organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

2-Fluoro-6-[(E)-(pyridin-2-yl)imino­meth­yl]phenol

aSchool of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu 610054, People's Republic of China, and bState Key Laboratory of Pharmaceutical Biotechnology, Nanjing University, Nanjing 210093, People's Republic of China
*Correspondence e-mail: fangrq@uestc.edu.cn

(Received 16 November 2011; accepted 17 November 2011; online 23 November 2011)

The title compound, C12H9FN2O, is almost planar (r.m.s. deviation for the 16 non-H atoms = 0.019 Å), a conformation stabilized by an intra­molecular O—H⋯N hydrogen bond, which generates an S(6) ring. In the crystal, inversion dimers linked by pairs of C—H⋯O hydrogen bonds generate R22(16) loops.

Related literature

For a related structure, see: Cui & Shi (2009[Cui, P. & Shi, L. (2009). Acta Cryst. E65, o1282.]).

[Scheme 1]

Experimental

Crystal data
  • C12H9FN2O

  • Mr = 216.21

  • Monoclinic, P 21 /c

  • a = 5.012 (1) Å

  • b = 19.764 (4) Å

  • c = 10.802 (2) Å

  • β = 101.42 (3)°

  • V = 1048.8 (4) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.10 mm−1

  • T = 293 K

  • 0.29 × 0.22 × 0.18 mm

Data collection
  • Enraf–Nonius CAD-4 diffractometer

  • Absorption correction: ψ scan (North et al., 1968)[North, A. C. T., Phillips, D. C. & Mathews, F. S. (1968). Acta Cryst. A24, 351-359.] Tmin = 0.971, Tmax = 0.982

  • 2284 measured reflections

  • 2047 independent reflections

  • 884 reflections with I > 2σ(I)

  • Rint = 0.027

Refinement
  • R[F2 > 2σ(F2)] = 0.069

  • wR(F2) = 0.177

  • S = 1.03

  • 2047 reflections

  • 145 parameters

  • H-atom parameters constrained

  • Δρmax = 0.15 e Å−3

  • Δρmin = −0.18 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O1—H1⋯N1 0.82 1.88 2.586 (4) 144
C9—H9⋯O1i 0.93 2.60 3.390 (5) 143
Symmetry code: (i) -x, -y, -z.

Data collection: CAD-4 Software (Enraf–Nonius, 1989[Enraf-Nonius (1989). CAD-4 Software. Enraf-Nonius, Delft, The Netherlands.]); cell refinement: CAD-4 Software; data reduction: XCAD4 (Harms & Wocadlo, 1995[Harms, K. & Wocadlo, S. (1995). XCAD4. University of Marburg, Germany.]); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

The crystal structrue of 4-fluoro-2-[(E)-2-pyridyliminomethyl]phenol has been reported before, which is synthesized by 5-fluoro-salicyladehyde and pyridin-2-amine, and the distinction between title compound (I) and 4-fluoro-2-[(E)-2-pyridyliminomethyl]phenol are the different substituent position of the fluoro substituent (Cui et al., 2009).

The molecular structure of title compound is shown in Fig. 1, and selected geometric parameters are listed in Table 1. The C—F single bond length is 1.366 (4) Å, the C—O single bond length is 1.330 (4) Å, and the C—N double bond length is 1.273 (4) Å, which is similar with the bond lengths of reference compound (Cui et al., 2009). The benzene and pyridine, of course, planar with the Rms deviation of 0.0082 and 0.0015 Å, respectively. Atom F1 and O1 are almost on the benzene plane displaced by -0.0164 (49) and 0.0220 (45) Å, and N1 attached to prydine plane deviated slightly with the distance of 0.0115 (47) Å. The dihedral angle between benzene and pyridine in title compound is 1.14 (23) °, which is smaller than that in 4-Fluoro-2-[(E)-2-pyridyliminomethyl]phenol. Intramolecular O—H···N hydrogen bonds and intermolecular C—H···O links occur (Table 2), and these lead to packing network of the molecules (Fig. 2).

Related literature top

For a related structure, see: Cui & Shi (2009).

Experimental top

The title compound was prepared by stirring a mixture of 3-fluoro-salicylaldehyde (140 mg, 1 mmol) and pyridin-2-amine (94 mg, 1 mmol) in methanol (15 ml) for 3 h at room temperature. After keeping the solution in air for 5 d, yellow block-shaped crystals of (I) were formed. The crystals were isolated, washed three times with methanol and dried in a vacuum desiccator containing anhydrous CaCl2.

Refinement top

All the H atoms, were placed in idealized positions (C—H = 0.93- 0.96 Å, O—H = 0.82 Å) and refined as riding with Uiso(H) = 1.2Ueq(C) and Uiso(H) = 1.5Ueq(O).

Structure description top

The crystal structrue of 4-fluoro-2-[(E)-2-pyridyliminomethyl]phenol has been reported before, which is synthesized by 5-fluoro-salicyladehyde and pyridin-2-amine, and the distinction between title compound (I) and 4-fluoro-2-[(E)-2-pyridyliminomethyl]phenol are the different substituent position of the fluoro substituent (Cui et al., 2009).

The molecular structure of title compound is shown in Fig. 1, and selected geometric parameters are listed in Table 1. The C—F single bond length is 1.366 (4) Å, the C—O single bond length is 1.330 (4) Å, and the C—N double bond length is 1.273 (4) Å, which is similar with the bond lengths of reference compound (Cui et al., 2009). The benzene and pyridine, of course, planar with the Rms deviation of 0.0082 and 0.0015 Å, respectively. Atom F1 and O1 are almost on the benzene plane displaced by -0.0164 (49) and 0.0220 (45) Å, and N1 attached to prydine plane deviated slightly with the distance of 0.0115 (47) Å. The dihedral angle between benzene and pyridine in title compound is 1.14 (23) °, which is smaller than that in 4-Fluoro-2-[(E)-2-pyridyliminomethyl]phenol. Intramolecular O—H···N hydrogen bonds and intermolecular C—H···O links occur (Table 2), and these lead to packing network of the molecules (Fig. 2).

For a related structure, see: Cui & Shi (2009).

Computing details top

Data collection: CAD-4 Software (Enraf–Nonius, 1989); cell refinement: CAD-4 Software (Enraf–Nonius, 1989); data reduction: XCAD4 (Harms & Wocadlo, 1995); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXL97 (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The structure of the title compound (I) showing 35% probability displacement ellipsoids.
[Figure 2] Fig. 2. The crystal packing of (I), viewed along the a axis. Hydrogen bonds are shown as dashed lines.
2-Fluoro-6-[(E)-(pyridin-2-yl)iminomethyl]phenol top
Crystal data top
C12H9FN2OF(000) = 448
Mr = 216.21Dx = 1.369 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 763 reflections
a = 5.012 (1) Åθ = 3.2–24.2°
b = 19.764 (4) ŵ = 0.10 mm1
c = 10.802 (2) ÅT = 293 K
β = 101.42 (3)°Block, yellow
V = 1048.8 (4) Å30.29 × 0.22 × 0.18 mm
Z = 4
Data collection top
Enraf–Nonius CAD-4
diffractometer
2047 independent reflections
Radiation source: fine-focus sealed tube884 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.027
ω/2θ scanθmax = 26.0°, θmin = 2.1°
Absorption correction: ψ scan
(North et al., 1968)
h = 06
Tmin = 0.971, Tmax = 0.982k = 024
2284 measured reflectionsl = 1313
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.069Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.177H-atom parameters constrained
S = 1.03 w = 1/[σ2(Fo2) + (0.0605P)2]
where P = (Fo2 + 2Fc2)/3
2047 reflections(Δ/σ)max < 0.001
145 parametersΔρmax = 0.15 e Å3
0 restraintsΔρmin = 0.18 e Å3
Crystal data top
C12H9FN2OV = 1048.8 (4) Å3
Mr = 216.21Z = 4
Monoclinic, P21/cMo Kα radiation
a = 5.012 (1) ŵ = 0.10 mm1
b = 19.764 (4) ÅT = 293 K
c = 10.802 (2) Å0.29 × 0.22 × 0.18 mm
β = 101.42 (3)°
Data collection top
Enraf–Nonius CAD-4
diffractometer
2047 independent reflections
Absorption correction: ψ scan
(North et al., 1968)
884 reflections with I > 2σ(I)
Tmin = 0.971, Tmax = 0.982Rint = 0.027
2284 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0690 restraints
wR(F2) = 0.177H-atom parameters constrained
S = 1.03Δρmax = 0.15 e Å3
2047 reflectionsΔρmin = 0.18 e Å3
145 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.1221 (7)0.14229 (17)0.3242 (3)0.0587 (9)
C20.0882 (7)0.14860 (18)0.2172 (3)0.0646 (10)
C30.2793 (8)0.1990 (2)0.2189 (4)0.0782 (11)
C40.2688 (9)0.2415 (2)0.3172 (5)0.0885 (13)
H40.40330.27410.31530.106*
C50.0592 (9)0.2366 (2)0.4204 (5)0.0871 (13)
H50.04730.26700.48710.104*
C60.1307 (8)0.18699 (18)0.4240 (4)0.0744 (11)
H60.26920.18290.49500.089*
C70.3252 (7)0.08971 (17)0.3301 (3)0.0623 (10)
H70.46090.08600.40220.075*
C80.5244 (8)0.00312 (17)0.2485 (3)0.0604 (9)
C90.5107 (9)0.0465 (2)0.1482 (4)0.0800 (11)
H90.37240.04240.07720.096*
C100.7053 (11)0.0961 (2)0.1548 (5)0.0976 (15)
H100.70210.12610.08800.117*
C110.9045 (10)0.1006 (2)0.2620 (5)0.0955 (14)
H111.03810.13380.26960.115*
C120.9025 (8)0.0553 (2)0.3571 (4)0.0849 (12)
H121.03890.05860.42900.102*
F10.4856 (5)0.20355 (13)0.1156 (2)0.1162 (10)
N10.3236 (5)0.04836 (14)0.2396 (2)0.0614 (8)
N20.7175 (7)0.00676 (15)0.3531 (3)0.0711 (9)
O10.1081 (5)0.10814 (13)0.1174 (2)0.0838 (8)
H10.00260.07630.13470.126*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.053 (2)0.059 (2)0.067 (2)0.0073 (19)0.0176 (19)0.0026 (18)
C20.064 (3)0.063 (2)0.068 (2)0.013 (2)0.016 (2)0.001 (2)
C30.062 (3)0.072 (3)0.101 (3)0.002 (2)0.019 (2)0.023 (3)
C40.071 (3)0.068 (3)0.136 (4)0.002 (2)0.046 (3)0.011 (3)
C50.081 (3)0.075 (3)0.115 (4)0.008 (3)0.041 (3)0.021 (3)
C60.071 (3)0.071 (3)0.084 (3)0.013 (2)0.021 (2)0.016 (2)
C70.058 (2)0.062 (2)0.063 (2)0.0091 (19)0.0022 (18)0.0014 (19)
C80.067 (2)0.053 (2)0.063 (2)0.0106 (19)0.018 (2)0.0006 (19)
C90.089 (3)0.077 (3)0.077 (3)0.011 (3)0.023 (2)0.014 (2)
C100.132 (4)0.068 (3)0.109 (4)0.008 (3)0.062 (4)0.018 (3)
C110.101 (4)0.067 (3)0.129 (4)0.005 (3)0.049 (3)0.001 (3)
C120.079 (3)0.070 (3)0.108 (3)0.007 (2)0.023 (3)0.002 (3)
F10.0764 (16)0.136 (2)0.129 (2)0.0213 (15)0.0034 (15)0.0401 (17)
N10.0580 (18)0.0615 (18)0.0625 (18)0.0073 (16)0.0064 (15)0.0075 (16)
N20.068 (2)0.067 (2)0.079 (2)0.0056 (17)0.0168 (18)0.0019 (17)
O10.0758 (18)0.0932 (19)0.0748 (17)0.0018 (15)0.0033 (14)0.0013 (16)
Geometric parameters (Å, º) top
C1—C61.388 (4)C7—H70.9300
C1—C21.407 (5)C8—N21.336 (4)
C1—C71.447 (4)C8—C91.372 (5)
C2—O11.330 (4)C8—N11.421 (4)
C2—C31.385 (5)C9—C101.375 (5)
C3—C41.346 (5)C9—H90.9300
C3—F11.366 (4)C10—C111.374 (6)
C4—C51.375 (5)C10—H100.9300
C4—H40.9300C11—C121.364 (5)
C5—C61.362 (5)C11—H110.9300
C5—H50.9300C12—N21.329 (4)
C6—H60.9300C12—H120.9300
C7—N11.273 (4)O1—H10.8186
C6—C1—C2119.0 (3)C1—C7—H7119.0
C6—C1—C7120.6 (4)N2—C8—C9123.3 (4)
C2—C1—C7120.4 (3)N2—C8—N1118.7 (3)
O1—C2—C3120.2 (4)C9—C8—N1118.0 (4)
O1—C2—C1122.4 (3)C8—C9—C10118.8 (4)
C3—C2—C1117.4 (4)C8—C9—H9120.6
C4—C3—F1120.6 (4)C10—C9—H9120.6
C4—C3—C2122.7 (4)C11—C10—C9118.6 (4)
F1—C3—C2116.7 (4)C11—C10—H10120.7
C3—C4—C5120.0 (4)C9—C10—H10120.7
C3—C4—H4120.0C12—C11—C10118.7 (4)
C5—C4—H4120.0C12—C11—H11120.6
C6—C5—C4119.4 (4)C10—C11—H11120.6
C6—C5—H5120.3N2—C12—C11124.0 (4)
C4—C5—H5120.3N2—C12—H12118.0
C5—C6—C1121.5 (4)C11—C12—H12118.0
C5—C6—H6119.3C7—N1—C8120.7 (3)
C1—C6—H6119.3C12—N2—C8116.7 (3)
N1—C7—C1122.0 (3)C2—O1—H1109.5
N1—C7—H7119.0
C6—C1—C2—O1179.3 (3)C6—C1—C7—N1179.5 (3)
C7—C1—C2—O11.1 (5)C2—C1—C7—N10.9 (5)
C6—C1—C2—C31.0 (5)N2—C8—C9—C100.3 (5)
C7—C1—C2—C3178.6 (3)N1—C8—C9—C10179.3 (3)
O1—C2—C3—C4179.8 (3)C8—C9—C10—C110.5 (6)
C1—C2—C3—C40.4 (5)C9—C10—C11—C120.5 (6)
O1—C2—C3—F11.1 (5)C10—C11—C12—N20.4 (6)
C1—C2—C3—F1178.6 (3)C1—C7—N1—C8179.5 (3)
F1—C3—C4—C5179.7 (3)N2—C8—N1—C70.9 (5)
C2—C3—C4—C51.3 (6)C9—C8—N1—C7179.5 (3)
C3—C4—C5—C62.5 (6)C11—C12—N2—C80.2 (6)
C4—C5—C6—C11.9 (6)C9—C8—N2—C120.1 (5)
C2—C1—C6—C50.1 (5)N1—C8—N2—C12179.5 (3)
C7—C1—C6—C5179.7 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1···N10.821.882.586 (4)144
C9—H9···O1i0.932.603.390 (5)143
Symmetry code: (i) x, y, z.

Experimental details

Crystal data
Chemical formulaC12H9FN2O
Mr216.21
Crystal system, space groupMonoclinic, P21/c
Temperature (K)293
a, b, c (Å)5.012 (1), 19.764 (4), 10.802 (2)
β (°) 101.42 (3)
V3)1048.8 (4)
Z4
Radiation typeMo Kα
µ (mm1)0.10
Crystal size (mm)0.29 × 0.22 × 0.18
Data collection
DiffractometerEnraf–Nonius CAD-4
Absorption correctionψ scan
(North et al., 1968)
Tmin, Tmax0.971, 0.982
No. of measured, independent and
observed [I > 2σ(I)] reflections
2284, 2047, 884
Rint0.027
(sin θ/λ)max1)0.616
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.069, 0.177, 1.03
No. of reflections2047
No. of parameters145
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.15, 0.18

Computer programs: CAD-4 Software (Enraf–Nonius, 1989), XCAD4 (Harms & Wocadlo, 1995), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1···N10.821.882.586 (4)144
C9—H9···O1i0.932.603.390 (5)143
Symmetry code: (i) x, y, z.
 

Acknowledgements

We are grateful to the Fundamental Research Funds for the Central Universities.

References

First citationCui, P. & Shi, L. (2009). Acta Cryst. E65, o1282.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationEnraf–Nonius (1989). CAD-4 Software. Enraf–Nonius, Delft, The Netherlands.  Google Scholar
First citationHarms, K. & Wocadlo, S. (1995). XCAD4. University of Marburg, Germany.  Google Scholar
First citationNorth, A. C. T., Phillips, D. C. & Mathews, F. S. (1968). Acta Cryst. A24, 351–359.  CrossRef IUCr Journals Web of Science Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds