metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

catena-Poly[[tri­methyl­tin(IV)]-μ-5-methyl­thio­phene-2-carboxyl­ato-κ2O:O′]

aCollege of Chemistry and Chemical Engineering, Liaocheng University, Shandong 252059, People's Republic of China
*Correspondence e-mail: macl@lcu.edu.cn.

(Received 18 November 2011; accepted 21 November 2011; online 25 November 2011)

In the title polymeric coordination compound, [Sn(CH3)3(C6H5O2S)]n, which contains two formula units in the asymmetric unit, the SnIV atom has a distorted trigonal–bipyramidal geometry, with two O atoms of the ligands in axial positions and three methyl groups in equatorial positions. Adjacent SnIV atoms are bridged by the ligands, thereby forming a chain propagating in [010].

Related literature

For the biological activity of organotin compounds, see: Dubey & Roy (2003[Dubey, S. K. & Roy, U. (2003). Appl. Organomet. Chem. 17, 3-8.]). For related structures, see: Wang et al. (2007)[Wang, Q., Zhang, R. & Du, L. (2007). Acta Cryst. E63, m2959.]; Ma et al. (2008[Ma, C., Wang, Q. & Zhang, R. (2008). Eur. J. Inorg. Chem. pp. 1926-1934.]).

[Scheme 1]

Experimental

Crystal data
  • [Sn(CH3)3(C6H5O2S)]

  • Mr = 304.95

  • Triclinic, [P \overline 1]

  • a = 9.9591 (8) Å

  • b = 10.0655 (11) Å

  • c = 13.9890 (12) Å

  • α = 69.385 (1)°

  • β = 72.225 (1)°

  • γ = 75.038 (2)°

  • V = 1231.9 (2) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 2.21 mm−1

  • T = 298 K

  • 0.44 × 0.15 × 0.09 mm

Data collection
  • Siemens SMART CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996[Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.]) Tmin = 0.443, Tmax = 0.826

  • 6219 measured reflections

  • 4293 independent reflections

  • 2340 reflections with I > 2σ(I)

  • Rint = 0.048

Refinement
  • R[F2 > 2σ(F2)] = 0.084

  • wR(F2) = 0.242

  • S = 0.97

  • 4293 reflections

  • 243 parameters

  • H-atom parameters constrained

  • Δρmax = 3.71 e Å−3

  • Δρmin = −0.97 e Å−3

Table 1
Selected bond lengths (Å)

Sn1—C7 2.098 (12)
Sn1—C9 2.115 (14)
Sn1—C8 2.126 (16)
Sn1—O3 2.159 (9)
Sn1—O1 2.526 (10)
Sn2—C11 2.104 (14)
Sn2—C10 2.128 (16)
Sn2—C12 2.153 (15)
Sn2—O2 2.177 (10)
Sn2—O4i 2.502 (11)
Symmetry code: (i) x, y-1, z.

Data collection: SMART (Siemens, 1996[Siemens (1996). SMART and SAINT. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Siemens, 1996[Siemens (1996). SMART and SAINT. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

Organotin complexes are attracting more and more attention because of their considerable structural diversity and interesting topologies (Murugavel et al. 2001). Herein, we report the crystal structure of the title compound. The title compound,which is shown in Fig.2 forms an extended one-dimensional chain structure arising from Sn—O bridges formed by the 5-methyl-2-thiophenecarboxylic acid ligands. The Sn—O bond distances in the compound [Sn1—O1 = 2.526 (10) Å; Sn1—O3 = 2.159 (9) Å] are comparable to those found in a related organotin carboxylate (Ma et al., 2008). The Sn atom is five-coordinate in a slightly distorted trigonal-bipyramidal coordination geometry, provided by the methyl groups in the equatorial positions and the two coordinated O atoms in the axial positions.

Related literature top

For the biological activity of organotin compounds, see: Dubey & Roy (2003). For related structures, see: Wang et al. (2007); Ma et al. (2008).

Experimental top

The reaction was carried out under a nitrogen atmosphere. 5-methyl-2-thiophenecarboxylic acid (1 mmol) and potassium hydroxide (1 mmol) were added to a stirred solution of methanol (30 ml) in a Schlenk flask and stirred for 0.5 h. trimethyltin chloride (1 mmol) was then added to the reactor and the reaction mixture was stirred for 12 h at room temperature. The resulting clear solution was evaporated under vacuum. The product was crystallized from a solution of diethyl ether to yield colorless blocks of the title compound (yield 76%). Anal. Calcd (%) for C18H28O4S2Sn2(Mr = 609.90):C, 35.44; H, 4.63. Found (%): C, 35.71; H, 4.39.

Refinement top

The H atoms were positioned geometrically, with methyl C—H distances of 0.96Å and aromatic C—H distances of 0.93 Å, and refined as riding on their parent atoms, with Uiso(H) = 1.2 Ueq(C) or 1.5 Ueq(C) for the methyl groups.

Structure description top

Organotin complexes are attracting more and more attention because of their considerable structural diversity and interesting topologies (Murugavel et al. 2001). Herein, we report the crystal structure of the title compound. The title compound,which is shown in Fig.2 forms an extended one-dimensional chain structure arising from Sn—O bridges formed by the 5-methyl-2-thiophenecarboxylic acid ligands. The Sn—O bond distances in the compound [Sn1—O1 = 2.526 (10) Å; Sn1—O3 = 2.159 (9) Å] are comparable to those found in a related organotin carboxylate (Ma et al., 2008). The Sn atom is five-coordinate in a slightly distorted trigonal-bipyramidal coordination geometry, provided by the methyl groups in the equatorial positions and the two coordinated O atoms in the axial positions.

For the biological activity of organotin compounds, see: Dubey & Roy (2003). For related structures, see: Wang et al. (2007); Ma et al. (2008).

Computing details top

Data collection: SMART (Siemens, 1996); cell refinement: SAINT (Siemens, 1996); data reduction: SAINT (Siemens, 1996); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The asymmetric unit of the title compound, showing 30% probability displacement ellipsoids. H atoms have been omitted for clarity.
[Figure 2] Fig. 2. A view of the one-dimensional extended chain structure in the title compound.
catena-Poly[[trimethyltin(IV)]-µ-5-methylthiophene-2-carboxylato- κ2O:O'] top
Crystal data top
[Sn(CH3)3(C6H5O2S)]Z = 4
Mr = 304.95F(000) = 600
Triclinic, P1Dx = 1.644 Mg m3
a = 9.9591 (8) ÅMo Kα radiation, λ = 0.71073 Å
b = 10.0655 (11) ÅCell parameters from 2063 reflections
c = 13.9890 (12) Åθ = 2.8–26.3°
α = 69.385 (1)°µ = 2.21 mm1
β = 72.225 (1)°T = 298 K
γ = 75.038 (2)°Block, colorless
V = 1231.9 (2) Å30.44 × 0.15 × 0.09 mm
Data collection top
Siemens SMART CCD
diffractometer
4293 independent reflections
Radiation source: fine-focus sealed tube2340 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.048
phi and ω scansθmax = 25.0°, θmin = 2.6°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 1111
Tmin = 0.443, Tmax = 0.826k = 1111
6219 measured reflectionsl = 1516
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.084Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.242H-atom parameters constrained
S = 0.97 w = 1/[σ2(Fo2) + (0.1385P)2]
where P = (Fo2 + 2Fc2)/3
4293 reflections(Δ/σ)max = 0.021
243 parametersΔρmax = 3.71 e Å3
0 restraintsΔρmin = 0.97 e Å3
Crystal data top
[Sn(CH3)3(C6H5O2S)]γ = 75.038 (2)°
Mr = 304.95V = 1231.9 (2) Å3
Triclinic, P1Z = 4
a = 9.9591 (8) ÅMo Kα radiation
b = 10.0655 (11) ŵ = 2.21 mm1
c = 13.9890 (12) ÅT = 298 K
α = 69.385 (1)°0.44 × 0.15 × 0.09 mm
β = 72.225 (1)°
Data collection top
Siemens SMART CCD
diffractometer
4293 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
2340 reflections with I > 2σ(I)
Tmin = 0.443, Tmax = 0.826Rint = 0.048
6219 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0840 restraints
wR(F2) = 0.242H-atom parameters constrained
S = 0.97Δρmax = 3.71 e Å3
4293 reflectionsΔρmin = 0.97 e Å3
243 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C180.5657 (19)1.292 (2)0.007 (2)0.118 (8)
H18A0.65341.25370.03840.177*
H18B0.52681.28100.06180.177*
H18C0.58411.39190.00290.177*
C170.4596 (16)1.2104 (15)0.0749 (16)0.073 (5)
Sn10.05517 (11)0.58071 (10)0.21992 (7)0.0541 (4)
Sn20.05372 (12)0.02160 (10)0.27985 (8)0.0585 (4)
S10.3647 (5)0.1708 (5)0.4326 (4)0.0753 (12)
S20.3972 (5)1.0294 (5)0.0923 (4)0.0834 (14)
O20.2015 (11)0.1158 (10)0.3134 (9)0.070 (3)
O30.2091 (11)0.7772 (10)0.1936 (9)0.073 (3)
O10.1153 (12)0.3438 (10)0.2374 (9)0.072 (3)
C150.3124 (18)1.1534 (15)0.1843 (14)0.076 (5)
H150.26321.17240.22360.091*
C20.4377 (16)0.295 (2)0.4463 (15)0.075 (5)
C60.1916 (14)0.2509 (14)0.2919 (11)0.051 (3)
C80.172 (2)0.4864 (19)0.1640 (17)0.099 (7)
H8A0.15520.38370.19410.149*
H8B0.14170.51040.08880.149*
H8C0.27240.52260.18400.149*
C140.2966 (15)1.0243 (15)0.1721 (11)0.055 (4)
C130.1981 (16)0.8909 (16)0.2101 (12)0.060 (4)
C70.0941 (18)0.5333 (18)0.3835 (10)0.075 (5)
H7A0.18540.58570.40930.113*
H7B0.02060.56060.40040.113*
H7C0.09410.43190.41580.113*
C50.2827 (15)0.2953 (15)0.3406 (12)0.058 (4)
C90.1179 (17)0.6752 (18)0.1082 (11)0.081 (5)
H9A0.16800.70690.14260.122*
H9B0.08230.75600.05540.122*
H9C0.18200.60540.07580.122*
C100.1218 (18)0.097 (2)0.3910 (13)0.089 (5)
H10A0.14010.20000.36870.133*
H10B0.09930.06240.45850.133*
H10C0.20520.06120.39590.133*
O40.1108 (12)0.8892 (11)0.2585 (9)0.078 (3)
C110.0877 (18)0.120 (2)0.1165 (11)0.083 (5)
H11A0.00090.14080.09600.125*
H11B0.15660.05690.08060.125*
H11C0.12280.20850.09840.125*
C120.175 (2)0.1893 (17)0.334 (2)0.125 (9)
H12A0.17020.24930.29500.187*
H12B0.13500.23120.40740.187*
H12C0.27240.18160.32360.187*
C30.398 (2)0.4268 (19)0.3810 (18)0.095 (6)
H30.42610.50990.37710.114*
C40.3110 (19)0.4263 (16)0.3212 (14)0.075 (5)
H40.27590.50820.27260.090*
C160.4115 (16)1.2583 (17)0.1315 (14)0.072 (5)
H160.43971.35160.13660.087*
C10.5226 (19)0.261 (2)0.5266 (18)0.114 (8)
H1A0.58700.17120.52750.171*
H1B0.45870.25260.59470.171*
H1C0.57630.33610.50900.171*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C180.082 (13)0.078 (14)0.20 (2)0.003 (11)0.076 (15)0.026 (15)
C170.056 (10)0.031 (8)0.103 (13)0.008 (7)0.012 (9)0.003 (8)
Sn10.0729 (7)0.0382 (6)0.0567 (7)0.0075 (5)0.0288 (5)0.0104 (5)
Sn20.0853 (8)0.0349 (6)0.0607 (7)0.0059 (5)0.0363 (6)0.0077 (5)
S10.078 (3)0.059 (3)0.101 (3)0.011 (2)0.043 (2)0.021 (2)
S20.087 (3)0.054 (3)0.129 (4)0.006 (2)0.059 (3)0.034 (3)
O20.086 (7)0.041 (6)0.098 (8)0.010 (5)0.046 (6)0.018 (5)
O30.094 (8)0.031 (5)0.117 (9)0.003 (5)0.063 (7)0.026 (6)
O10.090 (8)0.039 (6)0.088 (8)0.003 (5)0.035 (6)0.018 (5)
C150.098 (13)0.034 (8)0.105 (14)0.001 (8)0.038 (11)0.026 (9)
C20.054 (9)0.079 (13)0.104 (14)0.001 (8)0.023 (9)0.047 (11)
C60.060 (9)0.033 (8)0.059 (9)0.006 (6)0.015 (7)0.013 (7)
C80.124 (16)0.066 (12)0.153 (19)0.005 (11)0.096 (15)0.048 (12)
C140.062 (9)0.043 (8)0.062 (9)0.013 (7)0.009 (7)0.020 (7)
C130.065 (10)0.048 (9)0.064 (10)0.003 (7)0.027 (8)0.008 (7)
C70.103 (12)0.074 (11)0.036 (8)0.005 (9)0.026 (8)0.007 (8)
C50.063 (9)0.036 (8)0.076 (10)0.004 (7)0.014 (8)0.023 (7)
C90.094 (12)0.078 (12)0.048 (9)0.027 (10)0.012 (9)0.014 (8)
C100.104 (14)0.106 (15)0.068 (11)0.023 (11)0.015 (10)0.040 (11)
O40.098 (8)0.040 (6)0.109 (9)0.004 (5)0.056 (7)0.019 (6)
C110.093 (12)0.106 (14)0.045 (9)0.025 (11)0.019 (8)0.009 (9)
C120.17 (2)0.028 (9)0.21 (3)0.010 (11)0.13 (2)0.020 (12)
C30.090 (13)0.054 (11)0.17 (2)0.002 (10)0.043 (14)0.065 (13)
C40.085 (12)0.040 (9)0.100 (13)0.005 (8)0.019 (10)0.028 (9)
C160.060 (10)0.046 (9)0.096 (13)0.002 (8)0.005 (9)0.023 (9)
C10.074 (13)0.137 (19)0.17 (2)0.014 (12)0.053 (14)0.091 (18)
Geometric parameters (Å, º) top
C18—C171.51 (2)C8—H8B0.9600
C18—H18A0.9600C8—H8C0.9600
C18—H18B0.9600C14—C131.478 (19)
C18—H18C0.9600C13—O41.247 (17)
C17—C161.31 (2)C7—H7A0.9600
C17—S21.720 (15)C7—H7B0.9600
Sn1—C72.098 (12)C7—H7C0.9600
Sn1—C92.115 (14)C5—C41.34 (2)
Sn1—C82.126 (16)C9—H9A0.9600
Sn1—O32.159 (9)C9—H9B0.9600
Sn1—O12.526 (10)C9—H9C0.9600
Sn2—C112.104 (14)C10—H10A0.9600
Sn2—C102.128 (16)C10—H10B0.9600
Sn2—C122.153 (15)C10—H10C0.9600
Sn2—O22.177 (10)O4—Sn2ii2.502 (11)
Sn2—O4i2.502 (11)C11—H11A0.9600
S1—C21.690 (17)C11—H11B0.9600
S1—C51.694 (15)C11—H11C0.9600
S2—C141.694 (15)C12—H12A0.9600
O2—C61.270 (15)C12—H12B0.9600
O3—C131.281 (17)C12—H12C0.9600
O1—C61.232 (15)C3—C41.37 (2)
C15—C141.333 (19)C3—H30.9300
C15—C161.41 (2)C4—H40.9300
C15—H150.9300C16—H160.9300
C2—C31.36 (2)C1—H1A0.9600
C2—C11.50 (2)C1—H1B0.9600
C6—C51.51 (2)C1—H1C0.9600
C8—H8A0.9600
C17—C18—H18A109.5O4—C13—O3121.8 (13)
C17—C18—H18B109.5O4—C13—C14121.0 (14)
H18A—C18—H18B109.5O3—C13—C14117.1 (13)
C17—C18—H18C109.5Sn1—C7—H7A109.5
H18A—C18—H18C109.5Sn1—C7—H7B109.5
H18B—C18—H18C109.5H7A—C7—H7B109.5
C16—C17—C18127.8 (16)Sn1—C7—H7C109.5
C16—C17—S2111.3 (13)H7A—C7—H7C109.5
C18—C17—S2120.7 (16)H7B—C7—H7C109.5
C7—Sn1—C9125.7 (7)C4—C5—C6128.5 (15)
C7—Sn1—C8116.7 (8)C4—C5—S1111.4 (13)
C9—Sn1—C8116.3 (8)C6—C5—S1120.1 (10)
C7—Sn1—O397.3 (5)Sn1—C9—H9A109.5
C9—Sn1—O394.5 (6)Sn1—C9—H9B109.5
C8—Sn1—O389.4 (5)H9A—C9—H9B109.5
C7—Sn1—O187.2 (5)Sn1—C9—H9C109.5
C9—Sn1—O186.3 (5)H9A—C9—H9C109.5
C8—Sn1—O184.9 (5)H9B—C9—H9C109.5
O3—Sn1—O1173.9 (4)Sn2—C10—H10A109.5
C11—Sn2—C10123.3 (7)Sn2—C10—H10B109.5
C11—Sn2—C12117.6 (9)H10A—C10—H10B109.5
C10—Sn2—C12117.7 (9)Sn2—C10—H10C109.5
C11—Sn2—O299.4 (6)H10A—C10—H10C109.5
C10—Sn2—O292.2 (6)H10B—C10—H10C109.5
C12—Sn2—O289.8 (6)C13—O4—Sn2ii147.4 (10)
C11—Sn2—O4i86.2 (6)Sn2—C11—H11A109.5
C10—Sn2—O4i87.3 (6)Sn2—C11—H11B109.5
C12—Sn2—O4i84.7 (6)H11A—C11—H11B109.5
O2—Sn2—O4i173.5 (3)Sn2—C11—H11C109.5
C2—S1—C592.3 (8)H11A—C11—H11C109.5
C14—S2—C1791.5 (9)H11B—C11—H11C109.5
C6—O2—Sn2122.2 (9)Sn2—C12—H12A109.5
C13—O3—Sn1123.0 (9)Sn2—C12—H12B109.5
C6—O1—Sn1145.3 (9)H12A—C12—H12B109.5
C14—C15—C16113.1 (16)Sn2—C12—H12C109.5
C14—C15—H15123.5H12A—C12—H12C109.5
C16—C15—H15123.5H12B—C12—H12C109.5
C3—C2—C1127.4 (18)C2—C3—C4114.1 (16)
C3—C2—S1109.6 (13)C2—C3—H3122.9
C1—C2—S1122.8 (16)C4—C3—H3122.9
O1—C6—O2125.7 (13)C5—C4—C3112.5 (17)
O1—C6—C5119.8 (12)C5—C4—H4123.7
O2—C6—C5114.5 (12)C3—C4—H4123.7
Sn1—C8—H8A109.5C17—C16—C15112.9 (15)
Sn1—C8—H8B109.5C17—C16—H16123.5
H8A—C8—H8B109.5C15—C16—H16123.5
Sn1—C8—H8C109.5C2—C1—H1A109.5
H8A—C8—H8C109.5C2—C1—H1B109.5
H8B—C8—H8C109.5H1A—C1—H1B109.5
C15—C14—C13128.9 (15)C2—C1—H1C109.5
C15—C14—S2111.0 (12)H1A—C1—H1C109.5
C13—C14—S2119.8 (10)H1B—C1—H1C109.5
C16—C17—S2—C143.4 (14)C17—S2—C14—C13174.2 (12)
C18—C17—S2—C14179.0 (16)Sn1—O3—C13—O412 (2)
C11—Sn2—O2—C658.4 (13)Sn1—O3—C13—C14169.9 (9)
C10—Sn2—O2—C665.9 (12)C15—C14—C13—O42 (3)
C12—Sn2—O2—C6176.4 (13)S2—C14—C13—O4171.4 (13)
O4i—Sn2—O2—C6152 (3)C15—C14—C13—O3175.9 (16)
C7—Sn1—O3—C1365.4 (13)S2—C14—C13—O310.4 (19)
C9—Sn1—O3—C1361.4 (13)O1—C6—C5—C411 (2)
C8—Sn1—O3—C13177.8 (14)O2—C6—C5—C4169.6 (15)
O1—Sn1—O3—C13158 (3)O1—C6—C5—S1169.1 (11)
C7—Sn1—O1—C623.1 (18)O2—C6—C5—S110.3 (17)
C9—Sn1—O1—C6103.0 (18)C2—S1—C5—C40.3 (13)
C8—Sn1—O1—C6140.2 (19)C2—S1—C5—C6179.8 (12)
O3—Sn1—O1—C6160 (3)O3—C13—O4—Sn2ii146.7 (14)
C5—S1—C2—C30.1 (14)C14—C13—O4—Sn2ii35 (3)
C5—S1—C2—C1175.3 (15)C1—C2—C3—C4175.3 (18)
Sn1—O1—C6—O2136.9 (14)S1—C2—C3—C40 (2)
Sn1—O1—C6—C542 (2)C6—C5—C4—C3179.5 (15)
Sn2—O2—C6—O111 (2)S1—C5—C4—C30.5 (19)
Sn2—O2—C6—C5167.9 (9)C2—C3—C4—C51 (2)
C16—C15—C14—C13176.4 (14)C18—C17—C16—C15179.6 (18)
C16—C15—C14—S22.2 (19)S2—C17—C16—C155 (2)
C17—S2—C14—C150.6 (14)C14—C15—C16—C175 (2)
Symmetry codes: (i) x, y1, z; (ii) x, y+1, z.

Experimental details

Crystal data
Chemical formula[Sn(CH3)3(C6H5O2S)]
Mr304.95
Crystal system, space groupTriclinic, P1
Temperature (K)298
a, b, c (Å)9.9591 (8), 10.0655 (11), 13.9890 (12)
α, β, γ (°)69.385 (1), 72.225 (1), 75.038 (2)
V3)1231.9 (2)
Z4
Radiation typeMo Kα
µ (mm1)2.21
Crystal size (mm)0.44 × 0.15 × 0.09
Data collection
DiffractometerSiemens SMART CCD
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.443, 0.826
No. of measured, independent and
observed [I > 2σ(I)] reflections
6219, 4293, 2340
Rint0.048
(sin θ/λ)max1)0.595
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.084, 0.242, 0.97
No. of reflections4293
No. of parameters243
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)3.71, 0.97

Computer programs: SMART (Siemens, 1996), SAINT (Siemens, 1996), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Selected bond lengths (Å) top
Sn1—C72.098 (12)Sn2—C112.104 (14)
Sn1—C92.115 (14)Sn2—C102.128 (16)
Sn1—C82.126 (16)Sn2—C122.153 (15)
Sn1—O32.159 (9)Sn2—O22.177 (10)
Sn1—O12.526 (10)Sn2—O4i2.502 (11)
Symmetry code: (i) x, y1, z.
 

Acknowledgements

We thank the National Natural Science Foundation of China (20971096) for financial support.

References

First citationDubey, S. K. & Roy, U. (2003). Appl. Organomet. Chem. 17, 3–8.  Web of Science CrossRef CAS Google Scholar
First citationMa, C., Wang, Q. & Zhang, R. (2008). Eur. J. Inorg. Chem. pp. 1926–1934.  Web of Science CSD CrossRef Google Scholar
First citationSheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSiemens (1996). SMART and SAINT. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.  Google Scholar
First citationWang, Q., Zhang, R. & Du, L. (2007). Acta Cryst. E63, m2959.  Web of Science CSD CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds