organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

N′-(4-Meth­­oxy­benzyl­­idene)-4-methyl­benzohydrazide

aExperimental Center, Linyi University, Linyi 276005, People's Republic of China
*Correspondence e-mail: zengxin_liu@163.com

(Received 21 November 2011; accepted 22 November 2011; online 25 November 2011)

The title compound, C16H16N2O2, is the product of the reaction of 4-meth­oxy­benzaldehyde and 4-methyl­benzo­hydrazide. The dihedral angle between the substituted benzene rings is 17.6 (3)° and the meth­oxy C atom is almost coplanar with its attached ring [deviation = 0.019 (4) Å]. In the crystal, mol­ecules are linked by N—H⋯O hydrogen bonds, forming C(4) chains propagating along the b-axis direction.

Related literature

For reference bond lengths, see: Allen et al. (1987[Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orphen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1-19.]). For related strctures, see: Horkaew et al. (2011[Horkaew, J., Chantrapromma, S. & Fun, H.-K. (2011). Acta Cryst. E67, o2985.]); Fun et al. (2011[Fun, H.-K., Horkaew, J. & Chantrapromma, S. (2011). Acta Cryst. E67, o2644-o2645.]); Su et al. (2011[Su, F., Gu, Z.-G. & Lin, J. (2011). Acta Cryst. E67, o1634.]); Hashemian et al. (2011[Hashemian, S., Ghaeinee, V. & Notash, B. (2011). Acta Cryst. E67, o171.]); Promdet et al. (2011[Promdet, P., Horkaew, J., Chantrapromma, S. & Fun, H.-K. (2011). Acta Cryst. E67, o3224.]).

[Scheme 1]

Experimental

Crystal data
  • C16H16N2O2

  • Mr = 268.31

  • Orthorhombic, P b c a

  • a = 12.138 (2) Å

  • b = 8.0580 (16) Å

  • c = 29.320 (3) Å

  • V = 2867.7 (8) Å3

  • Z = 8

  • Mo Kα radiation

  • μ = 0.08 mm−1

  • T = 298 K

  • 0.17 × 0.13 × 0.12 mm

Data collection
  • Bruker SMART 1K CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996[Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.]) Tmin = 0.986, Tmax = 0.990

  • 20247 measured reflections

  • 3098 independent reflections

  • 1427 reflections with I > 2σ(I)

  • Rint = 0.137

Refinement
  • R[F2 > 2σ(F2)] = 0.082

  • wR(F2) = 0.212

  • S = 1.01

  • 3098 reflections

  • 186 parameters

  • 1 restraint

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.16 e Å−3

  • Δρmin = −0.24 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1⋯O1i 0.90 (1) 1.97 (1) 2.870 (4) 176 (3)
Symmetry code: (i) [-x+{\script{3\over 2}}, y+{\script{1\over 2}}, z].

Data collection: SMART (Bruker, 2007[Bruker (2007). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2007[Bruker (2007). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

Recently, the compounds derived from the condensation reaction of carbonyl-containing compounds with substituted benzohydrazides have received considerable attention. In this paper, the title new compound, derived from the reaction of 4-methoxybenzaldehyde with 4-methylbenzohydrazide, is reported.

The molecule of the compound, Fig. 1, displays a trans-configuration about the C9 N2 bond. The torsion angle of C8—N1—N2—C9 is 2.3 (3)°. The dihedral angle between the C2—C7 and C10—C15 benzene rings is 17.6 (3)°, indicating the molecule of the compound is twisted. Overall, the bond distances are within normal values (Allen et al., 1987), and are comparable with those reported in similar compounds (Horkaew et al., 2011; Fun et al., 2011; Su et al., 2011; Hashemian et al., 2011; Promdet et al., 2011). In the crystal, molecules are linked by N—H···O hydrogen bonds (Table 1) to form C(4) chains along the b axis (Fig. 2).

Related literature top

For reference bond lengths, see: Allen et al. (1987). For related strctures, see: Horkaew et al. (2011); Fun et al. (2011); Su et al. (2011); Hashemian et al. (2011); Promdet et al. (2011).

Experimental top

The title compound was synthesized by the reaction of 4-methoxybenzaldehyde (1 mmol, 0.14 g) with 4-methylbenzohydrazide (1 mmol, 0.15 g) in absolute methanol (30 ml) at ambient condition. Colorless prism-shaped single crystals were obtained by slow evaporation of the solution at room temperature after several days.

Refinement top

The amide H atom was located in a difference map and was refined isotropically, with N—H = 0.90 (1) Å. The remaining H atoms were positioned geometrically and allowed to ride on their parent atoms, with C—H = 0.93 Å for aromatic and CH and 0.96 Å for CH3 atoms. The Uiso values were constrained to be 1.5Ueq of the carrier atom for methyl H atoms and 1.2Ueq for the remaining H atoms. A rotating group model was used for the methyl groups.

Structure description top

Recently, the compounds derived from the condensation reaction of carbonyl-containing compounds with substituted benzohydrazides have received considerable attention. In this paper, the title new compound, derived from the reaction of 4-methoxybenzaldehyde with 4-methylbenzohydrazide, is reported.

The molecule of the compound, Fig. 1, displays a trans-configuration about the C9 N2 bond. The torsion angle of C8—N1—N2—C9 is 2.3 (3)°. The dihedral angle between the C2—C7 and C10—C15 benzene rings is 17.6 (3)°, indicating the molecule of the compound is twisted. Overall, the bond distances are within normal values (Allen et al., 1987), and are comparable with those reported in similar compounds (Horkaew et al., 2011; Fun et al., 2011; Su et al., 2011; Hashemian et al., 2011; Promdet et al., 2011). In the crystal, molecules are linked by N—H···O hydrogen bonds (Table 1) to form C(4) chains along the b axis (Fig. 2).

For reference bond lengths, see: Allen et al. (1987). For related strctures, see: Horkaew et al. (2011); Fun et al. (2011); Su et al. (2011); Hashemian et al. (2011); Promdet et al. (2011).

Computing details top

Data collection: SMART (Bruker, 2007); cell refinement: SAINT (Bruker, 2007); data reduction: SAINT (Bruker, 2007); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound, showing 30% probability displacement ellipsoids.
[Figure 2] Fig. 2. The molecular packing of the title compound, showing the N—H···O hydrogen-bonds (dashed lines).
N'-(4-Methoxybenzylidene)-4-methylbenzohydrazide top
Crystal data top
C16H16N2O2Dx = 1.243 Mg m3
Mr = 268.31Mo Kα radiation, λ = 0.71073 Å
Orthorhombic, PbcaCell parameters from 883 reflections
a = 12.138 (2) Åθ = 2.2–24.3°
b = 8.0580 (16) ŵ = 0.08 mm1
c = 29.320 (3) ÅT = 298 K
V = 2867.7 (8) Å3Prism, colorless
Z = 80.17 × 0.13 × 0.12 mm
F(000) = 1136
Data collection top
Bruker SMART 1K CCD
diffractometer
3098 independent reflections
Radiation source: fine-focus sealed tube1427 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.137
ω scanθmax = 27.0°, θmin = 1.4°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 1515
Tmin = 0.986, Tmax = 0.990k = 1010
20247 measured reflectionsl = 3636
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.082Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.212H atoms treated by a mixture of independent and constrained refinement
S = 1.01 w = 1/[σ2(Fo2) + (0.0711P)2]
where P = (Fo2 + 2Fc2)/3
3098 reflections(Δ/σ)max < 0.001
186 parametersΔρmax = 0.16 e Å3
1 restraintΔρmin = 0.24 e Å3
Crystal data top
C16H16N2O2V = 2867.7 (8) Å3
Mr = 268.31Z = 8
Orthorhombic, PbcaMo Kα radiation
a = 12.138 (2) ŵ = 0.08 mm1
b = 8.0580 (16) ÅT = 298 K
c = 29.320 (3) Å0.17 × 0.13 × 0.12 mm
Data collection top
Bruker SMART 1K CCD
diffractometer
3098 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
1427 reflections with I > 2σ(I)
Tmin = 0.986, Tmax = 0.990Rint = 0.137
20247 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0821 restraint
wR(F2) = 0.212H atoms treated by a mixture of independent and constrained refinement
S = 1.01Δρmax = 0.16 e Å3
3098 reflectionsΔρmin = 0.24 e Å3
186 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
N10.7556 (2)0.2199 (4)0.15333 (9)0.0515 (7)
N20.7692 (2)0.1612 (3)0.10929 (8)0.0503 (7)
O10.62721 (19)0.0243 (3)0.16866 (7)0.0543 (7)
O20.9212 (2)0.0558 (3)0.09555 (8)0.0715 (8)
C10.6336 (3)0.3773 (6)0.36707 (12)0.0858 (13)
H1A0.57110.44980.36920.129*
H1B0.69870.43560.37660.129*
H1C0.62240.28270.38650.129*
C20.6473 (3)0.3199 (4)0.31818 (11)0.0562 (9)
C30.7427 (3)0.3503 (5)0.29457 (11)0.0623 (10)
H30.79940.40820.30880.075*
C40.7566 (3)0.2965 (4)0.25005 (11)0.0569 (10)
H40.82260.31690.23500.068*
C50.6726 (3)0.2127 (4)0.22787 (10)0.0465 (8)
C60.5756 (3)0.1825 (5)0.25146 (11)0.0571 (10)
H60.51850.12480.23750.069*
C70.5638 (3)0.2383 (5)0.29572 (12)0.0634 (10)
H70.49750.22030.31080.076*
C80.6825 (3)0.1443 (4)0.18108 (11)0.0458 (8)
C90.8368 (3)0.2430 (4)0.08500 (11)0.0519 (9)
H90.87230.33460.09750.062*
C100.8597 (3)0.1963 (4)0.03814 (11)0.0465 (8)
C110.9435 (3)0.2702 (4)0.01397 (11)0.0574 (10)
H110.98540.35180.02820.069*
C120.9679 (3)0.2282 (4)0.03048 (11)0.0596 (10)
H121.02570.27950.04580.072*
C130.9054 (3)0.1093 (4)0.05162 (11)0.0539 (9)
C140.8201 (3)0.0326 (5)0.02874 (11)0.0638 (10)
H140.77840.04890.04310.077*
C150.7972 (3)0.0773 (4)0.01531 (11)0.0578 (10)
H150.73860.02700.03040.069*
C161.0064 (3)0.1320 (5)0.12119 (12)0.0757 (12)
H16A0.99130.24840.12430.114*
H16B1.01020.08190.15090.114*
H16C1.07550.11720.10570.114*
H10.790 (3)0.316 (3)0.1592 (11)0.080*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
N10.0616 (19)0.0518 (19)0.0410 (15)0.0018 (15)0.0025 (14)0.0037 (14)
N20.0576 (17)0.0523 (18)0.0410 (16)0.0043 (14)0.0019 (14)0.0043 (14)
O10.0599 (14)0.0491 (15)0.0539 (15)0.0044 (12)0.0005 (11)0.0067 (12)
O20.0843 (19)0.080 (2)0.0499 (15)0.0157 (15)0.0173 (13)0.0074 (13)
C10.091 (3)0.106 (4)0.060 (3)0.003 (3)0.008 (2)0.019 (2)
C20.065 (2)0.057 (2)0.047 (2)0.0089 (19)0.0014 (18)0.0015 (17)
C30.067 (3)0.074 (3)0.046 (2)0.008 (2)0.0000 (19)0.0008 (19)
C40.055 (2)0.066 (3)0.049 (2)0.0078 (18)0.0022 (17)0.0012 (19)
C50.051 (2)0.046 (2)0.0420 (19)0.0092 (16)0.0036 (16)0.0000 (16)
C60.047 (2)0.066 (3)0.058 (2)0.0035 (18)0.0007 (17)0.0057 (19)
C70.053 (2)0.077 (3)0.061 (2)0.010 (2)0.0118 (18)0.005 (2)
C80.048 (2)0.042 (2)0.048 (2)0.0080 (18)0.0020 (16)0.0031 (16)
C90.056 (2)0.051 (2)0.049 (2)0.0036 (18)0.0009 (16)0.0015 (17)
C100.0493 (19)0.040 (2)0.050 (2)0.0008 (16)0.0016 (16)0.0028 (16)
C110.061 (2)0.052 (2)0.059 (2)0.0082 (18)0.0001 (19)0.0059 (18)
C120.060 (2)0.060 (3)0.059 (2)0.0115 (19)0.0126 (18)0.0009 (19)
C130.056 (2)0.057 (2)0.049 (2)0.0008 (18)0.0017 (18)0.0012 (18)
C140.065 (2)0.073 (3)0.053 (2)0.018 (2)0.0060 (18)0.0021 (19)
C150.062 (2)0.062 (3)0.050 (2)0.0145 (19)0.0089 (18)0.0023 (18)
C160.091 (3)0.084 (3)0.053 (2)0.002 (2)0.024 (2)0.003 (2)
Geometric parameters (Å, º) top
N1—C81.349 (4)C6—C71.381 (4)
N1—N21.385 (3)C6—H60.9300
N1—H10.899 (10)C7—H70.9300
N2—C91.271 (4)C9—C101.451 (4)
O1—C81.233 (4)C9—H90.9300
O2—C131.372 (4)C10—C111.375 (4)
O2—C161.418 (4)C10—C151.394 (4)
C1—C21.515 (5)C11—C121.379 (4)
C1—H1A0.9600C11—H110.9300
C1—H1B0.9600C12—C131.370 (4)
C1—H1C0.9600C12—H120.9300
C2—C31.371 (5)C13—C141.380 (4)
C2—C71.376 (5)C14—C151.369 (4)
C3—C41.385 (4)C14—H140.9300
C3—H30.9300C15—H150.9300
C4—C51.385 (4)C16—H16A0.9600
C4—H40.9300C16—H16B0.9600
C5—C61.388 (4)C16—H16C0.9600
C5—C81.483 (4)
C8—N1—N2119.1 (3)O1—C8—C5121.4 (3)
C8—N1—H1126 (2)N1—C8—C5116.3 (3)
N2—N1—H1115 (2)N2—C9—C10121.3 (3)
C9—N2—N1114.9 (3)N2—C9—H9119.3
C13—O2—C16117.6 (3)C10—C9—H9119.3
C2—C1—H1A109.5C11—C10—C15116.9 (3)
C2—C1—H1B109.5C11—C10—C9121.2 (3)
H1A—C1—H1B109.5C15—C10—C9121.9 (3)
C2—C1—H1C109.5C10—C11—C12122.7 (3)
H1A—C1—H1C109.5C10—C11—H11118.7
H1B—C1—H1C109.5C12—C11—H11118.7
C3—C2—C7117.8 (3)C13—C12—C11118.7 (3)
C3—C2—C1121.0 (3)C13—C12—H12120.7
C7—C2—C1121.2 (3)C11—C12—H12120.7
C2—C3—C4121.5 (3)C12—C13—O2124.5 (3)
C2—C3—H3119.3C12—C13—C14120.6 (3)
C4—C3—H3119.3O2—C13—C14114.9 (3)
C5—C4—C3120.4 (3)C15—C14—C13119.5 (3)
C5—C4—H4119.8C15—C14—H14120.2
C3—C4—H4119.8C13—C14—H14120.2
C4—C5—C6118.4 (3)C14—C15—C10121.6 (3)
C4—C5—C8123.8 (3)C14—C15—H15119.2
C6—C5—C8117.7 (3)C10—C15—H15119.2
C7—C6—C5119.9 (3)O2—C16—H16A109.5
C7—C6—H6120.0O2—C16—H16B109.5
C5—C6—H6120.0H16A—C16—H16B109.5
C2—C7—C6122.0 (3)O2—C16—H16C109.5
C2—C7—H7119.0H16A—C16—H16C109.5
C6—C7—H7119.0H16B—C16—H16C109.5
O1—C8—N1122.3 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1···O1i0.90 (1)1.97 (1)2.870 (4)176 (3)
Symmetry code: (i) x+3/2, y+1/2, z.

Experimental details

Crystal data
Chemical formulaC16H16N2O2
Mr268.31
Crystal system, space groupOrthorhombic, Pbca
Temperature (K)298
a, b, c (Å)12.138 (2), 8.0580 (16), 29.320 (3)
V3)2867.7 (8)
Z8
Radiation typeMo Kα
µ (mm1)0.08
Crystal size (mm)0.17 × 0.13 × 0.12
Data collection
DiffractometerBruker SMART 1K CCD
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.986, 0.990
No. of measured, independent and
observed [I > 2σ(I)] reflections
20247, 3098, 1427
Rint0.137
(sin θ/λ)max1)0.639
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.082, 0.212, 1.01
No. of reflections3098
No. of parameters186
No. of restraints1
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.16, 0.24

Computer programs: SMART (Bruker, 2007), SAINT (Bruker, 2007), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1···O1i0.899 (10)1.972 (11)2.870 (4)176 (3)
Symmetry code: (i) x+3/2, y+1/2, z.
 

Acknowledgements

The author thanks the Experimental Center of Linyi University for support.

References

First citationAllen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orphen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.  CSD CrossRef Web of Science Google Scholar
First citationBruker (2007). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationFun, H.-K., Horkaew, J. & Chantrapromma, S. (2011). Acta Cryst. E67, o2644–o2645.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationHashemian, S., Ghaeinee, V. & Notash, B. (2011). Acta Cryst. E67, o171.  Web of Science CrossRef IUCr Journals Google Scholar
First citationHorkaew, J., Chantrapromma, S. & Fun, H.-K. (2011). Acta Cryst. E67, o2985.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationPromdet, P., Horkaew, J., Chantrapromma, S. & Fun, H.-K. (2011). Acta Cryst. E67, o3224.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSu, F., Gu, Z.-G. & Lin, J. (2011). Acta Cryst. E67, o1634.  Web of Science CSD CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds