organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

2,3-Di­amino­pyridinium 3-chloro­benzo­ate–3-chloro­benzoic acid (1/1)

aX-ray Crystallography Unit, School of Physics, Universiti Sains Malaysia, 11800 USM, Penang, Malaysia
*Correspondence e-mail: hkfun@usm.my

(Received 23 November 2011; accepted 24 November 2011; online 30 November 2011)

The asymmetric unit of the title compound, C5H8N3+·C7H4ClO2·C7H5ClO2, contains an ion pair and a 3-chloro­benzoic acid mol­ecule. In the cation, the pyridine N atom is protonated. In the crystal, the components are connected via N—H⋯O, O—H⋯O and C—H⋯O hydrogen bonds, thereby forming sheets lying parallel to (100).

Related literature

For further details on 2-amino­pyridine, see: Bis & Zaworotko (2005[Bis, J. A. & Zaworotko, M. A. (2005). Cryst. Growth Des. 5, 1169-1179.]); Bis et al. (2006[Bis, J. A., McLaughlin, O. L., Vishweshwar, P. & Zaworotko, M. J. (2006). Cryst. Growth Des. 6, 2648-2650.]). For general background to inter­molecular inter­actions, see: Desiraju (2001[Desiraju, G. R. (2001). Curr. Sci. 81, 1038-1055.]); Haddad & Willett (2001[Haddad, S. & Willett, R. D. (2001). J. Chem. Crystallogr. 31, 37-41.]); Willett et al. (2003[Willett, R. D., Awwadi, F., Butcher, R., Haddad, S. & Twamley, B. (2003). Cryst. Growth Des. 3, 301-311.]). For bond-length data, see: Allen et al. (1987[Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1-19.]). For the stability of the temperature controller used in the data collection, see: Cosier & Glazer (1986[Cosier, J. & Glazer, A. M. (1986). J. Appl. Cryst. 19, 105-107.]).

[Scheme 1]

Experimental

Crystal data
  • C5H8N3+·C7H4ClO2·C7H5ClO2

  • Mr = 422.26

  • Orthorhombic, P c c n

  • a = 33.3187 (7) Å

  • b = 8.6628 (2) Å

  • c = 13.1811 (2) Å

  • V = 3804.50 (13) Å3

  • Z = 8

  • Mo Kα radiation

  • μ = 0.37 mm−1

  • T = 100 K

  • 0.44 × 0.19 × 0.05 mm

Data collection
  • Bruker SMART APEXII CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2009[Bruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.854, Tmax = 0.980

  • 25995 measured reflections

  • 5596 independent reflections

  • 3717 reflections with I > 2σ(I)

  • Rint = 0.079

Refinement
  • R[F2 > 2σ(F2)] = 0.062

  • wR(F2) = 0.149

  • S = 1.02

  • 5596 reflections

  • 254 parameters

  • H-atom parameters constrained

  • Δρmax = 0.65 e Å−3

  • Δρmin = −0.57 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1⋯O3i 0.86 2.01 2.824 (3) 157
N1—H1⋯O4i 0.86 2.44 3.171 (3) 144
O1—H1A⋯O4 0.82 1.77 2.582 (2) 169
N2—H2A⋯O4i 0.86 2.07 2.886 (3) 158
N2—H2B⋯O3ii 0.86 2.18 3.021 (3) 168
N3—H3A⋯O2 0.86 2.25 3.011 (3) 147
N3—H3B⋯O3ii 0.86 2.22 3.046 (3) 161
C3—H3⋯O2 0.93 2.36 3.141 (3) 142
Symmetry codes: (i) [-x, y+{\script{1\over 2}}, -z+{\script{3\over 2}}]; (ii) -x, -y+1, -z+2.

Data collection: APEX2 (Bruker, 2009[Bruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2009[Bruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Supporting information


Comment top

2-Aminopyridine is one of the most frequently used synthons in supramolecular chemistry based on hydrogen bonds (Bis & Zaworotko, 2005; Bis et al., 2006). In the crystals of such compounds, weak intermolecular interactions involving halide ions, halogen–halide interactions, as well as π···π stacking effects, are found to play an important role in the organization of the structural units (Desiraju, 2001; Haddad & Willett, 2001; Willett et al., 2003). In order to study some interesting hydrogen bonding interactions, the synthesis and structure of the title compound, (I), is presented here.

The asymmetric unit of (I) (Fig 1), contains a protonated 2,3-diamino pyridinium cation, a 3-chlorobenzoate anion and a neutral 3-chlorobenzoic acid. In the 2,3-diaminopyridinium cation, the protonated N1 atom has lead to a slight increase in the C1—N1—C5 angle to 124.0 (2)°. The dihedral angle between the pyridine (N1/C1–C5) and each of the two phenyl (C6–C11/C13–C18) rings are 8.68 (12) and 75.42 (12)°, respectively. The bond lengths (Allen et al., 1987) and angles are normal.

In the crystal of (I), (Fig. 2), the ion-pairs and the neutral acid molecules are connected via N—H···O, O—H···N and C—H···O hydrogen bonds forming two-dimensional networks parallel to (1 0 0)-plane.

Related literature top

For further details on 2-aminopyridine, see: Bis & Zaworotko (2005); Bis et al. (2006). For general background to intermolecular interactions, see: Desiraju (2001); Haddad & Willett (2001); Willett et al. (2003). For bond-length data, see: Allen et al. (1987). For the stability of the temperature controller used in the data collection, see: Cosier & Glazer (1986).

Experimental top

Hot methanol solutions (20 ml) of 2,3-diaminopyridine (27 mg, Aldrich) and 3-chlorobenzoic acid (39 mg, Merck) were mixed and warmed over a heated magnetic stirrer for 5 minutes. The resulting solution was allowed to cool slowly at room temperature. Brown plates of (I) appeared from the mother liquor after a few days.

Refinement top

All hydrogen atoms were positioned geometrically [N–H = 0.86 and C–H = 0.93 Å] and were refined using a riding model, with Uiso(H) = 1.2 or 1.5 Ueq(C). A rotating group model was applied to the methyl groups.

Structure description top

2-Aminopyridine is one of the most frequently used synthons in supramolecular chemistry based on hydrogen bonds (Bis & Zaworotko, 2005; Bis et al., 2006). In the crystals of such compounds, weak intermolecular interactions involving halide ions, halogen–halide interactions, as well as π···π stacking effects, are found to play an important role in the organization of the structural units (Desiraju, 2001; Haddad & Willett, 2001; Willett et al., 2003). In order to study some interesting hydrogen bonding interactions, the synthesis and structure of the title compound, (I), is presented here.

The asymmetric unit of (I) (Fig 1), contains a protonated 2,3-diamino pyridinium cation, a 3-chlorobenzoate anion and a neutral 3-chlorobenzoic acid. In the 2,3-diaminopyridinium cation, the protonated N1 atom has lead to a slight increase in the C1—N1—C5 angle to 124.0 (2)°. The dihedral angle between the pyridine (N1/C1–C5) and each of the two phenyl (C6–C11/C13–C18) rings are 8.68 (12) and 75.42 (12)°, respectively. The bond lengths (Allen et al., 1987) and angles are normal.

In the crystal of (I), (Fig. 2), the ion-pairs and the neutral acid molecules are connected via N—H···O, O—H···N and C—H···O hydrogen bonds forming two-dimensional networks parallel to (1 0 0)-plane.

For further details on 2-aminopyridine, see: Bis & Zaworotko (2005); Bis et al. (2006). For general background to intermolecular interactions, see: Desiraju (2001); Haddad & Willett (2001); Willett et al. (2003). For bond-length data, see: Allen et al. (1987). For the stability of the temperature controller used in the data collection, see: Cosier & Glazer (1986).

Computing details top

Data collection: APEX2 (Bruker, 2009); cell refinement: SAINT (Bruker, 2009); data reduction: SAINT (Bruker, 2009); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. The asymmetric unit of the title compound, showing 50% probability displacement ellipsoids.
[Figure 2] Fig. 2. The crystal packing of title compound (I).
2,3-Diaminopyridinium 3-chlorobenzoate–3-chlorobenzoic acid (1/1) top
Crystal data top
C5H8N3+·C7H4ClO2·C7H5ClO2F(000) = 1744
Mr = 422.26Dx = 1.474 Mg m3
Orthorhombic, PccnMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ab 2acCell parameters from 3141 reflections
a = 33.3187 (7) Åθ = 2.9–25.1°
b = 8.6628 (2) ŵ = 0.37 mm1
c = 13.1811 (2) ÅT = 100 K
V = 3804.50 (13) Å3Plate, brown
Z = 80.44 × 0.19 × 0.05 mm
Data collection top
Bruker SMART APEXII CCD
diffractometer
5596 independent reflections
Radiation source: fine-focus sealed tube3717 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.079
φ and ω scansθmax = 30.1°, θmin = 2.4°
Absorption correction: multi-scan
(SADABS; Bruker, 2009)
h = 4646
Tmin = 0.854, Tmax = 0.980k = 812
25995 measured reflectionsl = 1418
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.062Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.149H-atom parameters constrained
S = 1.02 w = 1/[σ2(Fo2) + (0.0532P)2 + 4.6426P]
where P = (Fo2 + 2Fc2)/3
5596 reflections(Δ/σ)max < 0.001
254 parametersΔρmax = 0.65 e Å3
0 restraintsΔρmin = 0.57 e Å3
Crystal data top
C5H8N3+·C7H4ClO2·C7H5ClO2V = 3804.50 (13) Å3
Mr = 422.26Z = 8
Orthorhombic, PccnMo Kα radiation
a = 33.3187 (7) ŵ = 0.37 mm1
b = 8.6628 (2) ÅT = 100 K
c = 13.1811 (2) Å0.44 × 0.19 × 0.05 mm
Data collection top
Bruker SMART APEXII CCD
diffractometer
5596 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2009)
3717 reflections with I > 2σ(I)
Tmin = 0.854, Tmax = 0.980Rint = 0.079
25995 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0620 restraints
wR(F2) = 0.149H-atom parameters constrained
S = 1.02Δρmax = 0.65 e Å3
5596 reflectionsΔρmin = 0.57 e Å3
254 parameters
Special details top

Experimental. The crystal was placed in the cold stream of an Oxford Cryosystems Cobra open-flow nitrogen cryostat (Cosier & Glazer, 1986) operating at 100.0 (1) K.

Geometry. All s.u.'s (except the s.u. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell s.u.'s are taken into account individually in the estimation of s.u.'s in distances, angles and torsion angles; correlations between s.u.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell s.u.'s is used for estimating s.u.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
N10.01367 (6)0.6953 (2)0.51452 (16)0.0206 (5)
H10.00500.75110.48850.025*
N20.01884 (6)0.7200 (3)0.66837 (17)0.0234 (5)
H2A0.03730.77290.63890.028*
H2B0.02030.70200.73240.028*
N30.04450 (6)0.5583 (2)0.76248 (15)0.0194 (4)
H3A0.06410.50960.79050.023*
H3B0.02550.59590.79930.023*
C10.01206 (7)0.6658 (3)0.61463 (19)0.0184 (5)
C20.04354 (7)0.5763 (3)0.65881 (18)0.0159 (5)
C30.07273 (7)0.5196 (3)0.59485 (18)0.0191 (5)
H30.09310.45810.62140.023*
C40.07254 (8)0.5523 (3)0.49033 (19)0.0207 (5)
H40.09240.51260.44820.025*
C50.04304 (8)0.6425 (3)0.4521 (2)0.0222 (5)
H50.04290.66820.38360.027*
Cl10.27106 (2)0.04829 (9)0.85137 (6)0.03177 (18)
O10.13896 (5)0.2618 (2)0.91982 (13)0.0243 (4)
H1A0.11890.30540.94140.036*
O20.11287 (7)0.3315 (3)0.77151 (16)0.0452 (6)
C60.20367 (7)0.1198 (3)0.8287 (2)0.0207 (5)
H60.20230.12030.89910.025*
C70.23479 (7)0.0453 (3)0.7791 (2)0.0229 (5)
C80.23713 (8)0.0418 (3)0.6741 (2)0.0265 (6)
H80.25800.01040.64210.032*
C90.20807 (8)0.1168 (3)0.6175 (2)0.0281 (6)
H90.20950.11560.54700.034*
C100.17703 (8)0.1931 (3)0.6651 (2)0.0246 (6)
H100.15770.24410.62680.030*
C110.17461 (7)0.1938 (3)0.77091 (19)0.0194 (5)
C120.13958 (8)0.2704 (3)0.8195 (2)0.0229 (6)
Cl20.18144 (2)0.80228 (9)1.00830 (5)0.03097 (18)
O30.03184 (5)0.3859 (2)1.11579 (14)0.0232 (4)
O40.07032 (5)0.3671 (2)0.97878 (14)0.0231 (4)
C130.12004 (7)0.6069 (3)1.04635 (19)0.0177 (5)
H130.12030.58600.97710.021*
C140.14733 (7)0.7093 (3)1.0881 (2)0.0206 (5)
C150.14826 (8)0.7410 (3)1.1909 (2)0.0234 (6)
H150.16710.80931.21750.028*
C160.12051 (8)0.6688 (3)1.2534 (2)0.0249 (6)
H160.12080.68841.32280.030*
C170.09240 (8)0.5677 (3)1.21324 (19)0.0208 (5)
H170.07360.52141.25570.025*
C180.09208 (7)0.5352 (3)1.11004 (18)0.0157 (5)
C190.06258 (7)0.4214 (3)1.06588 (19)0.0182 (5)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
N10.0220 (10)0.0193 (11)0.0205 (11)0.0026 (9)0.0071 (8)0.0014 (9)
N20.0206 (11)0.0263 (13)0.0232 (12)0.0072 (9)0.0027 (9)0.0019 (9)
N30.0178 (10)0.0243 (11)0.0161 (10)0.0047 (9)0.0005 (8)0.0021 (8)
C10.0200 (12)0.0145 (12)0.0209 (13)0.0017 (9)0.0026 (9)0.0029 (9)
C20.0163 (11)0.0129 (11)0.0185 (12)0.0031 (9)0.0010 (9)0.0008 (9)
C30.0196 (12)0.0198 (13)0.0178 (12)0.0008 (10)0.0011 (9)0.0032 (9)
C40.0214 (12)0.0213 (13)0.0194 (12)0.0025 (10)0.0021 (9)0.0025 (10)
C50.0272 (13)0.0232 (14)0.0162 (12)0.0037 (11)0.0014 (10)0.0015 (10)
Cl10.0250 (3)0.0342 (4)0.0360 (4)0.0090 (3)0.0026 (3)0.0002 (3)
O10.0217 (9)0.0332 (11)0.0181 (9)0.0076 (8)0.0005 (7)0.0003 (8)
O20.0437 (13)0.0710 (17)0.0209 (11)0.0359 (12)0.0007 (9)0.0056 (11)
C60.0183 (11)0.0224 (13)0.0213 (13)0.0016 (10)0.0005 (9)0.0004 (10)
C70.0176 (12)0.0217 (13)0.0293 (14)0.0005 (10)0.0023 (10)0.0007 (11)
C80.0216 (13)0.0288 (15)0.0292 (15)0.0001 (11)0.0046 (10)0.0069 (12)
C90.0288 (14)0.0369 (17)0.0185 (13)0.0045 (13)0.0034 (11)0.0033 (12)
C100.0229 (13)0.0285 (14)0.0224 (13)0.0005 (11)0.0017 (10)0.0006 (11)
C110.0181 (12)0.0193 (12)0.0209 (12)0.0003 (10)0.0008 (9)0.0019 (10)
C120.0241 (13)0.0247 (14)0.0199 (13)0.0053 (11)0.0000 (10)0.0015 (10)
Cl20.0307 (3)0.0345 (4)0.0277 (4)0.0138 (3)0.0060 (3)0.0006 (3)
O30.0162 (8)0.0277 (10)0.0256 (10)0.0026 (8)0.0037 (7)0.0052 (8)
O40.0180 (9)0.0303 (11)0.0209 (9)0.0013 (8)0.0002 (7)0.0093 (8)
C130.0187 (11)0.0197 (13)0.0146 (11)0.0023 (10)0.0021 (9)0.0020 (9)
C140.0154 (11)0.0230 (13)0.0234 (13)0.0001 (10)0.0016 (9)0.0018 (10)
C150.0214 (12)0.0259 (14)0.0229 (13)0.0039 (11)0.0042 (10)0.0062 (11)
C160.0258 (13)0.0319 (15)0.0171 (12)0.0029 (12)0.0020 (10)0.0059 (10)
C170.0198 (12)0.0266 (14)0.0161 (12)0.0006 (10)0.0023 (9)0.0024 (10)
C180.0146 (11)0.0165 (12)0.0158 (11)0.0031 (9)0.0019 (8)0.0015 (9)
C190.0155 (11)0.0202 (13)0.0188 (12)0.0029 (10)0.0019 (9)0.0017 (9)
Geometric parameters (Å, º) top
N1—C11.345 (3)C7—C81.387 (4)
N1—C51.358 (3)C8—C91.384 (4)
N1—H10.8600C8—H80.9300
N2—C11.335 (3)C9—C101.379 (4)
N2—H2A0.8600C9—H90.9300
N2—H2B0.8600C10—C111.397 (4)
N3—C21.376 (3)C10—H100.9300
N3—H3A0.8600C11—C121.488 (3)
N3—H3B0.8600Cl2—C141.745 (3)
C1—C21.428 (3)O3—C191.256 (3)
C2—C31.378 (3)O4—C191.267 (3)
C3—C41.407 (3)C13—C141.384 (3)
C3—H30.9300C13—C181.399 (3)
C4—C51.353 (4)C13—H130.9300
C4—H40.9300C14—C151.383 (4)
C5—H50.9300C15—C161.387 (4)
Cl1—C71.739 (3)C15—H150.9300
O1—C121.324 (3)C16—C171.388 (4)
O1—H1A0.8200C16—H160.9300
O2—C121.214 (3)C17—C181.389 (3)
C6—C71.385 (4)C17—H170.9300
C6—C111.388 (3)C18—C191.509 (3)
C6—H60.9300
C1—N1—C5124.0 (2)C10—C9—C8120.3 (3)
C1—N1—H1118.0C10—C9—H9119.9
C5—N1—H1118.0C8—C9—H9119.9
C1—N2—H2A120.0C9—C10—C11120.0 (3)
C1—N2—H2B120.0C9—C10—H10120.0
H2A—N2—H2B120.0C11—C10—H10120.0
C2—N3—H3A120.0C6—C11—C10120.3 (2)
C2—N3—H3B120.0C6—C11—C12121.1 (2)
H3A—N3—H3B120.0C10—C11—C12118.5 (2)
N2—C1—N1119.0 (2)O2—C12—O1122.3 (2)
N2—C1—C2122.7 (2)O2—C12—C11123.0 (2)
N1—C1—C2118.3 (2)O1—C12—C11114.6 (2)
N3—C2—C3123.4 (2)C14—C13—C18118.9 (2)
N3—C2—C1118.9 (2)C14—C13—H13120.6
C3—C2—C1117.5 (2)C18—C13—H13120.6
C2—C3—C4121.6 (2)C15—C14—C13122.1 (2)
C2—C3—H3119.2C15—C14—Cl2118.9 (2)
C4—C3—H3119.2C13—C14—Cl2119.0 (2)
C5—C4—C3119.0 (2)C14—C15—C16118.5 (2)
C5—C4—H4120.5C14—C15—H15120.7
C3—C4—H4120.5C16—C15—H15120.7
C4—C5—N1119.5 (2)C15—C16—C17120.5 (2)
C4—C5—H5120.3C15—C16—H16119.7
N1—C5—H5120.3C17—C16—H16119.7
C12—O1—H1A109.5C16—C17—C18120.4 (2)
C7—C6—C11118.6 (2)C16—C17—H17119.8
C7—C6—H6120.7C18—C17—H17119.8
C11—C6—H6120.7C17—C18—C13119.5 (2)
C6—C7—C8121.5 (2)C17—C18—C19121.0 (2)
C6—C7—Cl1118.7 (2)C13—C18—C19119.5 (2)
C8—C7—Cl1119.8 (2)O3—C19—O4123.3 (2)
C9—C8—C7119.2 (2)O3—C19—C18119.3 (2)
C9—C8—H8120.4O4—C19—C18117.4 (2)
C7—C8—H8120.4
C5—N1—C1—N2178.1 (2)C9—C10—C11—C12176.9 (3)
C5—N1—C1—C21.4 (4)C6—C11—C12—O2177.4 (3)
N2—C1—C2—N37.0 (4)C10—C11—C12—O20.5 (4)
N1—C1—C2—N3173.5 (2)C6—C11—C12—O10.2 (4)
N2—C1—C2—C3176.6 (2)C10—C11—C12—O1178.0 (2)
N1—C1—C2—C33.0 (3)C18—C13—C14—C151.1 (4)
N3—C2—C3—C4174.2 (2)C18—C13—C14—Cl2178.48 (19)
C1—C2—C3—C42.1 (4)C13—C14—C15—C160.8 (4)
C2—C3—C4—C50.4 (4)Cl2—C14—C15—C16178.8 (2)
C3—C4—C5—N12.0 (4)C14—C15—C16—C170.3 (4)
C1—N1—C5—C41.1 (4)C15—C16—C17—C181.1 (4)
C11—C6—C7—C80.8 (4)C16—C17—C18—C130.8 (4)
C11—C6—C7—Cl1179.7 (2)C16—C17—C18—C19177.9 (2)
C6—C7—C8—C91.1 (4)C14—C13—C18—C170.3 (4)
Cl1—C7—C8—C9180.0 (2)C14—C13—C18—C19179.1 (2)
C7—C8—C9—C100.5 (4)C17—C18—C19—O318.4 (4)
C8—C9—C10—C110.6 (4)C13—C18—C19—O3162.8 (2)
C7—C6—C11—C100.3 (4)C17—C18—C19—O4162.0 (2)
C7—C6—C11—C12177.5 (2)C13—C18—C19—O416.8 (3)
C9—C10—C11—C61.0 (4)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1···O3i0.862.012.824 (3)157
N1—H1···O4i0.862.443.171 (3)144
O1—H1A···O40.821.772.582 (2)169
N2—H2A···O4i0.862.072.886 (3)158
N2—H2B···O3ii0.862.183.021 (3)168
N3—H3A···O20.862.253.011 (3)147
N3—H3B···O3ii0.862.223.046 (3)161
C3—H3···O20.932.363.141 (3)142
Symmetry codes: (i) x, y+1/2, z+3/2; (ii) x, y+1, z+2.

Experimental details

Crystal data
Chemical formulaC5H8N3+·C7H4ClO2·C7H5ClO2
Mr422.26
Crystal system, space groupOrthorhombic, Pccn
Temperature (K)100
a, b, c (Å)33.3187 (7), 8.6628 (2), 13.1811 (2)
V3)3804.50 (13)
Z8
Radiation typeMo Kα
µ (mm1)0.37
Crystal size (mm)0.44 × 0.19 × 0.05
Data collection
DiffractometerBruker SMART APEXII CCD
Absorption correctionMulti-scan
(SADABS; Bruker, 2009)
Tmin, Tmax0.854, 0.980
No. of measured, independent and
observed [I > 2σ(I)] reflections
25995, 5596, 3717
Rint0.079
(sin θ/λ)max1)0.706
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.062, 0.149, 1.02
No. of reflections5596
No. of parameters254
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.65, 0.57

Computer programs: APEX2 (Bruker, 2009), SAINT (Bruker, 2009), SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1···O3i0.862.012.824 (3)157
N1—H1···O4i0.862.443.171 (3)144
O1—H1A···O40.821.772.582 (2)169
N2—H2A···O4i0.862.072.886 (3)158
N2—H2B···O3ii0.862.183.021 (3)168
N3—H3A···O20.862.253.011 (3)147
N3—H3B···O3ii0.862.223.046 (3)161
C3—H3···O20.932.363.141 (3)142
Symmetry codes: (i) x, y+1/2, z+3/2; (ii) x, y+1, z+2.
 

Footnotes

Thomson Reuters ResearcherID: C-7576-2009.

§Thomson Reuters ResearcherID: A-3561-2009.

Acknowledgements

MH, JHG and HKF thank the Malaysian Government and Universiti Sains Malaysia for the Research University Grant No. 1001/PFIZIK/811160. MH also thanks Universiti Sains Malaysia for a post-doctoral research fellowship.

References

First citationAllen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.  CSD CrossRef Web of Science Google Scholar
First citationBis, J. A., McLaughlin, O. L., Vishweshwar, P. & Zaworotko, M. J. (2006). Cryst. Growth Des. 6, 2648–2650.  Web of Science CSD CrossRef CAS Google Scholar
First citationBis, J. A. & Zaworotko, M. A. (2005). Cryst. Growth Des. 5, 1169–1179.  Web of Science CSD CrossRef CAS Google Scholar
First citationBruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationCosier, J. & Glazer, A. M. (1986). J. Appl. Cryst. 19, 105–107.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationDesiraju, G. R. (2001). Curr. Sci. 81, 1038–1055.  CAS Google Scholar
First citationHaddad, S. & Willett, R. D. (2001). J. Chem. Crystallogr. 31, 37–41.  Web of Science CSD CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWillett, R. D., Awwadi, F., Butcher, R., Haddad, S. & Twamley, B. (2003). Cryst. Growth Des. 3, 301–311.  Web of Science CSD CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds