organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

4-Methyl-2-oxo-2H-chromen-7-yl 4-meth­­oxy­benzene­sulfonate

aSchool of Pharmaceutical Sciences, Universiti Sains Malaysia, 11800 USM, Penang, Malaysia, bSchool of Chemical Sciences, Universiti Sains Malaysia, 11800 USM, Penang, Malaysia, and cX-ray Crystallography Unit, School of Physics, Universiti Sains Malaysia, 11800 USM, Penang, Malaysia
*Correspondence e-mail: hkfun@usm.my

(Received 18 November 2011; accepted 19 November 2011; online 30 November 2011)

In the title compound, C17H14O6S, the 2H-chromene ring is essentially planar, with a maximum deviation of 0.016 (1) Å. The dihedral angle between the 2H-chromene and the benzene rings is 54.61 (5)°. The C atom of the meth­oxy group is close to coplanar with its attached ring [deviation = 0.082 (2) Å]. In the crystal, mol­ecules are connected via C—H⋯O hydrogen bonds, forming sheets lying parallel to the bc plane. Weak C—H⋯π inter­actions are also observed.

Related literature

For applications and properties of coumarin derivatives, see: Sinha et al. (2011[Sinha, S., Osman, H., Wahab, H. A., Hemamalini, M. & Fun, H.-K. (2011). Acta Cryst. E67, o3275.]); Valente et al. (2010)[Valente, S., Bana, E., Viry, E., Bagrel, D. & Gilbert, S. (2010). Bioorg. Med. Chem. Lett. 20, 5827-5830.]; Radanyi et al. (2008[Radanyi, C., Le Bras, G., Messaoudi, S., Bouchlier, C., Peryrat, J.-F., Brion, J. -D., Marsaud, V., Renoir, J. -M. & Alami, M. (2008). Bioorg. Med. Chem. Lett. 18, 2495-2498.]); Han et al. (2005[Han, S., Zhou, V., Pan, S., Liu, Y., Hornsby, M., McMullan, D., Klock, H. E., Haugen, J., Lesley, S. A., Gray, N., Caldwell, J. & Gu, X.-J. (2005). Bioorg. Med. Chem. Lett. 15, 5467-5473.]); Cheng et al. (2004[Cheng, J.-F., Chen, M., Wallace, D., Tith, S., Arrhenius, T., Kashiwagi, H., Ono, Y., Ishikawa, A., Sato, H., Kozono, T., Sato, H. & Nadzan, A. M. (2004). Bioorg. Med. Chem. Lett. 14, 2411-2415.]). For further synthetic details, see: Fusegi et al. (2009[Fusegi, K., Kumamoto, T., Nakanishi, W. & Ishikawa, T. (2009). Heterocycles, 77, 503-610.]).

[Scheme 1]

Experimental

Crystal data
  • C17H14O6S

  • Mr = 346.34

  • Triclinic, [P \overline 1]

  • a = 7.9801 (3) Å

  • b = 9.2234 (4) Å

  • c = 10.9682 (5) Å

  • α = 99.049 (1)°

  • β = 90.288 (1)°

  • γ = 93.945 (1)°

  • V = 795.26 (6) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.23 mm−1

  • T = 296 K

  • 0.39 × 0.34 × 0.17 mm

Data collection
  • Bruker APEXII DUO CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2009[Bruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.913, Tmax = 0.962

  • 21468 measured reflections

  • 5907 independent reflections

  • 4468 reflections with I > 2σ(I)

  • Rint = 0.022

Refinement
  • R[F2 > 2σ(F2)] = 0.041

  • wR(F2) = 0.131

  • S = 1.04

  • 5907 reflections

  • 219 parameters

  • H-atom parameters constrained

  • Δρmax = 0.34 e Å−3

  • Δρmin = −0.36 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

Cg1 is the centroid of the O2/C9–C13 ring.

D—H⋯A D—H H⋯A DA D—H⋯A
C8—H8A⋯O3i 0.93 2.50 3.4156 (16) 169
C15—H15A⋯O5ii 0.93 2.44 3.2923 (17) 153
C16—H16BCg1iii 0.96 2.96 3.8423 (17) 154
Symmetry codes: (i) -x+1, -y+1, -z+1; (ii) x, y+1, z; (iii) -x, -y+1, -z+2.

Data collection: APEX2 (Bruker, 2009[Bruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2009[Bruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Supporting information


Comment top

This is the continuation of our work regarding synthesis of derivatives of sulphur-containing small molecules (Sinha et al., 2011). Coumarin derivatives have been tested successfully against Cdc25 phosphatases (Valente et al., 2010), HSP 90 (Radanyi et al., 2008), MEK1 (Han et al., 2005) as well as TNF-α (Cheng et al., 2004). Apart from these biological activity, this class of molecules is also widely used as fluorescent labels for molecular studies of nucleic acids and proteins.

The asymmetric unit of the title compound is shown in Fig. 1. The 2H-chromene (O2/C7–C15) ring is essentially planar, with a maximum deviation of 0.016 (1) Å for atom O2. The dihedral angle between the 2H-chromene (O2/C7–C15) ring and benzene (C1–C6) ring is 54.61 (5)°.

In the crystal, (Fig. 2), the molecules are connected via weak intermolecular C—H···O hydrogen bonds (Table 1) to form two-dimensional networks parallel to the bc-plane. Furthermore, the crystal structure is stabilized by weak C—H···π interactions involving the Cg1 (O2/C9–C13) ring.

Related literature top

For applications and properties of coumarin derivatives, see: Sinha et al. (2011); Valente et al. (2010); Radanyi et al. (2008); Han et al. (2005); Cheng et al. (2004). For further synthetic details, see: Fusegi et al. (2009).

Experimental top

The synthetic procedure followed is modified from the recent work by Fusegi et al. (2009). A mixture of 4-methylumbelliferone (0.176 g, 1.00 mmol), K2CO3 (0.345 g, 2.5 mmol), and 4 Methoxybenzene sulphonyl chloride (0.130 g, 1.1 mmol) in ethyl acetate (10 ml) was refluxed for 5 hrs. After cooling, the solvent was evaporated under reduced pressure. H2O (30 ml) was added to the residue and the contents was extracted with AcOEt (3 × 100 ml). The combined organic layer was washed with H2O (3 × 80 ml) and brine (1 × 100 ml) and was dried over MgSO4. The solvent was evaporated in vacuo and the residue was recrystallized from hexane - AcOEt (7: 1) to give the title compound as colourless blocks.

Refinement top

All hydrogen atoms were positioned geometrically [C–H = 0.93 or 0.96 Å] and were refined using a riding model, with Uiso(H) = 1.2 or 1.5 Ueq(C). A rotating group model was applied to the methyl groups.

Structure description top

This is the continuation of our work regarding synthesis of derivatives of sulphur-containing small molecules (Sinha et al., 2011). Coumarin derivatives have been tested successfully against Cdc25 phosphatases (Valente et al., 2010), HSP 90 (Radanyi et al., 2008), MEK1 (Han et al., 2005) as well as TNF-α (Cheng et al., 2004). Apart from these biological activity, this class of molecules is also widely used as fluorescent labels for molecular studies of nucleic acids and proteins.

The asymmetric unit of the title compound is shown in Fig. 1. The 2H-chromene (O2/C7–C15) ring is essentially planar, with a maximum deviation of 0.016 (1) Å for atom O2. The dihedral angle between the 2H-chromene (O2/C7–C15) ring and benzene (C1–C6) ring is 54.61 (5)°.

In the crystal, (Fig. 2), the molecules are connected via weak intermolecular C—H···O hydrogen bonds (Table 1) to form two-dimensional networks parallel to the bc-plane. Furthermore, the crystal structure is stabilized by weak C—H···π interactions involving the Cg1 (O2/C9–C13) ring.

For applications and properties of coumarin derivatives, see: Sinha et al. (2011); Valente et al. (2010); Radanyi et al. (2008); Han et al. (2005); Cheng et al. (2004). For further synthetic details, see: Fusegi et al. (2009).

Computing details top

Data collection: APEX2 (Bruker, 2009); cell refinement: SAINT (Bruker, 2009); data reduction: SAINT (Bruker, 2009); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. The asymmetric unit of the title compound, showing 30% probability displacement ellipsoids.
[Figure 2] Fig. 2. The crystal packing of the title compound (I). H atoms not involved in hydrogen bonding are omitted for clarity.
4-Methyl-2-oxo-2H-chromen-7-yl 4-methoxybenzenesulfonate top
Crystal data top
C17H14O6SZ = 2
Mr = 346.34F(000) = 360
Triclinic, P1Dx = 1.446 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 7.9801 (3) ÅCell parameters from 7512 reflections
b = 9.2234 (4) Åθ = 2.6–32.8°
c = 10.9682 (5) ŵ = 0.23 mm1
α = 99.049 (1)°T = 296 K
β = 90.288 (1)°Block, colourless
γ = 93.945 (1)°0.39 × 0.34 × 0.17 mm
V = 795.26 (6) Å3
Data collection top
Bruker APEXII DUO CCD
diffractometer
5907 independent reflections
Radiation source: fine-focus sealed tube4468 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.022
φ and ω scansθmax = 33.1°, θmin = 2.2°
Absorption correction: multi-scan
(SADABS; Bruker, 2009)
h = 1111
Tmin = 0.913, Tmax = 0.962k = 1412
21468 measured reflectionsl = 1616
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.041Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.131H-atom parameters constrained
S = 1.04 w = 1/[σ2(Fo2) + (0.0651P)2 + 0.114P]
where P = (Fo2 + 2Fc2)/3
5907 reflections(Δ/σ)max < 0.001
219 parametersΔρmax = 0.34 e Å3
0 restraintsΔρmin = 0.36 e Å3
Crystal data top
C17H14O6Sγ = 93.945 (1)°
Mr = 346.34V = 795.26 (6) Å3
Triclinic, P1Z = 2
a = 7.9801 (3) ÅMo Kα radiation
b = 9.2234 (4) ŵ = 0.23 mm1
c = 10.9682 (5) ÅT = 296 K
α = 99.049 (1)°0.39 × 0.34 × 0.17 mm
β = 90.288 (1)°
Data collection top
Bruker APEXII DUO CCD
diffractometer
5907 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2009)
4468 reflections with I > 2σ(I)
Tmin = 0.913, Tmax = 0.962Rint = 0.022
21468 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0410 restraints
wR(F2) = 0.131H-atom parameters constrained
S = 1.04Δρmax = 0.34 e Å3
5907 reflectionsΔρmin = 0.36 e Å3
219 parameters
Special details top

Geometry. All s.u.'s (except the s.u. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell s.u.'s are taken into account individually in the estimation of s.u.'s in distances, angles and torsion angles; correlations between s.u.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell s.u.'s is used for estimating s.u.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
S10.33642 (4)0.69504 (3)0.53507 (3)0.04487 (10)
O10.44708 (11)0.69936 (10)0.65864 (8)0.04511 (19)
O20.33520 (13)0.28756 (9)0.86131 (8)0.0501 (2)
O30.45083 (14)0.76349 (12)0.45924 (10)0.0622 (3)
O40.26867 (14)0.54843 (11)0.49601 (9)0.0583 (3)
O50.2954 (2)0.08977 (12)0.94880 (12)0.0839 (4)
O60.18253 (12)1.08511 (11)0.72509 (10)0.0568 (2)
C10.01468 (16)0.74728 (13)0.59708 (11)0.0438 (2)
H1A0.00950.64640.57550.053*
C20.11060 (16)0.83699 (14)0.64295 (12)0.0449 (2)
H2A0.21930.79700.65130.054*
C30.07179 (15)0.98751 (13)0.67639 (11)0.0419 (2)
C40.08909 (16)1.04825 (13)0.65845 (13)0.0469 (3)
H4A0.11271.14940.67810.056*
C50.21342 (16)0.96007 (14)0.61205 (12)0.0453 (3)
H5A0.32071.00080.59990.054*
C60.17587 (15)0.80817 (13)0.58340 (10)0.0405 (2)
C70.37903 (14)0.63892 (12)0.75909 (10)0.0386 (2)
C80.38320 (15)0.49001 (12)0.75940 (10)0.0396 (2)
H8A0.42180.42800.69180.048*
C90.32790 (14)0.43633 (12)0.86381 (10)0.0382 (2)
C100.2809 (2)0.21991 (15)0.95863 (13)0.0563 (3)
C110.2140 (2)0.31206 (16)1.06288 (13)0.0568 (3)
H11A0.17240.26791.12820.068*
C120.20871 (17)0.45853 (14)1.07064 (11)0.0458 (3)
C130.26811 (14)0.52666 (12)0.96685 (10)0.0383 (2)
C140.26642 (17)0.67727 (13)0.96096 (11)0.0452 (3)
H14A0.22730.74001.02790.054*
C150.32143 (17)0.73451 (13)0.85815 (12)0.0456 (3)
H15A0.32000.83460.85520.055*
C160.1440 (2)0.55079 (18)1.18327 (12)0.0630 (4)
H16A0.10570.48841.24120.095*
H16B0.05230.60351.16000.095*
H16C0.23240.61961.22060.095*
C170.34930 (19)1.03035 (18)0.74647 (17)0.0627 (4)
H17A0.41671.11130.77330.094*
H17B0.34720.96850.80910.094*
H17C0.39630.97430.67140.094*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S10.05261 (18)0.04271 (16)0.04015 (15)0.00954 (12)0.00695 (11)0.00638 (11)
O10.0427 (4)0.0443 (4)0.0496 (4)0.0032 (3)0.0038 (3)0.0114 (3)
O20.0732 (6)0.0319 (4)0.0456 (4)0.0135 (4)0.0032 (4)0.0030 (3)
O30.0705 (7)0.0656 (6)0.0567 (6)0.0191 (5)0.0255 (5)0.0214 (5)
O40.0723 (7)0.0449 (5)0.0543 (5)0.0094 (4)0.0045 (5)0.0048 (4)
O50.1473 (13)0.0369 (5)0.0711 (7)0.0192 (6)0.0102 (8)0.0137 (5)
O60.0477 (5)0.0450 (5)0.0759 (7)0.0090 (4)0.0043 (5)0.0016 (4)
C10.0511 (6)0.0349 (5)0.0454 (6)0.0002 (4)0.0022 (5)0.0075 (4)
C20.0427 (6)0.0412 (6)0.0511 (6)0.0009 (4)0.0028 (5)0.0102 (5)
C30.0430 (6)0.0389 (5)0.0441 (5)0.0059 (4)0.0030 (4)0.0061 (4)
C40.0463 (6)0.0352 (5)0.0579 (7)0.0003 (4)0.0065 (5)0.0040 (5)
C50.0402 (6)0.0405 (6)0.0553 (7)0.0000 (4)0.0021 (5)0.0089 (5)
C60.0437 (6)0.0388 (5)0.0397 (5)0.0051 (4)0.0012 (4)0.0078 (4)
C70.0389 (5)0.0359 (5)0.0413 (5)0.0057 (4)0.0001 (4)0.0056 (4)
C80.0437 (6)0.0355 (5)0.0391 (5)0.0105 (4)0.0016 (4)0.0007 (4)
C90.0439 (5)0.0312 (4)0.0389 (5)0.0093 (4)0.0034 (4)0.0006 (4)
C100.0830 (10)0.0385 (6)0.0486 (7)0.0097 (6)0.0028 (6)0.0090 (5)
C110.0819 (10)0.0480 (7)0.0427 (6)0.0087 (6)0.0026 (6)0.0121 (5)
C120.0549 (7)0.0465 (6)0.0354 (5)0.0081 (5)0.0028 (5)0.0029 (4)
C130.0436 (5)0.0361 (5)0.0342 (5)0.0079 (4)0.0033 (4)0.0000 (4)
C140.0578 (7)0.0358 (5)0.0400 (5)0.0114 (5)0.0008 (5)0.0039 (4)
C150.0572 (7)0.0309 (5)0.0480 (6)0.0087 (5)0.0001 (5)0.0011 (4)
C160.0873 (11)0.0628 (9)0.0383 (6)0.0128 (8)0.0089 (6)0.0021 (6)
C170.0479 (7)0.0606 (9)0.0819 (10)0.0127 (6)0.0117 (7)0.0141 (7)
Geometric parameters (Å, º) top
S1—O31.4203 (10)C7—C81.3766 (15)
S1—O41.4210 (10)C7—C151.3887 (16)
S1—O11.6076 (10)C8—C91.3801 (16)
S1—C61.7401 (12)C8—H8A0.9300
O1—C71.4061 (14)C9—C131.4011 (14)
O2—C91.3734 (13)C10—C111.441 (2)
O2—C101.3760 (17)C11—C121.3439 (19)
O5—C101.2018 (16)C11—H11A0.9300
O6—C31.3563 (15)C12—C131.4509 (17)
O6—C171.4244 (18)C12—C161.5011 (18)
C1—C61.3862 (17)C13—C141.4017 (16)
C1—C21.3875 (18)C14—C151.3796 (18)
C1—H1A0.9300C14—H14A0.9300
C2—C31.3919 (17)C15—H15A0.9300
C2—H2A0.9300C16—H16A0.9600
C3—C41.3924 (18)C16—H16B0.9600
C4—C51.3751 (18)C16—H16C0.9600
C4—H4A0.9300C17—H17A0.9600
C5—C61.3979 (16)C17—H17B0.9600
C5—H5A0.9300C17—H17C0.9600
O3—S1—O4120.27 (7)O2—C9—C8115.88 (9)
O3—S1—O1101.84 (6)O2—C9—C13121.43 (10)
O4—S1—O1108.68 (6)C8—C9—C13122.69 (10)
O3—S1—C6111.00 (6)O5—C10—O2116.70 (13)
O4—S1—C6109.96 (6)O5—C10—C11126.35 (14)
O1—S1—C6103.45 (5)O2—C10—C11116.95 (11)
C7—O1—S1120.22 (7)C12—C11—C10123.40 (13)
C9—O2—C10121.61 (10)C12—C11—H11A118.3
C3—O6—C17118.18 (11)C10—C11—H11A118.3
C6—C1—C2119.95 (11)C11—C12—C13118.25 (11)
C6—C1—H1A120.0C11—C12—C16121.49 (12)
C2—C1—H1A120.0C13—C12—C16120.26 (12)
C1—C2—C3119.29 (11)C9—C13—C14117.23 (10)
C1—C2—H2A120.4C9—C13—C12118.30 (10)
C3—C2—H2A120.4C14—C13—C12124.45 (10)
O6—C3—C2124.50 (11)C15—C14—C13121.51 (10)
O6—C3—C4115.21 (11)C15—C14—H14A119.2
C2—C3—C4120.28 (11)C13—C14—H14A119.2
C5—C4—C3120.64 (11)C14—C15—C7118.37 (11)
C5—C4—H4A119.7C14—C15—H15A120.8
C3—C4—H4A119.7C7—C15—H15A120.8
C4—C5—C6118.91 (11)C12—C16—H16A109.5
C4—C5—H5A120.5C12—C16—H16B109.5
C6—C5—H5A120.5H16A—C16—H16B109.5
C1—C6—C5120.83 (11)C12—C16—H16C109.5
C1—C6—S1120.13 (9)H16A—C16—H16C109.5
C5—C6—S1119.00 (9)H16B—C16—H16C109.5
C8—C7—C15122.74 (11)O6—C17—H17A109.5
C8—C7—O1119.03 (10)O6—C17—H17B109.5
C15—C7—O1118.06 (10)H17A—C17—H17B109.5
C7—C8—C9117.46 (10)O6—C17—H17C109.5
C7—C8—H8A121.3H17A—C17—H17C109.5
C9—C8—H8A121.3H17B—C17—H17C109.5
O3—S1—O1—C7179.12 (8)O1—C7—C8—C9174.84 (10)
O4—S1—O1—C751.20 (10)C10—O2—C9—C8178.76 (12)
C6—S1—O1—C765.63 (9)C10—O2—C9—C131.40 (19)
C6—C1—C2—C30.89 (19)C7—C8—C9—O2179.45 (10)
C17—O6—C3—C21.5 (2)C7—C8—C9—C130.38 (18)
C17—O6—C3—C4179.69 (13)C9—O2—C10—O5178.61 (15)
C1—C2—C3—O6178.23 (12)C9—O2—C10—C110.7 (2)
C1—C2—C3—C43.04 (19)O5—C10—C11—C12176.67 (18)
O6—C3—C4—C5178.64 (12)O2—C10—C11—C122.6 (2)
C2—C3—C4—C52.5 (2)C10—C11—C12—C132.2 (2)
C3—C4—C5—C60.2 (2)C10—C11—C12—C16177.60 (15)
C2—C1—C6—C51.80 (19)O2—C9—C13—C14179.63 (11)
C2—C1—C6—S1175.99 (9)C8—C9—C13—C140.20 (18)
C4—C5—C6—C12.33 (19)O2—C9—C13—C121.81 (17)
C4—C5—C6—S1175.49 (10)C8—C9—C13—C12178.37 (11)
O3—S1—C6—C1145.04 (11)C11—C12—C13—C90.03 (19)
O4—S1—C6—C19.50 (12)C16—C12—C13—C9179.81 (12)
O1—S1—C6—C1106.43 (10)C11—C12—C13—C14178.48 (13)
O3—S1—C6—C537.13 (12)C16—C12—C13—C141.7 (2)
O4—S1—C6—C5172.67 (10)C9—C13—C14—C150.06 (18)
O1—S1—C6—C571.40 (10)C12—C13—C14—C15178.53 (12)
S1—O1—C7—C883.63 (12)C13—C14—C15—C70.1 (2)
S1—O1—C7—C15100.99 (12)C8—C7—C15—C140.1 (2)
C15—C7—C8—C90.32 (18)O1—C7—C15—C14175.12 (11)
Hydrogen-bond geometry (Å, º) top
Cg1 is the centroid of the O2/C9–C13 ring.
D—H···AD—HH···AD···AD—H···A
C8—H8A···O3i0.932.503.4156 (16)169
C15—H15A···O5ii0.932.443.2923 (17)153
C16—H16B···Cg1iii0.962.963.8423 (17)154
Symmetry codes: (i) x+1, y+1, z+1; (ii) x, y+1, z; (iii) x, y+1, z+2.

Experimental details

Crystal data
Chemical formulaC17H14O6S
Mr346.34
Crystal system, space groupTriclinic, P1
Temperature (K)296
a, b, c (Å)7.9801 (3), 9.2234 (4), 10.9682 (5)
α, β, γ (°)99.049 (1), 90.288 (1), 93.945 (1)
V3)795.26 (6)
Z2
Radiation typeMo Kα
µ (mm1)0.23
Crystal size (mm)0.39 × 0.34 × 0.17
Data collection
DiffractometerBruker APEXII DUO CCD
Absorption correctionMulti-scan
(SADABS; Bruker, 2009)
Tmin, Tmax0.913, 0.962
No. of measured, independent and
observed [I > 2σ(I)] reflections
21468, 5907, 4468
Rint0.022
(sin θ/λ)max1)0.768
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.041, 0.131, 1.04
No. of reflections5907
No. of parameters219
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.34, 0.36

Computer programs: APEX2 (Bruker, 2009), SAINT (Bruker, 2009), SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
Cg1 is the centroid of the O2/C9–C13 ring.
D—H···AD—HH···AD···AD—H···A
C8—H8A···O3i0.932.503.4156 (16)169
C15—H15A···O5ii0.932.443.2923 (17)153
C16—H16B···Cg1iii0.962.963.8423 (17)154
Symmetry codes: (i) x+1, y+1, z+1; (ii) x, y+1, z; (iii) x, y+1, z+2.
 

Footnotes

Additional correspondence email: habibahw@usm.my.

§Thomson Reuters ResearcherID: A-3561-2009.

Acknowledgements

HAW gratefully acknowledges the Malaysian Ministry of Science, Technology and Innovation for the synthesis work funded by grants Nos. 09-05-lfn-meb-004 and 304/PFARMASI/650545/I-121. HKF and MH thank the Malaysian Government and Universiti Sains Malaysia for the Research University Grant No. 1001/PFIZIK/811160. MH thanks also Universiti Sains Malaysia for a post-doctoral research fellowship.

References

First citationBruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationCheng, J.-F., Chen, M., Wallace, D., Tith, S., Arrhenius, T., Kashiwagi, H., Ono, Y., Ishikawa, A., Sato, H., Kozono, T., Sato, H. & Nadzan, A. M. (2004). Bioorg. Med. Chem. Lett. 14, 2411–2415.  CrossRef PubMed CAS Google Scholar
First citationFusegi, K., Kumamoto, T., Nakanishi, W. & Ishikawa, T. (2009). Heterocycles, 77, 503–610.  Google Scholar
First citationHan, S., Zhou, V., Pan, S., Liu, Y., Hornsby, M., McMullan, D., Klock, H. E., Haugen, J., Lesley, S. A., Gray, N., Caldwell, J. & Gu, X.-J. (2005). Bioorg. Med. Chem. Lett. 15, 5467–5473.  Web of Science CrossRef PubMed CAS Google Scholar
First citationRadanyi, C., Le Bras, G., Messaoudi, S., Bouchlier, C., Peryrat, J.-F., Brion, J. -D., Marsaud, V., Renoir, J. -M. & Alami, M. (2008). Bioorg. Med. Chem. Lett. 18, 2495–2498.  Web of Science CrossRef PubMed CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSinha, S., Osman, H., Wahab, H. A., Hemamalini, M. & Fun, H.-K. (2011). Acta Cryst. E67, o3275.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationValente, S., Bana, E., Viry, E., Bagrel, D. & Gilbert, S. (2010). Bioorg. Med. Chem. Lett. 20, 5827–5830.  Web of Science CrossRef CAS PubMed Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds