metal-organic compounds
Dibromido(2,9-dimethyl-1,10-phenanthroline-κ2N,N′)cadmium
aDepartment of Chemistry, King Saud University, PO Box 2455, Riyadh 11451, Saudi Arabia, bDepartment of Chemistry, AN-Najah National University, PO Box 7, Nablus, Palestinian Territories, cPetrochemical Research Chair, College of Science, King Saud University, Riyadh, Saudi Arabia, and dLaboratoire de Chimie des Matériaux, Faculté des Sciences de Bizerte, 7021 Zarzouna Bizerte, Tunisia
*Correspondence e-mail: mohamedrzaigui@yahoo.fr
In the title complex, [CdBr2(C14H12N2)], the CdII ion is tetracoordinated by two N atoms of the bidentate 2,9-dimethyl-1,10-phenanthroline ligand and two bromide ions in a substantially distorted CdN2Br2 tetrahedral geometry. In the crystal, inversion dimers linked by pairs of weak C—H⋯Br bonds generate R22(14) loops. Aromatic π–π stacking [shortest centroid–centroid separation = 3.633 (2) Å] interactions occur within, and also link, the dimers into chains propagating parallel to [100].
Related literature
For related structures, see: Preston & Kennard (1969); Lange et al. (2000); Alizadeh et al. (2009); Wang & Zhong (2009); Warad et al. (2011). For background to π–π stacking interactions, see: Janiak (2000).
Experimental
Crystal data
|
Refinement
|
|
Data collection: CAD-4 EXPRESS (Enraf–Nonius, 1994); cell CAD-4 EXPRESS; data reduction: XCAD4 (Harms & Wocadlo, 1995); program(s) used to solve structure: SHELXS86 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEPIII (Burnett & Johnson, 1996) and DIAMOND (Brandenburg & Putz, 2005); software used to prepare material for publication: WinGX (Farrugia, 1999).
Supporting information
https://doi.org/10.1107/S1600536811050069/hb6522sup1.cif
contains datablocks I, global. DOI:Structure factors: contains datablock I. DOI: https://doi.org/10.1107/S1600536811050069/hb6522Isup2.hkl
This complex was prepared by a procedure similar to that used for [CdI2(dmphen)] (Warad et al., 2011). A mixture of cadimium bromide (CdBr2.4H2O, 82.7 mg, 0.24 mmol) in methanol (20 ml) and dmphen (50.0 mg, 0.24 mmol) in dichloromethane (10 ml) is stirred for 2H at room temperature. The obtained solution was concentrated to about 2 ml under reduced pressure and mixed to 40 ml of n-hexane. This causes the precipitation of white powder which was filtered, dried and used for the preparation of colourless prisms of (I) by slow diffusion of diethyl ether into a solution of the complex in dichloromethane.
All H atoms attached to C atoms were fixed geometrically and treated as riding, with C—H = 0.93 Å and 0.96 Å and with Uiso(H) = 1.2Ueq(C) and Uiso(H) = 1.5Ueq(Cmethyl).
The reaction of cadmium(II) halides, CdX2, with nitrogen-based ligands (L) yields mixed-ligand complexes. The number of ligands bound to the metal cation is influenced greatly by both the chemical nature and geometry of ligand L and the type of halogen X (Lange et al., 2000). In this sense, we report herein synthesis and
of a new CdII complex, [CdBr2(dmphen)] (I), where dmphen = 2,9-dimethyl-1,10-phenanthroline.The molecular structure of (I), along with the numbering scheme, is shown in Fig. 1. The CdII cation is located on a general position in a tetrahedral environment built up from two nitrogen atoms (N1, N2) of one dmphen bidentate ligand and two bromide ions (Br1, Br2). Similar coordination geometry around the central atom has been observed in other metal complexes involving the same ligand (dmphen) such as [HgBr2(dmphen)], (Alizadeh et al., 2009), [ZnCl2(dmphen)] (Preston et al., 1969), [CuCl2(dmphen)] (Wang et al., 2009).
Geometrical analysis of the bond lengths and angles around the cadmium atom shows that the CdBr2N2 tetrahedron, where the Cd shift from the gravity center is δ = 0.249 Å, is less distorted that the CdI2N2 (δ = 0.356 Å) in the [CdI2(dmphen)] structure (Warad et al., 2011). This can be explaned by the large size and π-acid character of the iodine atom.
It should be noted also that, in the crystal packing of [CdI2(dmphen)], there is no C—H···I H-bond, while in [CdBr2(dmphen)], weak intermolecular C—H···Br bonds (2.98 (3) Å) link the complex molecules into dimeric clusters. Additional π–π aromatic stacking interactions, between the dmphen rings of neighboring molecules, associate these clusters into chains parallel to the a axis (Fig. 2). The π–π contacts involve the dmphen rings N1C1C2C3C4C12 (centroid Cg1), C4C5C6C7C11C12 (centroid Cg2) and N2C10C9C8C7C11 (centroid Cg3) between which exist the centroid-centroid distances Cg1···Cg3i (3.634 Å)) [symmetry code: (i) 1 - x, -y, 1 - z], Cg2···Cg3ii (3.722 Å) and Cg3···Cg3ii (3.705 Å) [symmetry code: (ii) 2 - x, -y, 1 - z], which are less than the maximum value (3.8 Å) regarded as relevant for π–π interactions (Janiak, 2000).
For related structures, see: Preston et al. (1969); Lange et al. (2000); Alizadeh et al. (2009); Wang & Zhong (2009); Warad et al. (2011). For background to π–π stacking interactions, see: Janiak (2000).
Data collection: CAD-4 EXPRESS (Enraf–Nonius, 1994); cell
CAD-4 EXPRESS (Enraf–Nonius, 1994); data reduction: XCAD4 (Harms & Wocadlo, 1995); program(s) used to solve structure: SHELXS86 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEPIII (Burnett & Johnson, 1996) and DIAMOND (Brandenburg & Putz, 2005); software used to prepare material for publication: WinGX (Farrugia, 1999).[CdBr2(C14H12N2)] | F(000) = 912 |
Mr = 480.48 | Dx = 2.074 Mg m−3 |
Monoclinic, P21/c | Ag Kα radiation, λ = 0.56087 Å |
a = 7.889 (4) Å | Cell parameters from 25 reflections |
b = 10.519 (3) Å | θ = 9–11° |
c = 18.712 (2) Å | µ = 3.53 mm−1 |
β = 97.69 (3)° | T = 293 K |
V = 1538.8 (9) Å3 | Prism, colorless |
Z = 4 | 0.30 × 0.25 × 0.17 mm |
Enraf–Nonius CAD-4 diffractometer | 2986 reflections with I > 2σ(I) |
Radiation source: fine-focus sealed tube | Rint = 0.029 |
Graphite monochromator | θmax = 28.0°, θmin = 2.1° |
non–profiled ω scans | h = −13→13 |
Absorption correction: multi-scan (SORTAV; Blessing, 1995) | k = −2→17 |
Tmin = 0.469, Tmax = 0.534 | l = −2→31 |
9813 measured reflections | 2 standard reflections every 120 min |
7516 independent reflections | intensity decay: 1% |
Refinement on F2 | Primary atom site location: structure-invariant direct methods |
Least-squares matrix: full | Secondary atom site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.063 | Hydrogen site location: inferred from neighbouring sites |
wR(F2) = 0.177 | H-atom parameters constrained |
S = 0.98 | w = 1/[σ2(Fo2) + (0.0769P)2] where P = (Fo2 + 2Fc2)/3 |
7516 reflections | (Δ/σ)max = 0.001 |
174 parameters | Δρmax = 1.41 e Å−3 |
0 restraints | Δρmin = −0.93 e Å−3 |
[CdBr2(C14H12N2)] | V = 1538.8 (9) Å3 |
Mr = 480.48 | Z = 4 |
Monoclinic, P21/c | Ag Kα radiation, λ = 0.56087 Å |
a = 7.889 (4) Å | µ = 3.53 mm−1 |
b = 10.519 (3) Å | T = 293 K |
c = 18.712 (2) Å | 0.30 × 0.25 × 0.17 mm |
β = 97.69 (3)° |
Enraf–Nonius CAD-4 diffractometer | 2986 reflections with I > 2σ(I) |
Absorption correction: multi-scan (SORTAV; Blessing, 1995) | Rint = 0.029 |
Tmin = 0.469, Tmax = 0.534 | 2 standard reflections every 120 min |
9813 measured reflections | intensity decay: 1% |
7516 independent reflections |
R[F2 > 2σ(F2)] = 0.063 | 0 restraints |
wR(F2) = 0.177 | H-atom parameters constrained |
S = 0.98 | Δρmax = 1.41 e Å−3 |
7516 reflections | Δρmin = −0.93 e Å−3 |
174 parameters |
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. |
x | y | z | Uiso*/Ueq | ||
Cd1 | 0.71490 (5) | 0.28442 (4) | 0.39225 (2) | 0.05032 (14) | |
Br1 | 0.44548 (9) | 0.32557 (8) | 0.30765 (4) | 0.0833 (2) | |
Br2 | 0.93295 (10) | 0.45768 (6) | 0.39288 (4) | 0.0766 (2) | |
N1 | 0.6886 (5) | 0.1781 (4) | 0.4972 (2) | 0.0422 (8) | |
N2 | 0.8075 (5) | 0.0829 (4) | 0.3769 (2) | 0.0409 (8) | |
C1 | 0.6270 (6) | 0.2257 (5) | 0.5546 (3) | 0.0501 (11) | |
C2 | 0.6113 (7) | 0.1479 (6) | 0.6149 (3) | 0.0561 (13) | |
H2 | 0.5692 | 0.1819 | 0.6549 | 0.067* | |
C3 | 0.6578 (7) | 0.0234 (6) | 0.6146 (3) | 0.0553 (14) | |
H3 | 0.6462 | −0.0278 | 0.6541 | 0.066* | |
C4 | 0.7229 (6) | −0.0278 (5) | 0.5551 (3) | 0.0462 (11) | |
C5 | 0.7760 (6) | −0.1572 (5) | 0.5505 (3) | 0.0562 (13) | |
H5 | 0.7680 | −0.2113 | 0.5892 | 0.067* | |
C6 | 0.8373 (7) | −0.2031 (5) | 0.4918 (3) | 0.0530 (12) | |
H6 | 0.8724 | −0.2875 | 0.4910 | 0.064* | |
C7 | 0.8489 (6) | −0.1248 (4) | 0.4314 (3) | 0.0412 (10) | |
C8 | 0.9065 (6) | −0.1674 (5) | 0.3680 (3) | 0.0511 (12) | |
H8 | 0.9394 | −0.2518 | 0.3644 | 0.061* | |
C9 | 0.9152 (7) | −0.0873 (5) | 0.3119 (3) | 0.0535 (12) | |
H9 | 0.9543 | −0.1166 | 0.2702 | 0.064* | |
C10 | 0.8653 (7) | 0.0387 (5) | 0.3170 (3) | 0.0518 (12) | |
C11 | 0.7981 (5) | 0.0045 (4) | 0.4331 (2) | 0.0375 (9) | |
C12 | 0.7359 (5) | 0.0532 (4) | 0.4963 (2) | 0.0389 (10) | |
C13 | 0.5798 (8) | 0.3629 (6) | 0.5518 (3) | 0.0663 (16) | |
H13A | 0.6777 | 0.4129 | 0.5704 | 0.100* | |
H13B | 0.4894 | 0.3773 | 0.5805 | 0.100* | |
H13C | 0.5421 | 0.3870 | 0.5028 | 0.100* | |
C14 | 0.8682 (10) | 0.1297 (6) | 0.2557 (3) | 0.079 (2) | |
H14A | 0.7966 | 0.2013 | 0.2624 | 0.119* | |
H14B | 0.8266 | 0.0879 | 0.2112 | 0.119* | |
H14C | 0.9833 | 0.1582 | 0.2543 | 0.119* |
U11 | U22 | U33 | U12 | U13 | U23 | |
Cd1 | 0.0656 (3) | 0.03953 (19) | 0.0473 (2) | 0.00785 (18) | 0.01316 (17) | 0.00728 (16) |
Br1 | 0.0686 (4) | 0.1170 (6) | 0.0645 (4) | 0.0160 (4) | 0.0094 (3) | 0.0320 (4) |
Br2 | 0.1037 (5) | 0.0481 (3) | 0.0791 (4) | −0.0126 (3) | 0.0164 (4) | 0.0111 (3) |
N1 | 0.047 (2) | 0.042 (2) | 0.0384 (19) | −0.0033 (17) | 0.0057 (16) | 0.0018 (16) |
N2 | 0.045 (2) | 0.0379 (19) | 0.0400 (19) | 0.0016 (16) | 0.0067 (17) | 0.0003 (16) |
C1 | 0.041 (2) | 0.058 (3) | 0.052 (3) | −0.002 (2) | 0.009 (2) | −0.005 (3) |
C2 | 0.050 (3) | 0.076 (4) | 0.044 (3) | −0.004 (3) | 0.013 (2) | −0.006 (3) |
C3 | 0.049 (3) | 0.076 (4) | 0.042 (3) | −0.010 (3) | 0.009 (2) | 0.012 (3) |
C4 | 0.039 (2) | 0.056 (3) | 0.043 (2) | −0.005 (2) | 0.006 (2) | 0.011 (2) |
C5 | 0.054 (3) | 0.052 (3) | 0.061 (3) | −0.003 (3) | 0.004 (3) | 0.021 (3) |
C6 | 0.054 (3) | 0.039 (2) | 0.066 (3) | 0.000 (2) | 0.005 (3) | 0.013 (2) |
C7 | 0.036 (2) | 0.037 (2) | 0.050 (3) | −0.0016 (18) | 0.003 (2) | 0.006 (2) |
C8 | 0.051 (3) | 0.038 (2) | 0.064 (3) | 0.007 (2) | 0.007 (2) | −0.009 (2) |
C9 | 0.062 (3) | 0.047 (3) | 0.053 (3) | 0.003 (2) | 0.011 (2) | −0.008 (2) |
C10 | 0.063 (3) | 0.051 (3) | 0.042 (2) | 0.000 (2) | 0.010 (2) | −0.006 (2) |
C11 | 0.033 (2) | 0.038 (2) | 0.040 (2) | −0.0021 (17) | −0.0001 (18) | −0.0001 (18) |
C12 | 0.034 (2) | 0.039 (2) | 0.042 (2) | −0.0026 (18) | −0.0004 (18) | 0.0068 (19) |
C13 | 0.082 (4) | 0.057 (3) | 0.065 (4) | 0.008 (3) | 0.026 (3) | −0.010 (3) |
C14 | 0.129 (6) | 0.060 (4) | 0.057 (3) | 0.013 (4) | 0.041 (4) | 0.006 (3) |
Cd1—N2 | 2.273 (4) | C5—H5 | 0.9300 |
Cd1—N1 | 2.294 (4) | C6—C7 | 1.412 (7) |
Cd1—Br2 | 2.5050 (10) | C6—H6 | 0.9300 |
Cd1—Br1 | 2.5120 (13) | C7—C8 | 1.399 (7) |
N1—C1 | 1.334 (6) | C7—C11 | 1.419 (6) |
N1—C12 | 1.367 (6) | C8—C9 | 1.355 (8) |
N2—C11 | 1.347 (6) | C8—H8 | 0.9300 |
N2—C10 | 1.348 (6) | C9—C10 | 1.389 (7) |
C1—C2 | 1.412 (8) | C9—H9 | 0.9300 |
C1—C13 | 1.489 (8) | C10—C14 | 1.496 (8) |
C2—C3 | 1.360 (8) | C11—C12 | 1.433 (6) |
C2—H2 | 0.9300 | C13—H13A | 0.9600 |
C3—C4 | 1.395 (7) | C13—H13B | 0.9600 |
C3—H3 | 0.9300 | C13—H13C | 0.9600 |
C4—C12 | 1.405 (6) | C14—H14A | 0.9600 |
C4—C5 | 1.430 (8) | C14—H14B | 0.9600 |
C5—C6 | 1.347 (8) | C14—H14C | 0.9600 |
N2—Cd1—N1 | 73.81 (14) | C8—C7—C6 | 123.7 (4) |
N2—Cd1—Br2 | 116.56 (10) | C8—C7—C11 | 116.8 (4) |
N1—Cd1—Br2 | 119.43 (10) | C6—C7—C11 | 119.5 (5) |
N2—Cd1—Br1 | 109.88 (10) | C9—C8—C7 | 120.9 (5) |
N1—Cd1—Br1 | 117.25 (10) | C9—C8—H8 | 119.6 |
Br2—Cd1—Br1 | 113.59 (4) | C7—C8—H8 | 119.6 |
C1—N1—C12 | 120.1 (4) | C8—C9—C10 | 119.7 (5) |
C1—N1—Cd1 | 126.2 (3) | C8—C9—H9 | 120.1 |
C12—N1—Cd1 | 113.6 (3) | C10—C9—H9 | 120.1 |
C11—N2—C10 | 119.9 (4) | N2—C10—C9 | 121.1 (5) |
C11—N2—Cd1 | 114.8 (3) | N2—C10—C14 | 117.3 (5) |
C10—N2—Cd1 | 125.2 (3) | C9—C10—C14 | 121.6 (5) |
N1—C1—C2 | 120.4 (5) | N2—C11—C7 | 121.6 (4) |
N1—C1—C13 | 116.8 (5) | N2—C11—C12 | 119.1 (4) |
C2—C1—C13 | 122.8 (5) | C7—C11—C12 | 119.4 (4) |
C3—C2—C1 | 120.1 (5) | N1—C12—C4 | 121.5 (4) |
C3—C2—H2 | 119.9 | N1—C12—C11 | 118.6 (4) |
C1—C2—H2 | 119.9 | C4—C12—C11 | 119.8 (4) |
C2—C3—C4 | 120.2 (5) | C1—C13—H13A | 109.5 |
C2—C3—H3 | 119.9 | C1—C13—H13B | 109.5 |
C4—C3—H3 | 119.9 | H13A—C13—H13B | 109.5 |
C3—C4—C12 | 117.7 (5) | C1—C13—H13C | 109.5 |
C3—C4—C5 | 123.9 (5) | H13A—C13—H13C | 109.5 |
C12—C4—C5 | 118.5 (5) | H13B—C13—H13C | 109.5 |
C6—C5—C4 | 122.0 (5) | C10—C14—H14A | 109.5 |
C6—C5—H5 | 119.0 | C10—C14—H14B | 109.5 |
C4—C5—H5 | 119.0 | H14A—C14—H14B | 109.5 |
C5—C6—C7 | 120.8 (5) | C10—C14—H14C | 109.5 |
C5—C6—H6 | 119.6 | H14A—C14—H14C | 109.5 |
C7—C6—H6 | 119.6 | H14B—C14—H14C | 109.5 |
N2—Cd1—N1—C1 | −178.5 (4) | C7—C8—C9—C10 | −0.4 (8) |
Br2—Cd1—N1—C1 | 69.7 (4) | C11—N2—C10—C9 | 0.3 (8) |
Br1—Cd1—N1—C1 | −74.1 (4) | Cd1—N2—C10—C9 | −178.3 (4) |
N2—Cd1—N1—C12 | −1.4 (3) | C11—N2—C10—C14 | 178.4 (5) |
Br2—Cd1—N1—C12 | −113.2 (3) | Cd1—N2—C10—C14 | −0.2 (7) |
Br1—Cd1—N1—C12 | 103.0 (3) | C8—C9—C10—N2 | −0.3 (8) |
N1—Cd1—N2—C11 | 1.3 (3) | C8—C9—C10—C14 | −178.4 (6) |
Br2—Cd1—N2—C11 | 116.6 (3) | C10—N2—C11—C7 | 0.4 (7) |
Br1—Cd1—N2—C11 | −112.4 (3) | Cd1—N2—C11—C7 | 179.1 (3) |
N1—Cd1—N2—C10 | 180.0 (4) | C10—N2—C11—C12 | −179.9 (4) |
Br2—Cd1—N2—C10 | −64.7 (4) | Cd1—N2—C11—C12 | −1.1 (5) |
Br1—Cd1—N2—C10 | 66.3 (4) | C8—C7—C11—N2 | −1.0 (6) |
C12—N1—C1—C2 | 0.5 (7) | C6—C7—C11—N2 | 179.8 (4) |
Cd1—N1—C1—C2 | 177.4 (4) | C8—C7—C11—C12 | 179.2 (4) |
C12—N1—C1—C13 | 179.4 (5) | C6—C7—C11—C12 | 0.0 (6) |
Cd1—N1—C1—C13 | −3.6 (6) | C1—N1—C12—C4 | −0.6 (7) |
N1—C1—C2—C3 | −0.5 (8) | Cd1—N1—C12—C4 | −177.8 (3) |
C13—C1—C2—C3 | −179.5 (5) | C1—N1—C12—C11 | 178.7 (4) |
C1—C2—C3—C4 | 0.7 (8) | Cd1—N1—C12—C11 | 1.4 (5) |
C2—C3—C4—C12 | −0.8 (7) | C3—C4—C12—N1 | 0.7 (7) |
C2—C3—C4—C5 | 179.5 (5) | C5—C4—C12—N1 | −179.5 (4) |
C3—C4—C5—C6 | 179.6 (5) | C3—C4—C12—C11 | −178.5 (4) |
C12—C4—C5—C6 | −0.1 (8) | C5—C4—C12—C11 | 1.2 (7) |
C4—C5—C6—C7 | −1.1 (8) | N2—C11—C12—N1 | −0.2 (6) |
C5—C6—C7—C8 | −178.1 (5) | C7—C11—C12—N1 | 179.6 (4) |
C5—C6—C7—C11 | 1.1 (7) | N2—C11—C12—C4 | 179.0 (4) |
C6—C7—C8—C9 | −179.8 (5) | C7—C11—C12—C4 | −1.2 (6) |
C11—C7—C8—C9 | 1.0 (7) |
D—H···A | D—H | H···A | D···A | D—H···A |
C5—H5···Br1i | 0.93 | 2.98 | 3.805 (5) | 149 |
Symmetry code: (i) −x+1, −y, −z+1. |
Experimental details
Crystal data | |
Chemical formula | [CdBr2(C14H12N2)] |
Mr | 480.48 |
Crystal system, space group | Monoclinic, P21/c |
Temperature (K) | 293 |
a, b, c (Å) | 7.889 (4), 10.519 (3), 18.712 (2) |
β (°) | 97.69 (3) |
V (Å3) | 1538.8 (9) |
Z | 4 |
Radiation type | Ag Kα, λ = 0.56087 Å |
µ (mm−1) | 3.53 |
Crystal size (mm) | 0.30 × 0.25 × 0.17 |
Data collection | |
Diffractometer | Enraf–Nonius CAD-4 |
Absorption correction | Multi-scan (SORTAV; Blessing, 1995) |
Tmin, Tmax | 0.469, 0.534 |
No. of measured, independent and observed [I > 2σ(I)] reflections | 9813, 7516, 2986 |
Rint | 0.029 |
(sin θ/λ)max (Å−1) | 0.836 |
Refinement | |
R[F2 > 2σ(F2)], wR(F2), S | 0.063, 0.177, 0.98 |
No. of reflections | 7516 |
No. of parameters | 174 |
H-atom treatment | H-atom parameters constrained |
Δρmax, Δρmin (e Å−3) | 1.41, −0.93 |
Computer programs: CAD-4 EXPRESS (Enraf–Nonius, 1994), XCAD4 (Harms & Wocadlo, 1995), SHELXS86 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEPIII (Burnett & Johnson, 1996) and DIAMOND (Brandenburg & Putz, 2005), WinGX (Farrugia, 1999).
Cd1—N2 | 2.273 (4) | Cd1—Br2 | 2.5050 (10) |
Cd1—N1 | 2.294 (4) | Cd1—Br1 | 2.5120 (13) |
N2—Cd1—N1 | 73.81 (14) |
D—H···A | D—H | H···A | D···A | D—H···A |
C5—H5···Br1i | 0.93 | 2.98 | 3.805 (5) | 149 |
Symmetry code: (i) −x+1, −y, −z+1. |
Acknowledgements
The authors extend their appreciation to the Deanship of Scientific Research at King Saud University for funding the work through the research project No. RGP-VPP-008.
References
Alizadeh, R., Heidari, A., Ahmadi, R. & Amani, V. (2009). Acta Cryst. E65, m483–m484. Web of Science CSD CrossRef IUCr Journals Google Scholar
Blessing, R. H. (1995). Acta Cryst. A51, 33–38. CrossRef CAS Web of Science IUCr Journals Google Scholar
Brandenburg, K. & Putz, H. (2005). DIAMOND. Crystal Impact GbR, Bonn, Germany. Google Scholar
Burnett, M. N. & Johnson, C. K. (1996). ORTEPIII. Report ORNL-6895. Oak Ridge National Laboratory, Tennessee, USA. Google Scholar
Enraf–Nonius (1994). CAD-4 EXPRESS. Enraf–Nonius, Delft, The Netherlands. Google Scholar
Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838. CrossRef CAS IUCr Journals Google Scholar
Harms, K. & Wocadlo, S. (1995). XCAD4. University of Marburg, Germany. Google Scholar
Janiak, C. (2000). J. Chem. Soc. Dalton Trans. pp. 3885–3896. Web of Science CrossRef Google Scholar
Lange, J., Elias, H. & Paulus, H. (2000). Inorg. Chem. 39, 3342–3349. Web of Science CSD CrossRef PubMed CAS Google Scholar
Preston, H. S. & Kennard, C. H. L. (1969). J. Chem. Soc. A, pp. 1956–1961. CSD CrossRef Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Wang, B. S. & Zhong, H. (2009). Acta Cryst. E65, m1156. Web of Science CSD CrossRef IUCr Journals Google Scholar
Warad, I., Boshaala, A., Al-Resayes, S. I., Al-Deyab, S. S. & Rzaigui, M. (2011). Acta Cryst. E67, m1650. Web of Science CSD CrossRef IUCr Journals Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.
The reaction of cadmium(II) halides, CdX2, with nitrogen-based ligands (L) yields mixed-ligand complexes. The number of ligands bound to the metal cation is influenced greatly by both the chemical nature and geometry of ligand L and the type of halogen X (Lange et al., 2000). In this sense, we report herein synthesis and crystal structure of a new CdII complex, [CdBr2(dmphen)] (I), where dmphen = 2,9-dimethyl-1,10-phenanthroline.
The molecular structure of (I), along with the numbering scheme, is shown in Fig. 1. The CdII cation is located on a general position in a tetrahedral environment built up from two nitrogen atoms (N1, N2) of one dmphen bidentate ligand and two bromide ions (Br1, Br2). Similar coordination geometry around the central atom has been observed in other metal complexes involving the same ligand (dmphen) such as [HgBr2(dmphen)], (Alizadeh et al., 2009), [ZnCl2(dmphen)] (Preston et al., 1969), [CuCl2(dmphen)] (Wang et al., 2009).
Geometrical analysis of the bond lengths and angles around the cadmium atom shows that the CdBr2N2 tetrahedron, where the Cd shift from the gravity center is δ = 0.249 Å, is less distorted that the CdI2N2 (δ = 0.356 Å) in the [CdI2(dmphen)] structure (Warad et al., 2011). This can be explaned by the large size and π-acid character of the iodine atom.
It should be noted also that, in the crystal packing of [CdI2(dmphen)], there is no C—H···I H-bond, while in [CdBr2(dmphen)], weak intermolecular C—H···Br bonds (2.98 (3) Å) link the complex molecules into dimeric clusters. Additional π–π aromatic stacking interactions, between the dmphen rings of neighboring molecules, associate these clusters into chains parallel to the a axis (Fig. 2). The π–π contacts involve the dmphen rings N1C1C2C3C4C12 (centroid Cg1), C4C5C6C7C11C12 (centroid Cg2) and N2C10C9C8C7C11 (centroid Cg3) between which exist the centroid-centroid distances Cg1···Cg3i (3.634 Å)) [symmetry code: (i) 1 - x, -y, 1 - z], Cg2···Cg3ii (3.722 Å) and Cg3···Cg3ii (3.705 Å) [symmetry code: (ii) 2 - x, -y, 1 - z], which are less than the maximum value (3.8 Å) regarded as relevant for π–π interactions (Janiak, 2000).