organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Ethyl 4-[(E)-(2-hy­dr­oxy­benzyl­­idene)amino]­piperidine-1-carboxyl­ate

aSchool of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu 610054, People's Republic of China, and bState Key Laboratory of Pharmaceutical Biotechnology, Nanjing University, Nanjing, 210093, People's Republic of China
*Correspondence e-mail: fangrq@uestc.edu.cn

(Received 17 November 2011; accepted 21 November 2011; online 25 November 2011)

In the title compound, C15H20N2O3, the piperidine ring adopts a chair conformation, although the amide N atom is almost planar (bond angle sum = 359.7°). The mol­ecule adopts an E conformation about the C=N bond, which allows for the formation of an intra­molecular O—H⋯N hydrogen bond. In the crystal, mol­ecules are linked by C—H⋯O inter­ations, resulting in C(6) chains propagating in [010].

Related literature

For a related structure, see: Tas et al. (2007[Tas, E., Ucar, I., Kasumov, V. T., Kilic, A. & Bulut, A. (2007). Spectrochim. Acta Part A, 68, 463-468.]). For standard bond lengths, see: Allen et al. 1987)[Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1-19.].

[Scheme 1]

Experimental

Crystal data
  • C15H20N2O3

  • Mr = 276.33

  • Monoclinic, P 21 /c

  • a = 15.732 (3) Å

  • b = 9.1890 (18) Å

  • c = 10.414 (2) Å

  • β = 97.24 (3)°

  • V = 1493.5 (5) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.09 mm−1

  • T = 293 K

  • 0.28 × 0.23 × 0.22 mm

Data collection
  • Enraf–Nonius CAD-4 diffractometer

  • Absorption correction: ψ scan (North et al., 1968)[North, A. C. T., Phillips, D. C. & Mathews, F. S. (1968). Acta Cryst. A24, 351-359.] Tmin = 0.976, Tmax = 0.981

  • 3098 measured reflections

  • 2922 independent reflections

  • 1750 reflections with I > 2σ(I)

  • Rint = 0.032

  • 3 standard reflections every 200 reflections intensity decay: 1%

Refinement
  • R[F2 > 2σ(F2)] = 0.065

  • wR(F2) = 0.174

  • S = 1.09

  • 2922 reflections

  • 183 parameters

  • H-atom parameters constrained

  • Δρmax = 0.21 e Å−3

  • Δρmin = −0.16 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O1—H1⋯N1 0.82 1.87 2.592 (3) 146
C15—H15B⋯O2i 0.96 2.56 3.475 (5) 160
Symmetry code: (i) [-x+1, y-{\script{1\over 2}}, -z+{\script{3\over 2}}].

Data collection: CAD-4 Software (Enraf–Nonius, 1989[Enraf-Nonius (1989). CAD-4 Software. Enraf-Nonius, Delft, The Netherlands.]); cell refinement: CAD-4 Software; data reduction: XCAD4 (Harms & Wocadlo, 1995[Harms, K. & Wocadlo, S. (1995). XCAD4. University of Marburg, Germany.]); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

The cystal structure of the Schiff base N-(1-ethoxycarbonyl)piperidine-4-yl)-3,5-di-t-butylsalicylaldimine, derived from ethyl 4-aminopiperidine-1-carboxylate and 3,5-di-tert-butylsalicylaldehyde, has been reported before (Tas et al., 2007). There are two tert butyl subsitituents on the 3- and 5- positons, as compared with the title compound. The molecular structure of title compound (I), Fig. 1, possesses an E configuration about C7=N1 double bond, and the bond length 1.268 (3) Å is in the normal range. (Allen et al. 1987). The C13=O2 double bond 1.208 (4) Å. The C2—O1, N2—C13 and C13—O3 single bond lengths are 1.352 (3), 1.343 (4) and 1.347 (4) Å, respectively. All these bond lengths is comparable to that observed in the reference compound. (Tas et al., 2007) The torsion angle of C9—C8—N1—C7 and C12—C8—N1—C7 is -108.8 (3) ° and 131.3 (3) °. The Rms deviation of phenyl ring is 0.0072 Å, and the Rms of six-member piperidine ring of chair conformation is 0.2282 Å. The The dihedral angle between phenyl plane and piperidine ring in title compound is 77.58 (10) °. There is an intramolecular hydrogen bond, O1—H1···N1, together with one kind of intermolecular hydrogen bond C15—H15B···O2 in the crystal structure of title compound. All these hydrogen bonds the molecule to form an extended network along b axis, Fig. 2.

Related literature top

For a related structure, see: Tas et al. (2007). For standard bond lengths, see: Allen et al. 1987).

Experimental top

The title compound was prepared by stirring a mixture of salicylaldehyde (122 mg, 1 mmol) and ethyl 4-aminopiperidine-1-carboxylate (172 mg, 1 mmol) in methanol (15 ml) for 3 h at room temperature. After keeping the solution in air for 4 d, yellow block-shaped crystals of (I) were formed. The crystals were isolated, washed three times with methanol and dried in a vacuum desiccator containing anhydrous CaCl2.

Refinement top

All the H atoms, were placed in idealized positions (C—H = 0.93- 0.96 Å, O—H = 0.82 Å) and refined as riding with Uiso(H) = 1.2Ueq(C) and Uiso(H) = 1.5Ueq(O).

Structure description top

The cystal structure of the Schiff base N-(1-ethoxycarbonyl)piperidine-4-yl)-3,5-di-t-butylsalicylaldimine, derived from ethyl 4-aminopiperidine-1-carboxylate and 3,5-di-tert-butylsalicylaldehyde, has been reported before (Tas et al., 2007). There are two tert butyl subsitituents on the 3- and 5- positons, as compared with the title compound. The molecular structure of title compound (I), Fig. 1, possesses an E configuration about C7=N1 double bond, and the bond length 1.268 (3) Å is in the normal range. (Allen et al. 1987). The C13=O2 double bond 1.208 (4) Å. The C2—O1, N2—C13 and C13—O3 single bond lengths are 1.352 (3), 1.343 (4) and 1.347 (4) Å, respectively. All these bond lengths is comparable to that observed in the reference compound. (Tas et al., 2007) The torsion angle of C9—C8—N1—C7 and C12—C8—N1—C7 is -108.8 (3) ° and 131.3 (3) °. The Rms deviation of phenyl ring is 0.0072 Å, and the Rms of six-member piperidine ring of chair conformation is 0.2282 Å. The The dihedral angle between phenyl plane and piperidine ring in title compound is 77.58 (10) °. There is an intramolecular hydrogen bond, O1—H1···N1, together with one kind of intermolecular hydrogen bond C15—H15B···O2 in the crystal structure of title compound. All these hydrogen bonds the molecule to form an extended network along b axis, Fig. 2.

For a related structure, see: Tas et al. (2007). For standard bond lengths, see: Allen et al. 1987).

Computing details top

Data collection: CAD-4 Software (Enraf–Nonius, 1989); cell refinement: CAD-4 Software (Enraf–Nonius, 1989); data reduction: XCAD4 (Harms & Wocadlo, 1995); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The structure of the title compound (I) showing 35% probability displacement ellipsoids.
[Figure 2] Fig. 2. The crystal packing of (I), viewed along the b axis. Hydrogen bonds are shown as dashed lines.
Ethyl 4-[(E)-(2-hydroxybenzylidene)amino]piperidine-1-carboxylate top
Crystal data top
C15H20N2O3F(000) = 592
Mr = 276.33Dx = 1.229 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 1428 reflections
a = 15.732 (3) Åθ = 2.5–24.2°
b = 9.1890 (18) ŵ = 0.09 mm1
c = 10.414 (2) ÅT = 293 K
β = 97.24 (3)°Block, yellow
V = 1493.5 (5) Å30.28 × 0.23 × 0.22 mm
Z = 4
Data collection top
Enraf–Nonius CAD-4
diffractometer
1750 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.032
Graphite monochromatorθmax = 26.0°, θmin = 1.3°
ω/2θ scanh = 1919
Absorption correction: ψ scan
(North et al., 1968)
k = 110
Tmin = 0.976, Tmax = 0.981l = 012
3098 measured reflections3 standard reflections every 200 reflections
2922 independent reflections intensity decay: 1%
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.065H-atom parameters constrained
wR(F2) = 0.174 w = 1/[σ2(Fo2) + (0.0611P)2 + 0.6373P]
where P = (Fo2 + 2Fc2)/3
S = 1.09(Δ/σ)max < 0.001
2922 reflectionsΔρmax = 0.21 e Å3
183 parametersΔρmin = 0.16 e Å3
0 restraintsExtinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.022 (3)
Crystal data top
C15H20N2O3V = 1493.5 (5) Å3
Mr = 276.33Z = 4
Monoclinic, P21/cMo Kα radiation
a = 15.732 (3) ŵ = 0.09 mm1
b = 9.1890 (18) ÅT = 293 K
c = 10.414 (2) Å0.28 × 0.23 × 0.22 mm
β = 97.24 (3)°
Data collection top
Enraf–Nonius CAD-4
diffractometer
1750 reflections with I > 2σ(I)
Absorption correction: ψ scan
(North et al., 1968)
Rint = 0.032
Tmin = 0.976, Tmax = 0.9813 standard reflections every 200 reflections
3098 measured reflections intensity decay: 1%
2922 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0650 restraints
wR(F2) = 0.174H-atom parameters constrained
S = 1.09Δρmax = 0.21 e Å3
2922 reflectionsΔρmin = 0.16 e Å3
183 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.07284 (18)0.1352 (3)0.1715 (3)0.0491 (7)
C20.11096 (19)0.0759 (3)0.2735 (3)0.0503 (7)
C30.19939 (19)0.0618 (3)0.2628 (3)0.0619 (8)
H30.22480.02320.33120.074*
C40.2494 (2)0.1047 (4)0.1517 (3)0.0632 (9)
H40.30870.09620.14600.076*
C50.2130 (2)0.1602 (4)0.0488 (3)0.0661 (9)
H50.24710.18740.02680.079*
C60.1251 (2)0.1749 (4)0.0594 (3)0.0624 (8)
H60.10030.21240.01000.075*
C70.01943 (18)0.1592 (3)0.1838 (3)0.0515 (7)
H70.04310.20140.11530.062*
C80.16035 (17)0.1521 (3)0.2946 (3)0.0526 (7)
H80.17250.21470.22280.063*
C90.2061 (2)0.0066 (4)0.2873 (3)0.0645 (9)
H9A0.19130.03480.20170.077*
H9B0.18650.06010.34960.077*
C100.3033 (2)0.0227 (4)0.3151 (3)0.0677 (9)
H10A0.33000.07250.31700.081*
H10B0.32420.07920.24690.081*
C110.2866 (2)0.2392 (4)0.4458 (3)0.0680 (9)
H11A0.30620.30290.38130.082*
H11B0.30380.28140.53050.082*
C120.18953 (18)0.2265 (3)0.4225 (3)0.0557 (8)
H12A0.16970.17130.49230.067*
H12B0.16440.32290.42240.067*
C130.37125 (18)0.0361 (4)0.5437 (3)0.0584 (8)
C140.4508 (2)0.1707 (5)0.6252 (4)0.0828 (11)
H14A0.41840.18170.69800.099*
H14B0.50180.11400.65310.099*
C150.4747 (3)0.3153 (5)0.5780 (5)0.1084 (15)
H15A0.42400.37240.55530.163*
H15B0.51170.36390.64490.163*
H15C0.50400.30310.50320.163*
N10.06833 (14)0.1243 (3)0.2853 (2)0.0528 (6)
N20.32588 (16)0.0948 (3)0.4385 (2)0.0626 (7)
O10.06447 (13)0.0300 (2)0.38413 (19)0.0671 (6)
H10.01330.03890.37800.101*
O20.38554 (15)0.0953 (3)0.6478 (2)0.0837 (8)
O30.39911 (13)0.0984 (3)0.5189 (2)0.0702 (7)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0515 (17)0.0451 (16)0.0500 (17)0.0037 (13)0.0037 (13)0.0011 (13)
C20.0551 (18)0.0422 (16)0.0534 (17)0.0012 (13)0.0065 (14)0.0017 (14)
C30.0563 (19)0.061 (2)0.070 (2)0.0036 (15)0.0119 (16)0.0025 (17)
C40.0478 (17)0.064 (2)0.078 (2)0.0019 (15)0.0065 (17)0.0118 (18)
C50.059 (2)0.069 (2)0.066 (2)0.0056 (17)0.0080 (17)0.0065 (17)
C60.063 (2)0.070 (2)0.0534 (18)0.0038 (16)0.0041 (15)0.0062 (16)
C70.0537 (17)0.0496 (17)0.0518 (17)0.0005 (14)0.0089 (14)0.0064 (14)
C80.0487 (16)0.0589 (18)0.0506 (17)0.0013 (14)0.0076 (13)0.0110 (14)
C90.063 (2)0.071 (2)0.0567 (18)0.0102 (16)0.0036 (15)0.0106 (16)
C100.065 (2)0.079 (2)0.0577 (19)0.0233 (18)0.0004 (16)0.0001 (17)
C110.059 (2)0.062 (2)0.080 (2)0.0032 (16)0.0050 (17)0.0067 (18)
C120.0566 (18)0.0505 (17)0.0603 (18)0.0047 (14)0.0087 (14)0.0013 (15)
C130.0370 (15)0.077 (2)0.060 (2)0.0037 (15)0.0008 (14)0.0034 (18)
C140.060 (2)0.105 (3)0.079 (2)0.005 (2)0.0110 (18)0.025 (2)
C150.080 (3)0.099 (3)0.135 (4)0.015 (2)0.029 (3)0.034 (3)
N10.0464 (14)0.0562 (15)0.0551 (15)0.0019 (11)0.0036 (11)0.0084 (12)
N20.0598 (16)0.0654 (17)0.0588 (16)0.0088 (13)0.0075 (12)0.0021 (14)
O10.0574 (13)0.0852 (16)0.0590 (13)0.0027 (11)0.0085 (10)0.0187 (12)
O20.0713 (16)0.113 (2)0.0625 (15)0.0005 (14)0.0089 (12)0.0106 (15)
O30.0568 (13)0.0798 (16)0.0697 (14)0.0101 (12)0.0085 (11)0.0118 (12)
Geometric parameters (Å, º) top
C1—C61.389 (4)C10—N21.450 (4)
C1—C21.394 (4)C10—H10A0.9700
C1—C71.458 (4)C10—H10B0.9700
C2—O11.352 (3)C11—N21.470 (4)
C2—C31.388 (4)C11—C121.520 (4)
C3—C41.373 (4)C11—H11A0.9700
C3—H30.9300C11—H11B0.9700
C4—C51.375 (4)C12—H12A0.9700
C4—H40.9300C12—H12B0.9700
C5—C61.380 (4)C13—O21.208 (4)
C5—H50.9300C13—N21.343 (4)
C6—H60.9300C13—O31.347 (4)
C7—N11.268 (3)C14—O31.449 (4)
C7—H70.9300C14—C151.482 (6)
C8—N11.461 (3)C14—H14A0.9700
C8—C121.516 (4)C14—H14B0.9700
C8—C91.525 (4)C15—H15A0.9600
C8—H80.9800C15—H15B0.9600
C9—C101.527 (4)C15—H15C0.9600
C9—H9A0.9700O1—H10.8200
C9—H9B0.9700
C6—C1—C2118.5 (3)N2—C10—H10B109.7
C6—C1—C7120.7 (3)C9—C10—H10B109.7
C2—C1—C7120.8 (3)H10A—C10—H10B108.2
O1—C2—C3117.9 (3)N2—C11—C12110.1 (3)
O1—C2—C1122.2 (3)N2—C11—H11A109.6
C3—C2—C1119.9 (3)C12—C11—H11A109.6
C4—C3—C2120.2 (3)N2—C11—H11B109.6
C4—C3—H3119.9C12—C11—H11B109.6
C2—C3—H3119.9H11A—C11—H11B108.2
C3—C4—C5120.8 (3)C8—C12—C11111.2 (2)
C3—C4—H4119.6C8—C12—H12A109.4
C5—C4—H4119.6C11—C12—H12A109.4
C4—C5—C6119.1 (3)C8—C12—H12B109.4
C4—C5—H5120.5C11—C12—H12B109.4
C6—C5—H5120.5H12A—C12—H12B108.0
C5—C6—C1121.5 (3)O2—C13—N2124.8 (3)
C5—C6—H6119.3O2—C13—O3123.8 (3)
C1—C6—H6119.3N2—C13—O3111.3 (3)
N1—C7—C1121.8 (3)O3—C14—C15107.4 (3)
N1—C7—H7119.1O3—C14—H14A110.2
C1—C7—H7119.1C15—C14—H14A110.2
N1—C8—C12108.9 (2)O3—C14—H14B110.2
N1—C8—C9108.2 (2)C15—C14—H14B110.2
C12—C8—C9110.3 (2)H14A—C14—H14B108.5
N1—C8—H8109.8C14—C15—H15A109.5
C12—C8—H8109.8C14—C15—H15B109.5
C9—C8—H8109.8H15A—C15—H15B109.5
C8—C9—C10111.9 (3)C14—C15—H15C109.5
C8—C9—H9A109.2H15A—C15—H15C109.5
C10—C9—H9A109.2H15B—C15—H15C109.5
C8—C9—H9B109.2C7—N1—C8120.2 (2)
C10—C9—H9B109.2C13—N2—C10125.9 (3)
H9A—C9—H9B107.9C13—N2—C11120.3 (3)
N2—C10—C9109.9 (3)C10—N2—C11113.6 (2)
N2—C10—H10A109.7C2—O1—H1109.5
C9—C10—H10A109.7C13—O3—C14116.0 (3)
C6—C1—C2—O1177.8 (3)C9—C8—C12—C1153.5 (3)
C7—C1—C2—O14.2 (4)N2—C11—C12—C855.7 (4)
C6—C1—C2—C31.9 (4)C1—C7—N1—C8179.1 (3)
C7—C1—C2—C3176.2 (3)C12—C8—N1—C7131.3 (3)
O1—C2—C3—C4179.0 (3)C9—C8—N1—C7108.8 (3)
C1—C2—C3—C40.6 (4)O2—C13—N2—C10175.8 (3)
C2—C3—C4—C50.9 (5)O3—C13—N2—C104.1 (4)
C3—C4—C5—C61.2 (5)O2—C13—N2—C112.3 (5)
C4—C5—C6—C10.0 (5)O3—C13—N2—C11177.6 (3)
C2—C1—C6—C51.6 (5)C9—C10—N2—C13115.9 (3)
C7—C1—C6—C5176.5 (3)C9—C10—N2—C1158.0 (4)
C6—C1—C7—N1179.7 (3)C12—C11—N2—C13115.3 (3)
C2—C1—C7—N11.8 (4)C12—C11—N2—C1059.0 (4)
N1—C8—C9—C10172.0 (2)O2—C13—O3—C141.6 (4)
C12—C8—C9—C1053.0 (3)N2—C13—O3—C14178.5 (3)
C8—C9—C10—N254.5 (4)C15—C14—O3—C13179.8 (3)
N1—C8—C12—C11172.1 (2)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1···N10.821.872.592 (3)146
C15—H15B···O2i0.962.563.475 (5)160
Symmetry code: (i) x+1, y1/2, z+3/2.

Experimental details

Crystal data
Chemical formulaC15H20N2O3
Mr276.33
Crystal system, space groupMonoclinic, P21/c
Temperature (K)293
a, b, c (Å)15.732 (3), 9.1890 (18), 10.414 (2)
β (°) 97.24 (3)
V3)1493.5 (5)
Z4
Radiation typeMo Kα
µ (mm1)0.09
Crystal size (mm)0.28 × 0.23 × 0.22
Data collection
DiffractometerEnraf–Nonius CAD-4
Absorption correctionψ scan
(North et al., 1968)
Tmin, Tmax0.976, 0.981
No. of measured, independent and
observed [I > 2σ(I)] reflections
3098, 2922, 1750
Rint0.032
(sin θ/λ)max1)0.616
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.065, 0.174, 1.09
No. of reflections2922
No. of parameters183
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.21, 0.16

Computer programs: CAD-4 Software (Enraf–Nonius, 1989), XCAD4 (Harms & Wocadlo, 1995), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1···N10.821.872.592 (3)146
C15—H15B···O2i0.962.563.475 (5)160
Symmetry code: (i) x+1, y1/2, z+3/2.
 

Acknowledgements

We are grateful to the Fundamental Research Funds for the Central Universities (ZYGX2009J085) and the China Postdoctoral Science Foundation (20110491380) for support.

References

First citationAllen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.  CSD CrossRef Web of Science Google Scholar
First citationEnraf–Nonius (1989). CAD-4 Software. Enraf–Nonius, Delft, The Netherlands.  Google Scholar
First citationHarms, K. & Wocadlo, S. (1995). XCAD4. University of Marburg, Germany.  Google Scholar
First citationNorth, A. C. T., Phillips, D. C. & Mathews, F. S. (1968). Acta Cryst. A24, 351–359.  CrossRef IUCr Journals Web of Science Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationTas, E., Ucar, I., Kasumov, V. T., Kilic, A. & Bulut, A. (2007). Spectrochim. Acta Part A, 68, 463–468.  CrossRef Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds