organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

1,3-Bis(2-cyano­benz­yl)imidazolium bromide

aSchool of Chemical Sciences, Universiti Sains Malaysia, 11800 USM, Penang, Malaysia, bDepartment of Chemistry, College of Education Samarra, University of Tikrit, Tikrit 43001, Iraq, and cX-ray Crystallography Unit, School of Physics, Universiti Sains Malaysia, 11800 USM, Penang, Malaysia
*Correspondence e-mail: hkfun@usm.my

(Received 15 November 2011; accepted 17 November 2011; online 30 November 2011)

In the title salt, C19H15N4+·Br, the central imidazole ring makes dihedral angles of 83.1 (2) and 87.6 (2)° with the terminal benzene rings. The dihedral angle between the terminal benzene rings is 6.77 (19)°; the cyanide substituents have an anti orientation. In the crystal, the cations and anions are linked via C—H⋯N and C—H⋯Br hydrogen bonds, forming sheets lying parallel to the ac plane.

Related literature

For details and applications of N-heterocylic carbene, see: Wanzlick & Kleiner (1961[Wanzlick, W. H. & Kleiner, J. H. (1961). Angew. Chem. Int. Ed. Engl 73, 493-497.]); Fahlbusch et al. (2009[Fahlbusch, T., Frank, M., Maas, G. & Schatz, J. (2009). Organometallics, 28, 6183-6193.]); Demir et al. (2009[Demir, S., Özdemir, I. & Cetinkaya, B. (2009). J. Organomet. Chem. 694, 4025-4031.]); Grasa et al. (2002[Grasa, G. A., Moore, Z., Martin, K. L., Stevens, E. D., Nolan, S. P., Paquet, V. & Lebel, H. (2002). J. Organomet. Chem. 658, 126-131.]); Buchowicz et al. (2006[Buchowicz, W., Koziol, A., Jerzykiewicz, L. B., Lis, T., Pasynkiewicz, S., Pecherzewska, A. & Pietrzykowski, A. (2006). J. Mol. Catal. A Chem. 257, 118-123.]); Marko et al. (2002[Marko, I. E., Sterin, S., Buisine, O., Mignani, G., Branlard, P., Tinant, B. & Declercq, J.-P. (2002). Science, 298, 204-206.]).

[Scheme 1]

Experimental

Crystal data
  • C19H15N4+·Br

  • Mr = 379.26

  • Monoclinic, P 21 /c

  • a = 9.0661 (9) Å

  • b = 8.0357 (9) Å

  • c = 24.697 (3) Å

  • β = 95.651 (2)°

  • V = 1790.5 (3) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 2.30 mm−1

  • T = 296 K

  • 0.36 × 0.17 × 0.10 mm

Data collection
  • Bruker APEXII DUO CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2009[Bruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.494, Tmax = 0.799

  • 12922 measured reflections

  • 4066 independent reflections

  • 2486 reflections with I > 2σ(I)

  • Rint = 0.034

Refinement
  • R[F2 > 2σ(F2)] = 0.049

  • wR(F2) = 0.149

  • S = 1.02

  • 4066 reflections

  • 217 parameters

  • H-atom parameters constrained

  • Δρmax = 1.14 e Å−3

  • Δρmin = −0.82 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C1—H1A⋯Br1i 0.93 2.70 3.531 (4) 149
C2—H2A⋯Br1ii 0.93 2.67 3.579 (4) 165
C3—H3A⋯N4iii 0.93 2.50 3.377 (6) 157
C4—H4B⋯Br1i 0.97 2.86 3.730 (4) 149
C7—H7A⋯N4iv 0.93 2.60 3.390 (5) 144
C10—H10A⋯Br1v 0.93 2.88 3.678 (4) 144
Symmetry codes: (i) [-x+1, y-{\script{1\over 2}}, -z+{\script{1\over 2}}]; (ii) [-x, y-{\script{1\over 2}}, -z+{\script{1\over 2}}]; (iii) [-x, y+{\script{1\over 2}}, -z+{\script{1\over 2}}]; (iv) [x+1, -y-{\script{1\over 2}}, z+{\script{1\over 2}}]; (v) x, y-1, z.

Data collection: APEX2 (Bruker, 2009[Bruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2009[Bruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Supporting information


Comment top

Since the investigation of N-heterocyclic carbene (NHC) chemistry by Wanzlick and Kleiner (1961), NHCs have played a major role as ligands in coordination and organometallic chemistry (Fahlbusch et al., 2009). During the past decades it has been proven as an alternative to tertiary phosphines in homogeneous catalysis. Due to NHC's strong σ-donating and negligible π-accepting characters, they are compatible with metals in a variety of oxidation states. NHC can stabilize catalytically active intermediates (Demir et al., 2009) making it a very versatile ligand system. NHC complexes with every transition metal are now known and their applications especially in the area of catalysis cover a broad spectrum such as hydroboration (Grasa et al., 2002), polymerization reactions (Buchowicz et al., 2006) and hydrosilation (Marko et al., 2002). Furthermore, NHCs are easy to handle, stable and inexpensive resulting in their receiving a great deal of interest compared to other types of carbenes.

In (I), the asymmetric unit contains a 1,3-Bis(2-cyanobenzyl)imidazolium cation and a bromide anion. The central imidazole (N1,N2/C1–C3) ring makes dihedral angles of 83.1 (2) and 87.6 (2)° with the terminal phenyl (C5–C10 and C12–C17) rings. The dihedral angle between the two terminal phenyl (C5–C10 and C12–C17) rings is 6.77 (19)°.

In the crystal, (Fig. 2), the cations and anions are linked via C—H···N and C—H···Br hydrogen bonds (Table 1), forming two-dimensional networks parallel to the ac-plane.

Related literature top

For details and applications of N-heterocylic carbene, see: Wanzlick & Kleiner (1961); Fahlbusch et al. (2009); Demir et al. (2009); Grasa et al. (2002); Buchowicz et al. (2006); Marko et al. (2002).

Experimental top

Imidazole (0.3 g, 3.7 mmol) and potassium hydroxide (0.2 g, 5.5 mmol) was stirred for 2 h in 25 mL of ethanol. 2-Bromomethyl benzonitrile (1.8 g, 9.2 mmol) was then added and the mixture was refluxed at 80°C for 24 h. The resulting clear crystals were isolated by decantation, washed with fresh n-hexane (2 X 3 ml) and then left to dry at ambient temperature. Yield: 1.3 g, (94%); m.p: 233–234°C. Colourless blocks were obtained by slow evaporation of the salt solution in ethanol at ambient temperature.

Refinement top

All hydrogen atoms were positioned geometrically [ C–H = 0.93 or 0.97 Å] and were refined using a riding model, with Uiso(H) = 1.2 Ueq(C).

Structure description top

Since the investigation of N-heterocyclic carbene (NHC) chemistry by Wanzlick and Kleiner (1961), NHCs have played a major role as ligands in coordination and organometallic chemistry (Fahlbusch et al., 2009). During the past decades it has been proven as an alternative to tertiary phosphines in homogeneous catalysis. Due to NHC's strong σ-donating and negligible π-accepting characters, they are compatible with metals in a variety of oxidation states. NHC can stabilize catalytically active intermediates (Demir et al., 2009) making it a very versatile ligand system. NHC complexes with every transition metal are now known and their applications especially in the area of catalysis cover a broad spectrum such as hydroboration (Grasa et al., 2002), polymerization reactions (Buchowicz et al., 2006) and hydrosilation (Marko et al., 2002). Furthermore, NHCs are easy to handle, stable and inexpensive resulting in their receiving a great deal of interest compared to other types of carbenes.

In (I), the asymmetric unit contains a 1,3-Bis(2-cyanobenzyl)imidazolium cation and a bromide anion. The central imidazole (N1,N2/C1–C3) ring makes dihedral angles of 83.1 (2) and 87.6 (2)° with the terminal phenyl (C5–C10 and C12–C17) rings. The dihedral angle between the two terminal phenyl (C5–C10 and C12–C17) rings is 6.77 (19)°.

In the crystal, (Fig. 2), the cations and anions are linked via C—H···N and C—H···Br hydrogen bonds (Table 1), forming two-dimensional networks parallel to the ac-plane.

For details and applications of N-heterocylic carbene, see: Wanzlick & Kleiner (1961); Fahlbusch et al. (2009); Demir et al. (2009); Grasa et al. (2002); Buchowicz et al. (2006); Marko et al. (2002).

Computing details top

Data collection: APEX2 (Bruker, 2009); cell refinement: SAINT (Bruker, 2009); data reduction: SAINT (Bruker, 2009); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. The asymmetric unit of the title compound, showing 30% probability displacement.
[Figure 2] Fig. 2. The crystal packing of the title compound, showing hydrogen-bonded (dashed lines) network. H atoms not involved in hydrogen bond interactions are omitted for clarity.
1,3-Bis(2-cyanobenzyl)imidazolium bromide top
Crystal data top
C19H15N4+·BrF(000) = 768
Mr = 379.26Dx = 1.407 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 2803 reflections
a = 9.0661 (9) Åθ = 2.9–23.8°
b = 8.0357 (9) ŵ = 2.30 mm1
c = 24.697 (3) ÅT = 296 K
β = 95.651 (2)°Block, colourless
V = 1790.5 (3) Å30.36 × 0.17 × 0.10 mm
Z = 4
Data collection top
Bruker APEXII DUO CCD
diffractometer
4066 independent reflections
Radiation source: fine-focus sealed tube2486 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.034
φ and ω scansθmax = 27.5°, θmin = 1.7°
Absorption correction: multi-scan
(SADABS; Bruker, 2009)
h = 1111
Tmin = 0.494, Tmax = 0.799k = 1010
12922 measured reflectionsl = 3232
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.049Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.149H-atom parameters constrained
S = 1.02 w = 1/[σ2(Fo2) + (0.0749P)2 + 0.6395P]
where P = (Fo2 + 2Fc2)/3
4066 reflections(Δ/σ)max = 0.001
217 parametersΔρmax = 1.14 e Å3
0 restraintsΔρmin = 0.82 e Å3
Crystal data top
C19H15N4+·BrV = 1790.5 (3) Å3
Mr = 379.26Z = 4
Monoclinic, P21/cMo Kα radiation
a = 9.0661 (9) ŵ = 2.30 mm1
b = 8.0357 (9) ÅT = 296 K
c = 24.697 (3) Å0.36 × 0.17 × 0.10 mm
β = 95.651 (2)°
Data collection top
Bruker APEXII DUO CCD
diffractometer
4066 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2009)
2486 reflections with I > 2σ(I)
Tmin = 0.494, Tmax = 0.799Rint = 0.034
12922 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0490 restraints
wR(F2) = 0.149H-atom parameters constrained
S = 1.02Δρmax = 1.14 e Å3
4066 reflectionsΔρmin = 0.82 e Å3
217 parameters
Special details top

Geometry. All s.u.'s (except the s.u. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell s.u.'s are taken into account individually in the estimation of s.u.'s in distances, angles and torsion angles; correlations between s.u.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell s.u.'s is used for estimating s.u.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Br10.29310 (4)0.46183 (7)0.271846 (19)0.0744 (2)
N10.3270 (3)0.0222 (4)0.29878 (11)0.0487 (7)
N20.1865 (3)0.0421 (4)0.22727 (11)0.0521 (8)
N30.6850 (4)0.2721 (5)0.43842 (14)0.0763 (11)
N40.1238 (5)0.2711 (6)0.07253 (15)0.0977 (15)
C10.3264 (4)0.0178 (5)0.24721 (13)0.0482 (8)
H1A0.40920.02740.22800.058*
C20.0970 (4)0.0140 (6)0.26727 (16)0.0659 (11)
H2A0.00580.02150.26430.079*
C30.1858 (4)0.0268 (6)0.31198 (15)0.0628 (11)
H3A0.15570.05340.34590.075*
C40.4592 (4)0.0639 (5)0.33548 (14)0.0570 (10)
H4A0.44380.16980.35290.068*
H4B0.54350.07560.31440.068*
C50.4932 (4)0.0676 (5)0.37865 (13)0.0467 (8)
C60.5839 (4)0.0257 (5)0.42592 (13)0.0466 (8)
C70.6238 (4)0.1459 (6)0.46540 (14)0.0605 (10)
H7A0.68160.11670.49720.073*
C80.5779 (5)0.3068 (6)0.45731 (17)0.0709 (12)
H8A0.60760.38780.48300.085*
C90.4881 (5)0.3487 (6)0.41142 (19)0.0741 (12)
H9A0.45440.45750.40670.089*
C100.4474 (5)0.2307 (6)0.37226 (16)0.0657 (11)
H10A0.38810.26160.34100.079*
C110.1370 (5)0.0897 (6)0.17153 (16)0.0749 (13)
H11A0.05940.17270.17200.090*
H11B0.21910.14010.15520.090*
C120.0786 (4)0.0566 (5)0.13661 (13)0.0507 (9)
C130.1252 (4)0.2175 (5)0.14572 (15)0.0579 (10)
H13A0.19240.24120.17560.070*
C140.0744 (5)0.3443 (6)0.11149 (17)0.0676 (11)
H14A0.10770.45240.11830.081*
C150.0260 (5)0.3115 (6)0.06708 (17)0.0740 (12)
H15A0.06180.39780.04440.089*
C160.0729 (5)0.1509 (6)0.05649 (16)0.0693 (12)
H16A0.13830.12780.02600.083*
C170.0230 (4)0.0254 (5)0.09104 (13)0.0524 (9)
C180.6389 (4)0.1393 (6)0.43334 (13)0.0540 (9)
C190.0785 (5)0.1402 (6)0.08064 (14)0.0674 (12)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Br10.0396 (2)0.0842 (4)0.0975 (4)0.00728 (19)0.00305 (18)0.0309 (2)
N10.0396 (14)0.062 (2)0.0417 (14)0.0013 (13)0.0096 (11)0.0008 (13)
N20.0481 (16)0.054 (2)0.0491 (15)0.0021 (14)0.0196 (13)0.0085 (13)
N30.092 (3)0.064 (3)0.068 (2)0.018 (2)0.0216 (18)0.0005 (19)
N40.145 (4)0.074 (3)0.063 (2)0.033 (3)0.044 (2)0.004 (2)
C10.0362 (15)0.062 (3)0.0448 (17)0.0039 (15)0.0063 (13)0.0014 (16)
C20.0366 (17)0.087 (3)0.073 (2)0.0036 (18)0.0027 (16)0.001 (2)
C30.054 (2)0.083 (3)0.0516 (19)0.003 (2)0.0099 (16)0.001 (2)
C40.058 (2)0.056 (3)0.0509 (19)0.0101 (18)0.0213 (16)0.0008 (17)
C50.0467 (17)0.045 (2)0.0457 (17)0.0022 (15)0.0080 (13)0.0016 (15)
C60.0464 (17)0.052 (2)0.0402 (16)0.0005 (16)0.0039 (13)0.0024 (15)
C70.063 (2)0.071 (3)0.0456 (19)0.000 (2)0.0081 (15)0.0106 (18)
C80.075 (3)0.065 (3)0.071 (3)0.008 (2)0.003 (2)0.025 (2)
C90.083 (3)0.042 (3)0.095 (3)0.009 (2)0.004 (2)0.005 (2)
C100.074 (3)0.055 (3)0.063 (2)0.002 (2)0.0172 (19)0.007 (2)
C110.095 (3)0.058 (3)0.062 (2)0.010 (2)0.037 (2)0.014 (2)
C120.0511 (18)0.052 (3)0.0458 (17)0.0003 (17)0.0088 (14)0.0069 (16)
C130.053 (2)0.055 (3)0.064 (2)0.0027 (18)0.0027 (16)0.009 (2)
C140.078 (3)0.049 (3)0.078 (3)0.007 (2)0.022 (2)0.007 (2)
C150.095 (3)0.063 (3)0.065 (2)0.017 (3)0.008 (2)0.014 (2)
C160.082 (3)0.069 (3)0.053 (2)0.000 (2)0.0129 (19)0.009 (2)
C170.059 (2)0.054 (2)0.0423 (17)0.0001 (18)0.0079 (14)0.0008 (16)
C180.058 (2)0.059 (3)0.0417 (17)0.0030 (19)0.0140 (15)0.0000 (17)
C190.090 (3)0.060 (3)0.045 (2)0.006 (2)0.0303 (19)0.0019 (19)
Geometric parameters (Å, º) top
N1—C11.313 (4)C7—H7A0.9300
N1—C31.352 (5)C8—C91.371 (6)
N1—C41.469 (4)C8—H8A0.9300
N2—C11.329 (4)C9—C101.378 (6)
N2—C21.358 (5)C9—H9A0.9300
N2—C111.456 (4)C10—H10A0.9300
N3—C181.148 (5)C11—C121.522 (6)
N4—C191.140 (6)C11—H11A0.9700
C1—H1A0.9300C11—H11B0.9700
C2—C31.341 (5)C12—C131.372 (5)
C2—H2A0.9300C12—C171.405 (4)
C3—H3A0.9300C13—C141.374 (6)
C4—C51.511 (5)C13—H13A0.9300
C4—H4A0.9700C14—C151.380 (6)
C4—H4B0.9700C14—H14A0.9300
C5—C101.380 (6)C15—C161.376 (7)
C5—C61.401 (4)C15—H15A0.9300
C6—C71.395 (5)C16—C171.369 (5)
C6—C181.422 (6)C16—H16A0.9300
C7—C81.366 (6)C17—C191.437 (6)
C1—N1—C3109.1 (3)C8—C9—C10120.5 (4)
C1—N1—C4125.4 (3)C8—C9—H9A119.8
C3—N1—C4125.4 (3)C10—C9—H9A119.8
C1—N2—C2108.8 (3)C9—C10—C5121.1 (3)
C1—N2—C11125.7 (3)C9—C10—H10A119.5
C2—N2—C11125.5 (3)C5—C10—H10A119.5
N1—C1—N2107.9 (3)N2—C11—C12113.0 (3)
N1—C1—H1A126.0N2—C11—H11A109.0
N2—C1—H1A126.0C12—C11—H11A109.0
C3—C2—N2106.7 (3)N2—C11—H11B109.0
C3—C2—H2A126.7C12—C11—H11B109.0
N2—C2—H2A126.7H11A—C11—H11B107.8
C2—C3—N1107.5 (3)C13—C12—C17117.8 (3)
C2—C3—H3A126.3C13—C12—C11123.4 (3)
N1—C3—H3A126.3C17—C12—C11118.7 (3)
N1—C4—C5111.9 (3)C12—C13—C14121.2 (3)
N1—C4—H4A109.2C12—C13—H13A119.4
C5—C4—H4A109.2C14—C13—H13A119.4
N1—C4—H4B109.2C13—C14—C15120.2 (4)
C5—C4—H4B109.2C13—C14—H14A119.9
H4A—C4—H4B107.9C15—C14—H14A119.9
C10—C5—C6118.0 (3)C16—C15—C14119.8 (4)
C10—C5—C4123.0 (3)C16—C15—H15A120.1
C6—C5—C4118.8 (3)C14—C15—H15A120.1
C7—C6—C5120.5 (4)C17—C16—C15119.7 (4)
C7—C6—C18119.4 (3)C17—C16—H16A120.1
C5—C6—C18120.1 (3)C15—C16—H16A120.1
C8—C7—C6119.9 (3)C16—C17—C12121.2 (4)
C8—C7—H7A120.1C16—C17—C19118.9 (3)
C6—C7—H7A120.1C12—C17—C19119.9 (3)
C7—C8—C9120.1 (4)N3—C18—C6178.6 (4)
C7—C8—H8A120.0N4—C19—C17179.3 (6)
C9—C8—H8A120.0
C3—N1—C1—N21.2 (4)C7—C8—C9—C102.2 (7)
C4—N1—C1—N2178.2 (3)C8—C9—C10—C51.3 (7)
C2—N2—C1—N11.0 (4)C6—C5—C10—C90.7 (6)
C11—N2—C1—N1179.5 (4)C4—C5—C10—C9176.2 (4)
C1—N2—C2—C30.4 (5)C1—N2—C11—C12100.4 (5)
C11—N2—C2—C3179.9 (4)C2—N2—C11—C1279.0 (5)
N2—C2—C3—N10.3 (5)N2—C11—C12—C1328.0 (6)
C1—N1—C3—C20.9 (5)N2—C11—C12—C17155.2 (4)
C4—N1—C3—C2177.9 (4)C17—C12—C13—C140.0 (6)
C1—N1—C4—C5111.6 (4)C11—C12—C13—C14176.8 (4)
C3—N1—C4—C571.9 (5)C12—C13—C14—C150.3 (6)
N1—C4—C5—C1024.2 (5)C13—C14—C15—C161.3 (7)
N1—C4—C5—C6160.3 (3)C14—C15—C16—C171.9 (7)
C10—C5—C6—C71.0 (5)C15—C16—C17—C121.6 (6)
C4—C5—C6—C7176.7 (3)C15—C16—C17—C19177.2 (4)
C10—C5—C6—C18177.4 (4)C13—C12—C17—C160.6 (6)
C4—C5—C6—C181.7 (5)C11—C12—C17—C16176.3 (4)
C5—C6—C7—C81.9 (6)C13—C12—C17—C19178.2 (4)
C18—C6—C7—C8176.5 (4)C11—C12—C17—C194.9 (6)
C6—C7—C8—C92.5 (6)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C1—H1A···Br1i0.932.703.531 (4)149
C2—H2A···Br1ii0.932.673.579 (4)165
C3—H3A···N4iii0.932.503.377 (6)157
C4—H4B···Br1i0.972.863.730 (4)149
C7—H7A···N4iv0.932.603.390 (5)144
C10—H10A···Br1v0.932.883.678 (4)144
Symmetry codes: (i) x+1, y1/2, z+1/2; (ii) x, y1/2, z+1/2; (iii) x, y+1/2, z+1/2; (iv) x+1, y1/2, z+1/2; (v) x, y1, z.

Experimental details

Crystal data
Chemical formulaC19H15N4+·Br
Mr379.26
Crystal system, space groupMonoclinic, P21/c
Temperature (K)296
a, b, c (Å)9.0661 (9), 8.0357 (9), 24.697 (3)
β (°) 95.651 (2)
V3)1790.5 (3)
Z4
Radiation typeMo Kα
µ (mm1)2.30
Crystal size (mm)0.36 × 0.17 × 0.10
Data collection
DiffractometerBruker APEXII DUO CCD
Absorption correctionMulti-scan
(SADABS; Bruker, 2009)
Tmin, Tmax0.494, 0.799
No. of measured, independent and
observed [I > 2σ(I)] reflections
12922, 4066, 2486
Rint0.034
(sin θ/λ)max1)0.649
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.049, 0.149, 1.02
No. of reflections4066
No. of parameters217
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)1.14, 0.82

Computer programs: APEX2 (Bruker, 2009), SAINT (Bruker, 2009), SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C1—H1A···Br1i0.932.703.531 (4)149
C2—H2A···Br1ii0.932.673.579 (4)165
C3—H3A···N4iii0.932.503.377 (6)157
C4—H4B···Br1i0.972.863.730 (4)149
C7—H7A···N4iv0.932.603.390 (5)144
C10—H10A···Br1v0.932.883.678 (4)144
Symmetry codes: (i) x+1, y1/2, z+1/2; (ii) x, y1/2, z+1/2; (iii) x, y+1/2, z+1/2; (iv) x+1, y1/2, z+1/2; (v) x, y1, z.
 

Footnotes

Thomson Reuters ResearcherID: A-3561-2009.

Acknowledgements

RAH, SAA and ZZH thank Universiti Sains Malaysia for the FRGS fund (203/PKIMIA/671115) and RU grant (1001/PKIMIA/811157) (to RAH and ZZH) and the University of Tikrit for research leave (to SSA). HKF and MH thank the Malaysian Government and Universiti Sains Malaysia for the Research University grant No. 1001/PFIZIK/811160. MH also thanks Universiti Sains Malaysia for a post-doctoral research fellowship.

References

First citationBruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBuchowicz, W., Koziol, A., Jerzykiewicz, L. B., Lis, T., Pasynkiewicz, S., Pecherzewska, A. & Pietrzykowski, A. (2006). J. Mol. Catal. A Chem. 257, 118–123.  Web of Science CSD CrossRef CAS Google Scholar
First citationDemir, S., Özdemir, I. & Cetinkaya, B. (2009). J. Organomet. Chem. 694, 4025–4031.  Web of Science CrossRef CAS Google Scholar
First citationFahlbusch, T., Frank, M., Maas, G. & Schatz, J. (2009). Organometallics, 28, 6183–6193.  Web of Science CSD CrossRef CAS Google Scholar
First citationGrasa, G. A., Moore, Z., Martin, K. L., Stevens, E. D., Nolan, S. P., Paquet, V. & Lebel, H. (2002). J. Organomet. Chem. 658, 126–131.  Web of Science CSD CrossRef CAS Google Scholar
First citationMarko, I. E., Sterin, S., Buisine, O., Mignani, G., Branlard, P., Tinant, B. & Declercq, J.-P. (2002). Science, 298, 204–206.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWanzlick, W. H. & Kleiner, J. H. (1961). Angew. Chem. Int. Ed. Engl 73, 493–497.  CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds