metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Di­bromido(2,9-di­methyl-1,10-phenanthroline-κ2N,N′)cadmium

aDepartment of Chemistry, King Saud University, PO Box 2455, Riyadh 11451, Saudi Arabia, bDepartment of Chemistry, AN-Najah National University, PO Box 7, Nablus, Palestinian Territories, cPetrochemical Research Chair, College of Science, King Saud University, Riyadh, Saudi Arabia, and dLaboratoire de Chimie des Matériaux, Faculté des Sciences de Bizerte, 7021 Zarzouna Bizerte, Tunisia
*Correspondence e-mail: mohamedrzaigui@yahoo.fr

(Received 17 November 2011; accepted 22 November 2011; online 30 November 2011)

In the title complex, [CdBr2(C14H12N2)], the CdII ion is tetra­coordinated by two N atoms of the bidentate 2,9-dimethyl-1,10-phenanthroline ligand and two bromide ions in a substanti­ally distorted CdN2Br2 tetra­hedral geometry. In the crystal, inversion dimers linked by pairs of weak C—H⋯Br bonds generate R22(14) loops. Aromatic ππ stacking [shortest centroid–centroid separation = 3.633 (2) Å] inter­actions occur within, and also link, the dimers into chains propagating parallel to [100].

Related literature

For related structures, see: Preston & Kennard (1969[Preston, H. S. & Kennard, C. H. L. (1969). J. Chem. Soc. A, pp. 1956-1961.]); Lange et al. (2000[Lange, J., Elias, H. & Paulus, H. (2000). Inorg. Chem. 39, 3342-3349.]); Alizadeh et al. (2009[Alizadeh, R., Heidari, A., Ahmadi, R. & Amani, V. (2009). Acta Cryst. E65, m483-m484.]); Wang & Zhong (2009[Wang, B. S. & Zhong, H. (2009). Acta Cryst. E65, m1156.]); Warad et al. (2011[Warad, I., Boshaala, A., Al-Resayes, S. I., Al-Deyab, S. S. & Rzaigui, M. (2011). Acta Cryst. E67, m1650.]). For background to ππ stacking inter­actions, see: Janiak (2000[Janiak, C. (2000). J. Chem. Soc. Dalton Trans. pp. 3885-3896.]).

[Scheme 1]

Experimental

Crystal data
  • [CdBr2(C14H12N2)]

  • Mr = 480.48

  • Monoclinic, P 21 /c

  • a = 7.889 (4) Å

  • b = 10.519 (3) Å

  • c = 18.712 (2) Å

  • β = 97.69 (3)°

  • V = 1538.8 (9) Å3

  • Z = 4

  • Ag Kα radiation

  • λ = 0.56087 Å

  • μ = 3.53 mm−1

  • T = 293 K

  • 0.30 × 0.25 × 0.17 mm

Data collection
  • Enraf–Nonius CAD-4 diffractometer

  • Absorption correction: multi-scan (SORTAV; Blessing, 1995[Blessing, R. H. (1995). Acta Cryst. A51, 33-38.]) Tmin = 0.469, Tmax = 0.534

  • 9813 measured reflections

  • 7516 independent reflections

  • 2986 reflections with I > 2σ(I)

  • Rint = 0.029

  • 2 standard reflections every 120 min intensity decay: 1%

Refinement
  • R[F2 > 2σ(F2)] = 0.063

  • wR(F2) = 0.177

  • S = 0.98

  • 7516 reflections

  • 174 parameters

  • H-atom parameters constrained

  • Δρmax = 1.41 e Å−3

  • Δρmin = −0.93 e Å−3

Table 1
Selected geometric parameters (Å, °)

Cd1—N2 2.273 (4)
Cd1—N1 2.294 (4)
Cd1—Br2 2.5050 (10)
Cd1—Br1 2.5120 (13)
N2—Cd1—N1 73.81 (14)

Table 2
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C5—H5⋯Br1i 0.93 2.98 3.805 (5) 149
Symmetry code: (i) -x+1, -y, -z+1.

Data collection: CAD-4 EXPRESS (Enraf–Nonius, 1994[Enraf-Nonius (1994). CAD-4 EXPRESS. Enraf-Nonius, Delft, The Netherlands.]); cell refinement: CAD-4 EXPRESS; data reduction: XCAD4 (Harms & Wocadlo, 1995[Harms, K. & Wocadlo, S. (1995). XCAD4. University of Marburg, Germany.]); program(s) used to solve structure: SHELXS86 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEPIII (Burnett & Johnson, 1996[Burnett, M. N. & Johnson, C. K. (1996). ORTEPIII. Report ORNL-6895. Oak Ridge National Laboratory, Tennessee, USA.]) and DIAMOND (Brandenburg & Putz, 2005[Brandenburg, K. & Putz, H. (2005). DIAMOND. Crystal Impact GbR, Bonn, Germany.]); software used to prepare material for publication: WinGX (Farrugia, 1999[Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.]).

Supporting information


Comment top

The reaction of cadmium(II) halides, CdX2, with nitrogen-based ligands (L) yields mixed-ligand complexes. The number of ligands bound to the metal cation is influenced greatly by both the chemical nature and geometry of ligand L and the type of halogen X (Lange et al., 2000). In this sense, we report herein synthesis and crystal structure of a new CdII complex, [CdBr2(dmphen)] (I), where dmphen = 2,9-dimethyl-1,10-phenanthroline.

The molecular structure of (I), along with the numbering scheme, is shown in Fig. 1. The CdII cation is located on a general position in a tetrahedral environment built up from two nitrogen atoms (N1, N2) of one dmphen bidentate ligand and two bromide ions (Br1, Br2). Similar coordination geometry around the central atom has been observed in other metal complexes involving the same ligand (dmphen) such as [HgBr2(dmphen)], (Alizadeh et al., 2009), [ZnCl2(dmphen)] (Preston et al., 1969), [CuCl2(dmphen)] (Wang et al., 2009).

Geometrical analysis of the bond lengths and angles around the cadmium atom shows that the CdBr2N2 tetrahedron, where the Cd shift from the gravity center is δ = 0.249 Å, is less distorted that the CdI2N2 (δ = 0.356 Å) in the [CdI2(dmphen)] structure (Warad et al., 2011). This can be explaned by the large size and π-acid character of the iodine atom.

It should be noted also that, in the crystal packing of [CdI2(dmphen)], there is no C—H···I H-bond, while in [CdBr2(dmphen)], weak intermolecular C—H···Br bonds (2.98 (3) Å) link the complex molecules into dimeric clusters. Additional ππ aromatic stacking interactions, between the dmphen rings of neighboring molecules, associate these clusters into chains parallel to the a axis (Fig. 2). The ππ contacts involve the dmphen rings N1C1C2C3C4C12 (centroid Cg1), C4C5C6C7C11C12 (centroid Cg2) and N2C10C9C8C7C11 (centroid Cg3) between which exist the centroid-centroid distances Cg1···Cg3i (3.634 Å)) [symmetry code: (i) 1 - x, -y, 1 - z], Cg2···Cg3ii (3.722 Å) and Cg3···Cg3ii (3.705 Å) [symmetry code: (ii) 2 - x, -y, 1 - z], which are less than the maximum value (3.8 Å) regarded as relevant for ππ interactions (Janiak, 2000).

Related literature top

For related structures, see: Preston et al. (1969); Lange et al. (2000); Alizadeh et al. (2009); Wang & Zhong (2009); Warad et al. (2011). For background to ππ stacking interactions, see: Janiak (2000).

Experimental top

This complex was prepared by a procedure similar to that used for [CdI2(dmphen)] (Warad et al., 2011). A mixture of cadimium bromide (CdBr2.4H2O, 82.7 mg, 0.24 mmol) in methanol (20 ml) and dmphen (50.0 mg, 0.24 mmol) in dichloromethane (10 ml) is stirred for 2H at room temperature. The obtained solution was concentrated to about 2 ml under reduced pressure and mixed to 40 ml of n-hexane. This causes the precipitation of white powder which was filtered, dried and used for the preparation of colourless prisms of (I) by slow diffusion of diethyl ether into a solution of the complex in dichloromethane.

Refinement top

All H atoms attached to C atoms were fixed geometrically and treated as riding, with C—H = 0.93 Å and 0.96 Å and with Uiso(H) = 1.2Ueq(C) and Uiso(H) = 1.5Ueq(Cmethyl).

Structure description top

The reaction of cadmium(II) halides, CdX2, with nitrogen-based ligands (L) yields mixed-ligand complexes. The number of ligands bound to the metal cation is influenced greatly by both the chemical nature and geometry of ligand L and the type of halogen X (Lange et al., 2000). In this sense, we report herein synthesis and crystal structure of a new CdII complex, [CdBr2(dmphen)] (I), where dmphen = 2,9-dimethyl-1,10-phenanthroline.

The molecular structure of (I), along with the numbering scheme, is shown in Fig. 1. The CdII cation is located on a general position in a tetrahedral environment built up from two nitrogen atoms (N1, N2) of one dmphen bidentate ligand and two bromide ions (Br1, Br2). Similar coordination geometry around the central atom has been observed in other metal complexes involving the same ligand (dmphen) such as [HgBr2(dmphen)], (Alizadeh et al., 2009), [ZnCl2(dmphen)] (Preston et al., 1969), [CuCl2(dmphen)] (Wang et al., 2009).

Geometrical analysis of the bond lengths and angles around the cadmium atom shows that the CdBr2N2 tetrahedron, where the Cd shift from the gravity center is δ = 0.249 Å, is less distorted that the CdI2N2 (δ = 0.356 Å) in the [CdI2(dmphen)] structure (Warad et al., 2011). This can be explaned by the large size and π-acid character of the iodine atom.

It should be noted also that, in the crystal packing of [CdI2(dmphen)], there is no C—H···I H-bond, while in [CdBr2(dmphen)], weak intermolecular C—H···Br bonds (2.98 (3) Å) link the complex molecules into dimeric clusters. Additional ππ aromatic stacking interactions, between the dmphen rings of neighboring molecules, associate these clusters into chains parallel to the a axis (Fig. 2). The ππ contacts involve the dmphen rings N1C1C2C3C4C12 (centroid Cg1), C4C5C6C7C11C12 (centroid Cg2) and N2C10C9C8C7C11 (centroid Cg3) between which exist the centroid-centroid distances Cg1···Cg3i (3.634 Å)) [symmetry code: (i) 1 - x, -y, 1 - z], Cg2···Cg3ii (3.722 Å) and Cg3···Cg3ii (3.705 Å) [symmetry code: (ii) 2 - x, -y, 1 - z], which are less than the maximum value (3.8 Å) regarded as relevant for ππ interactions (Janiak, 2000).

For related structures, see: Preston et al. (1969); Lange et al. (2000); Alizadeh et al. (2009); Wang & Zhong (2009); Warad et al. (2011). For background to ππ stacking interactions, see: Janiak (2000).

Computing details top

Data collection: CAD-4 EXPRESS (Enraf–Nonius, 1994); cell refinement: CAD-4 EXPRESS (Enraf–Nonius, 1994); data reduction: XCAD4 (Harms & Wocadlo, 1995); program(s) used to solve structure: SHELXS86 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEPIII (Burnett & Johnson, 1996) and DIAMOND (Brandenburg & Putz, 2005); software used to prepare material for publication: WinGX (Farrugia, 1999).

Figures top
[Figure 1] Fig. 1. An ORTEP (Burnett & Johnson, 1996) view of (I). Displacement ellipsoids are drawn at the 30% probability level. H atoms are represented as small spheres of arbitrary radii.
[Figure 2] Fig. 2. A view of the [CdBr2(dmphen)2]n chains extending along a axis. The H-atoms not involved in H-bonding have been omitted.
Dibromido(2,9-dimethyl-1,10-phenanthroline-κ2N,N')cadmium top
Crystal data top
[CdBr2(C14H12N2)]F(000) = 912
Mr = 480.48Dx = 2.074 Mg m3
Monoclinic, P21/cAg Kα radiation, λ = 0.56087 Å
a = 7.889 (4) ÅCell parameters from 25 reflections
b = 10.519 (3) Åθ = 9–11°
c = 18.712 (2) ŵ = 3.53 mm1
β = 97.69 (3)°T = 293 K
V = 1538.8 (9) Å3Prism, colorless
Z = 40.30 × 0.25 × 0.17 mm
Data collection top
Enraf–Nonius CAD-4
diffractometer
2986 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.029
Graphite monochromatorθmax = 28.0°, θmin = 2.1°
non–profiled ω scansh = 1313
Absorption correction: multi-scan
(SORTAV; Blessing, 1995)
k = 217
Tmin = 0.469, Tmax = 0.534l = 231
9813 measured reflections2 standard reflections every 120 min
7516 independent reflections intensity decay: 1%
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.063Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.177H-atom parameters constrained
S = 0.98 w = 1/[σ2(Fo2) + (0.0769P)2]
where P = (Fo2 + 2Fc2)/3
7516 reflections(Δ/σ)max = 0.001
174 parametersΔρmax = 1.41 e Å3
0 restraintsΔρmin = 0.93 e Å3
Crystal data top
[CdBr2(C14H12N2)]V = 1538.8 (9) Å3
Mr = 480.48Z = 4
Monoclinic, P21/cAg Kα radiation, λ = 0.56087 Å
a = 7.889 (4) ŵ = 3.53 mm1
b = 10.519 (3) ÅT = 293 K
c = 18.712 (2) Å0.30 × 0.25 × 0.17 mm
β = 97.69 (3)°
Data collection top
Enraf–Nonius CAD-4
diffractometer
2986 reflections with I > 2σ(I)
Absorption correction: multi-scan
(SORTAV; Blessing, 1995)
Rint = 0.029
Tmin = 0.469, Tmax = 0.5342 standard reflections every 120 min
9813 measured reflections intensity decay: 1%
7516 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0630 restraints
wR(F2) = 0.177H-atom parameters constrained
S = 0.98Δρmax = 1.41 e Å3
7516 reflectionsΔρmin = 0.93 e Å3
174 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cd10.71490 (5)0.28442 (4)0.39225 (2)0.05032 (14)
Br10.44548 (9)0.32557 (8)0.30765 (4)0.0833 (2)
Br20.93295 (10)0.45768 (6)0.39288 (4)0.0766 (2)
N10.6886 (5)0.1781 (4)0.4972 (2)0.0422 (8)
N20.8075 (5)0.0829 (4)0.3769 (2)0.0409 (8)
C10.6270 (6)0.2257 (5)0.5546 (3)0.0501 (11)
C20.6113 (7)0.1479 (6)0.6149 (3)0.0561 (13)
H20.56920.18190.65490.067*
C30.6578 (7)0.0234 (6)0.6146 (3)0.0553 (14)
H30.64620.02780.65410.066*
C40.7229 (6)0.0278 (5)0.5551 (3)0.0462 (11)
C50.7760 (6)0.1572 (5)0.5505 (3)0.0562 (13)
H50.76800.21130.58920.067*
C60.8373 (7)0.2031 (5)0.4918 (3)0.0530 (12)
H60.87240.28750.49100.064*
C70.8489 (6)0.1248 (4)0.4314 (3)0.0412 (10)
C80.9065 (6)0.1674 (5)0.3680 (3)0.0511 (12)
H80.93940.25180.36440.061*
C90.9152 (7)0.0873 (5)0.3119 (3)0.0535 (12)
H90.95430.11660.27020.064*
C100.8653 (7)0.0387 (5)0.3170 (3)0.0518 (12)
C110.7981 (5)0.0045 (4)0.4331 (2)0.0375 (9)
C120.7359 (5)0.0532 (4)0.4963 (2)0.0389 (10)
C130.5798 (8)0.3629 (6)0.5518 (3)0.0663 (16)
H13A0.67770.41290.57040.100*
H13B0.48940.37730.58050.100*
H13C0.54210.38700.50280.100*
C140.8682 (10)0.1297 (6)0.2557 (3)0.079 (2)
H14A0.79660.20130.26240.119*
H14B0.82660.08790.21120.119*
H14C0.98330.15820.25430.119*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cd10.0656 (3)0.03953 (19)0.0473 (2)0.00785 (18)0.01316 (17)0.00728 (16)
Br10.0686 (4)0.1170 (6)0.0645 (4)0.0160 (4)0.0094 (3)0.0320 (4)
Br20.1037 (5)0.0481 (3)0.0791 (4)0.0126 (3)0.0164 (4)0.0111 (3)
N10.047 (2)0.042 (2)0.0384 (19)0.0033 (17)0.0057 (16)0.0018 (16)
N20.045 (2)0.0379 (19)0.0400 (19)0.0016 (16)0.0067 (17)0.0003 (16)
C10.041 (2)0.058 (3)0.052 (3)0.002 (2)0.009 (2)0.005 (3)
C20.050 (3)0.076 (4)0.044 (3)0.004 (3)0.013 (2)0.006 (3)
C30.049 (3)0.076 (4)0.042 (3)0.010 (3)0.009 (2)0.012 (3)
C40.039 (2)0.056 (3)0.043 (2)0.005 (2)0.006 (2)0.011 (2)
C50.054 (3)0.052 (3)0.061 (3)0.003 (3)0.004 (3)0.021 (3)
C60.054 (3)0.039 (2)0.066 (3)0.000 (2)0.005 (3)0.013 (2)
C70.036 (2)0.037 (2)0.050 (3)0.0016 (18)0.003 (2)0.006 (2)
C80.051 (3)0.038 (2)0.064 (3)0.007 (2)0.007 (2)0.009 (2)
C90.062 (3)0.047 (3)0.053 (3)0.003 (2)0.011 (2)0.008 (2)
C100.063 (3)0.051 (3)0.042 (2)0.000 (2)0.010 (2)0.006 (2)
C110.033 (2)0.038 (2)0.040 (2)0.0021 (17)0.0001 (18)0.0001 (18)
C120.034 (2)0.039 (2)0.042 (2)0.0026 (18)0.0004 (18)0.0068 (19)
C130.082 (4)0.057 (3)0.065 (4)0.008 (3)0.026 (3)0.010 (3)
C140.129 (6)0.060 (4)0.057 (3)0.013 (4)0.041 (4)0.006 (3)
Geometric parameters (Å, º) top
Cd1—N22.273 (4)C5—H50.9300
Cd1—N12.294 (4)C6—C71.412 (7)
Cd1—Br22.5050 (10)C6—H60.9300
Cd1—Br12.5120 (13)C7—C81.399 (7)
N1—C11.334 (6)C7—C111.419 (6)
N1—C121.367 (6)C8—C91.355 (8)
N2—C111.347 (6)C8—H80.9300
N2—C101.348 (6)C9—C101.389 (7)
C1—C21.412 (8)C9—H90.9300
C1—C131.489 (8)C10—C141.496 (8)
C2—C31.360 (8)C11—C121.433 (6)
C2—H20.9300C13—H13A0.9600
C3—C41.395 (7)C13—H13B0.9600
C3—H30.9300C13—H13C0.9600
C4—C121.405 (6)C14—H14A0.9600
C4—C51.430 (8)C14—H14B0.9600
C5—C61.347 (8)C14—H14C0.9600
N2—Cd1—N173.81 (14)C8—C7—C6123.7 (4)
N2—Cd1—Br2116.56 (10)C8—C7—C11116.8 (4)
N1—Cd1—Br2119.43 (10)C6—C7—C11119.5 (5)
N2—Cd1—Br1109.88 (10)C9—C8—C7120.9 (5)
N1—Cd1—Br1117.25 (10)C9—C8—H8119.6
Br2—Cd1—Br1113.59 (4)C7—C8—H8119.6
C1—N1—C12120.1 (4)C8—C9—C10119.7 (5)
C1—N1—Cd1126.2 (3)C8—C9—H9120.1
C12—N1—Cd1113.6 (3)C10—C9—H9120.1
C11—N2—C10119.9 (4)N2—C10—C9121.1 (5)
C11—N2—Cd1114.8 (3)N2—C10—C14117.3 (5)
C10—N2—Cd1125.2 (3)C9—C10—C14121.6 (5)
N1—C1—C2120.4 (5)N2—C11—C7121.6 (4)
N1—C1—C13116.8 (5)N2—C11—C12119.1 (4)
C2—C1—C13122.8 (5)C7—C11—C12119.4 (4)
C3—C2—C1120.1 (5)N1—C12—C4121.5 (4)
C3—C2—H2119.9N1—C12—C11118.6 (4)
C1—C2—H2119.9C4—C12—C11119.8 (4)
C2—C3—C4120.2 (5)C1—C13—H13A109.5
C2—C3—H3119.9C1—C13—H13B109.5
C4—C3—H3119.9H13A—C13—H13B109.5
C3—C4—C12117.7 (5)C1—C13—H13C109.5
C3—C4—C5123.9 (5)H13A—C13—H13C109.5
C12—C4—C5118.5 (5)H13B—C13—H13C109.5
C6—C5—C4122.0 (5)C10—C14—H14A109.5
C6—C5—H5119.0C10—C14—H14B109.5
C4—C5—H5119.0H14A—C14—H14B109.5
C5—C6—C7120.8 (5)C10—C14—H14C109.5
C5—C6—H6119.6H14A—C14—H14C109.5
C7—C6—H6119.6H14B—C14—H14C109.5
N2—Cd1—N1—C1178.5 (4)C7—C8—C9—C100.4 (8)
Br2—Cd1—N1—C169.7 (4)C11—N2—C10—C90.3 (8)
Br1—Cd1—N1—C174.1 (4)Cd1—N2—C10—C9178.3 (4)
N2—Cd1—N1—C121.4 (3)C11—N2—C10—C14178.4 (5)
Br2—Cd1—N1—C12113.2 (3)Cd1—N2—C10—C140.2 (7)
Br1—Cd1—N1—C12103.0 (3)C8—C9—C10—N20.3 (8)
N1—Cd1—N2—C111.3 (3)C8—C9—C10—C14178.4 (6)
Br2—Cd1—N2—C11116.6 (3)C10—N2—C11—C70.4 (7)
Br1—Cd1—N2—C11112.4 (3)Cd1—N2—C11—C7179.1 (3)
N1—Cd1—N2—C10180.0 (4)C10—N2—C11—C12179.9 (4)
Br2—Cd1—N2—C1064.7 (4)Cd1—N2—C11—C121.1 (5)
Br1—Cd1—N2—C1066.3 (4)C8—C7—C11—N21.0 (6)
C12—N1—C1—C20.5 (7)C6—C7—C11—N2179.8 (4)
Cd1—N1—C1—C2177.4 (4)C8—C7—C11—C12179.2 (4)
C12—N1—C1—C13179.4 (5)C6—C7—C11—C120.0 (6)
Cd1—N1—C1—C133.6 (6)C1—N1—C12—C40.6 (7)
N1—C1—C2—C30.5 (8)Cd1—N1—C12—C4177.8 (3)
C13—C1—C2—C3179.5 (5)C1—N1—C12—C11178.7 (4)
C1—C2—C3—C40.7 (8)Cd1—N1—C12—C111.4 (5)
C2—C3—C4—C120.8 (7)C3—C4—C12—N10.7 (7)
C2—C3—C4—C5179.5 (5)C5—C4—C12—N1179.5 (4)
C3—C4—C5—C6179.6 (5)C3—C4—C12—C11178.5 (4)
C12—C4—C5—C60.1 (8)C5—C4—C12—C111.2 (7)
C4—C5—C6—C71.1 (8)N2—C11—C12—N10.2 (6)
C5—C6—C7—C8178.1 (5)C7—C11—C12—N1179.6 (4)
C5—C6—C7—C111.1 (7)N2—C11—C12—C4179.0 (4)
C6—C7—C8—C9179.8 (5)C7—C11—C12—C41.2 (6)
C11—C7—C8—C91.0 (7)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C5—H5···Br1i0.932.983.805 (5)149
Symmetry code: (i) x+1, y, z+1.

Experimental details

Crystal data
Chemical formula[CdBr2(C14H12N2)]
Mr480.48
Crystal system, space groupMonoclinic, P21/c
Temperature (K)293
a, b, c (Å)7.889 (4), 10.519 (3), 18.712 (2)
β (°) 97.69 (3)
V3)1538.8 (9)
Z4
Radiation typeAg Kα, λ = 0.56087 Å
µ (mm1)3.53
Crystal size (mm)0.30 × 0.25 × 0.17
Data collection
DiffractometerEnraf–Nonius CAD-4
Absorption correctionMulti-scan
(SORTAV; Blessing, 1995)
Tmin, Tmax0.469, 0.534
No. of measured, independent and
observed [I > 2σ(I)] reflections
9813, 7516, 2986
Rint0.029
(sin θ/λ)max1)0.836
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.063, 0.177, 0.98
No. of reflections7516
No. of parameters174
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)1.41, 0.93

Computer programs: CAD-4 EXPRESS (Enraf–Nonius, 1994), XCAD4 (Harms & Wocadlo, 1995), SHELXS86 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEPIII (Burnett & Johnson, 1996) and DIAMOND (Brandenburg & Putz, 2005), WinGX (Farrugia, 1999).

Selected geometric parameters (Å, º) top
Cd1—N22.273 (4)Cd1—Br22.5050 (10)
Cd1—N12.294 (4)Cd1—Br12.5120 (13)
N2—Cd1—N173.81 (14)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C5—H5···Br1i0.932.983.805 (5)149
Symmetry code: (i) x+1, y, z+1.
 

Acknowledgements

The authors extend their appreciation to the Deanship of Scientific Research at King Saud University for funding the work through the research project No. RGP-VPP-008.

References

First citationAlizadeh, R., Heidari, A., Ahmadi, R. & Amani, V. (2009). Acta Cryst. E65, m483–m484.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationBlessing, R. H. (1995). Acta Cryst. A51, 33–38.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationBrandenburg, K. & Putz, H. (2005). DIAMOND. Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationBurnett, M. N. & Johnson, C. K. (1996). ORTEPIII. Report ORNL-6895. Oak Ridge National Laboratory, Tennessee, USA.  Google Scholar
First citationEnraf–Nonius (1994). CAD-4 EXPRESS. Enraf–Nonius, Delft, The Netherlands.  Google Scholar
First citationFarrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838.  CrossRef CAS IUCr Journals Google Scholar
First citationHarms, K. & Wocadlo, S. (1995). XCAD4. University of Marburg, Germany.  Google Scholar
First citationJaniak, C. (2000). J. Chem. Soc. Dalton Trans. pp. 3885–3896.  Web of Science CrossRef Google Scholar
First citationLange, J., Elias, H. & Paulus, H. (2000). Inorg. Chem. 39, 3342–3349.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationPreston, H. S. & Kennard, C. H. L. (1969). J. Chem. Soc. A, pp. 1956–1961.  CSD CrossRef Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWang, B. S. & Zhong, H. (2009). Acta Cryst. E65, m1156.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationWarad, I., Boshaala, A., Al-Resayes, S. I., Al-Deyab, S. S. & Rzaigui, M. (2011). Acta Cryst. E67, m1650.  Web of Science CSD CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds