13—C12—C11119.4 (2)
C5—C4—H4A119.9C13—C12—H12A120.3
C6—C5—C4120.7 (3)C11—C12—H12A120.3
C6—C5—H5A119.6C12—C13—C8120.4 (2)
C4—C5—H5A119.6C12—C13—C14133.5 (2)
C5—C6—C1118.2 (2)C8—C13—C14106.1 (2)
C5—C6—C7121.1 (2)O1—C14—C13128.7 (3)
C1—C6—C7120.6 (2)O1—C14—C15125.0 (3)
N—C7—C6112.49 (19)C13—C14—C15106.3 (2)
N—C7—H7A109.1O2—C15—N125.5 (2)
C6—C7—H7A109.1O2—C15—C14127.6 (2)
N—C7—H7B109.1N—C15—C14107.0 (2)
C6—C7—H7B109.1
C6—C1—C2—C30.1 (4)Cl—C10—C11—C12179.28 (19)
C1—C2—C3—C40.1 (4)C10—C11—C12—C130.1 (4)
C2—C3—C4—C50.3 (4)C11—C12—C13—C80.1 (4)
C3—C4—C5—C60.2 (4)C11—C12—C13—C14179.6 (2)
C4—C5—C6—C10.1 (4)C9—C8—C13—C120.2 (3)
C4—C5—C6—C7177.8 (2)N—C8—C13—C12179.4 (2)
C2—C1—C6—C50.1 (4)C9—C8—C13—C14179.6 (2)
C2—C1—C6—C7177.6 (2)N—C8—C13—C140.4 (2)
C15—N—C7—C697.7 (3)C12—C13—C14—O12.7 (5)
C8—N—C7—C673.8 (3)C8—C13—C14—O1177.6 (2)
C5—C6—C7—N126.2 (2)C12—C13—C14—C15179.3 (3)
C1—C6—C7—N56.1 (3)C8—C13—C14—C150.4 (2)
C15—N—C8—C9179.4 (2)C8—N—C15—O2179.3 (2)
C7—N—C8—C98.0 (3)C7—N—C15—O26.8 (4)
C15—N—C8—C130.3 (3)C8—N—C15—C140.0 (3)
C7—N—C8—C13172.9 (2)C7—N—C15—C14172.6 (2)
C13—C8—C9—C100.1 (3)O1—C14—C15—O21.5 (4)
N—C8—C9—C10179.1 (2)C13—C14—C15—O2179.5 (3)
C8—C9—C10—C110.1 (4)O1—C14—C15—N177.8 (2)
C8—C9—C10—Cl179.39 (16)C13—C14—C15—N0.2 (3)
C9—C10—C11—C120.3 (4)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C9—H9A···O1i0.932.583.431 (3)152
Symmetry code: (i) x, y+1, z.

Experimental details

Crystal data
Chemical formulaC15H10ClNO2
Mr271.69
Crystal system, space groupTriclinic, P1
Temperature (K)293
a, b, c (Å)7.1870 (14), 7.5800 (15), 12.012 (2)
α, β, γ (°)80.24 (3), 84.90 (3), 79.74 (3)
V3)633.4 (2)
Z2
Radiation typeMo Kα
µ (mm1)0.30
Crystal size (mm)0.30 × 0.20 × 0.10
Data collection
DiffractometerEnraf–Nonius CAD-4
Absorption correctionψ scan
(North et al., 1968)
Tmin, Tmax0.916, 0.971
No. of measured, independent and
observed [I > 2σ(I)] reflections
2520, 2322, 1837
Rint0.015
(sin θ/λ)max1)0.603
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.045, 0.155, 1.00
No. of reflections2322
No. of parameters172
No. of restraints1
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.19, 0.25

Computer programs: CAD-4 EXPRESS (Enraf–Nonius, 1994), XCAD4 (Harms & Wocadlo, 1995), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008), PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C9—H9A···O1i0.932.583.431 (3)152
Symmetry code: (i) x, y+1, z.
 

Acknowledgements

The authors thank the Center of Testing and Analysis, Nanjing University, for support.

References

First citationBouhfid, R., Joly, N., Massoui, M., Cecchelli, R., Lequart, V., Martin, P. & Essassi, E. M. (2005). Heterocycles, 65, 2949–2955.  CAS Google Scholar
First citationEnraf–Nonius (1994). CAD-4 EXPRESS. Enraf–Nonius, Delft, The Netherlands.  Google Scholar
First citationHarms, K. & Wocadlo, S. (1995). XCAD4. University of Marburg, Germany.  Google Scholar
First citationMatesic, L., Locke, J. M., Bremner, J. B., Pyne, S. G., Skropeta, D., Ranson, M. & Vine, K. L. (2008). Bioorg. Med. Chem. 16, 3118–3124.  Web of Science CrossRef PubMed CAS Google Scholar
First citationNorth, A. C. T., Phillips, D. C. & Mathews, F. S. (1968). Acta Cryst. A24, 351–359.  CrossRef IUCr Journals Web of Science Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationVine, K. L., Locke, J. M., Ranson, M., Pyne, S. G. & Bremner, J. B. (2007). Bioorg. Med. Chem. 15, 931–938.  Web of Science CrossRef PubMed CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds