metal-organic compounds
Bromidotetrakis(1H-2-ethyl-5-methylimidazole-κN3)copper(II) bromide
aDepartment of Inorganic Chemistry, Faculty of Chemistry, Gdańsk University of Technology, 11/12 G. Narutowicz St., 80233 PL Gdańsk, Poland
*Correspondence e-mail: anndoleg@pg.gda.pl
The CuII ion in the title compound, [CuBr(C6H10N2)4]Br, is coordinated in a square-based-pyramidal geometry by the N atoms of four imidazole ligands and a bromide anion in the apical site. Both the CuII and Br− atoms lie on a crystallographic fourfold axis. In the crystal, the [CuBr(C6H10N2)4]+ complex cations are linked to the uncoordinated Br− anions (site symmetry ) by N—H⋯Br hydrogen bonds, generating a three-dimensional network. The ethyl group of the imidazole ligand was modelled as disordered over two orientations with occupancies of 0.620 (8) and 0.380 (8).
Related literature
For more copper(II) complexes with bromido and imidazole ligands, see: Godlewska et al. (2011); Hossaini Sadr et al. (2004); Li et al. (2007); Liu et al. (2007); Näther et al. (2002a,b). For the alignment of dipoles in crystalline materials, see: Anthony & Radhakrishnan (2001).
Experimental
Crystal data
|
Data collection
Refinement
|
|
Data collection: CrysAlis PRO (Oxford Diffraction, 2006); cell CrysAlis PRO; data reduction: CrysAlis RED (Oxford Diffraction, 2006); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997); software used to prepare material for publication: WinGX (Farrugia, 1999).
Supporting information
https://doi.org/10.1107/S1600536811051117/hb6533sup1.cif
contains datablocks I, global. DOI:Structure factors: contains datablock I. DOI: https://doi.org/10.1107/S1600536811051117/hb6533Isup2.hkl
The title compound was prepared by adding the solution of 0.223 g (1 mmol) copper(II) bromide in 4 ml of methanol to the solution of 0.496 g (4.5 mmol) 2-ethyl-4(5)-methylimidazole in 2 ml of methanol. After a few days blue prisms were obtained by slow evaporation of solvent from the reaction mixture.
All C–H hydrogen atoms were refined as riding on carbon atoms with methyl C–H = 0.98 Å, methine C–H = 1 Å, aromatic C–H = 0.95 Å and Uiso(H)=1.2 Ueq(C)for aromatic and methine CH and 1.5Ueq(C) for methyl groups. Ethyl group of imidazole was refined as disordered between two positions with occupancies 0.620 (8)/0.380 (8).
The composition of (I) is very similar to the bromidotetrakis(1H2-isopropylimidazole-κN3)copper(II) bromide described previously (Godlewska et al., 2011). However these compounds display substantially different crystal packing. Four NH···Br hydrogen bonds surrounding Br2 in bromidotetrakis(1H2-isopropylimidazole-κN3)copper(II) bromide are almost planar whereas the corresponding hydrogen bonds in (I) form distorted tetrahedron around Br2 and therefore build a network extending in all three directions in crystal. Complex cations [Cu(C6H10N2)4Br]+ are dipoles aligned perfectly parallel to c axis in a head-to-tail manner (see Fig. 2). The disorder of alkyl substituents is typical of room temperature determinations (e.g. Näther et al. (2002a), Acta Cryst. E58, m63-m64).
The structure of (I) is shown in Fig. 1 and packing diagram of complex dipoles is presented in Fig.2.
For more copper(II) complexes with bromido and imidazole ligands, see: Godlewska et al. (2011); Hossaini Sadr et al. (2004); Li et al. (2007); Liu et al. (2007); Näther et al. (2002a,b). For the alignment of dipoles in crystalline materials, see: Anthony & Radhakrishnan (2001).
Data collection: CrysAlis PRO (Oxford Diffraction, 2006); cell
CrysAlis PRO (Oxford Diffraction, 2006); data reduction: CrysAlis RED (Oxford Diffraction, 2006); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997); software used to prepare material for publication: WinGX (Farrugia, 1999).Fig. 1. A view of (I), showing displacement ellipsoids drawn at the 30% probability level. Labels are given only for the independent part. | |
Fig. 2. The packing of dipoles in crystals of (I). |
[CuBr(C6H10N2)4]Br | Dx = 1.475 Mg m−3 |
Mr = 664 | Mo Kα radiation, λ = 0.71073 Å |
Tetragonal, P4/n | Cell parameters from 2155 reflections |
Hall symbol: -P 4a | θ = 2.7–28.8° |
a = 14.0961 (4) Å | µ = 3.43 mm−1 |
c = 7.5236 (4) Å | T = 294 K |
V = 1494.94 (10) Å3 | Prism, blue |
Z = 2 | 0.54 × 0.45 × 0.33 mm |
F(000) = 678 |
Oxford Diffraction Xcalibur Sapphire2 diffractometer | 1395 independent reflections |
Graphite monochromator | 898 reflections with I > 2s(I) |
Detector resolution: 8.1883 pixels mm-1 | Rint = 0.025 |
ω scans | θmax = 25.5°, θmin = 2.7° |
Absorption correction: analytical [CrysAlis PRO (Oxford Diffraction, 2006), based on expressions derived by Clark & Reid (1995)] | h = −17→10 |
Tmin = 0.248, Tmax = 0.44 | k = −17→15 |
5099 measured reflections | l = −9→7 |
Refinement on F2 | Primary atom site location: structure-invariant direct methods |
Least-squares matrix: full | Secondary atom site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.027 | Hydrogen site location: inferred from neighbouring sites |
wR(F2) = 0.076 | H-atom parameters constrained |
S = 0.95 | w = 1/[σ2(Fo2) + (0.0447P)2] where P = (Fo2 + 2Fc2)/3 |
1395 reflections | (Δ/σ)max = 0.004 |
103 parameters | Δρmax = 0.63 e Å−3 |
0 restraints | Δρmin = −0.39 e Å−3 |
[CuBr(C6H10N2)4]Br | Z = 2 |
Mr = 664 | Mo Kα radiation |
Tetragonal, P4/n | µ = 3.43 mm−1 |
a = 14.0961 (4) Å | T = 294 K |
c = 7.5236 (4) Å | 0.54 × 0.45 × 0.33 mm |
V = 1494.94 (10) Å3 |
Oxford Diffraction Xcalibur Sapphire2 diffractometer | 1395 independent reflections |
Absorption correction: analytical [CrysAlis PRO (Oxford Diffraction, 2006), based on expressions derived by Clark & Reid (1995)] | 898 reflections with I > 2s(I) |
Tmin = 0.248, Tmax = 0.44 | Rint = 0.025 |
5099 measured reflections |
R[F2 > 2σ(F2)] = 0.027 | 0 restraints |
wR(F2) = 0.076 | H-atom parameters constrained |
S = 0.95 | Δρmax = 0.63 e Å−3 |
1395 reflections | Δρmin = −0.39 e Å−3 |
103 parameters |
Experimental. CrysAlisPro (Oxford Diffraction Ltd., 2006) Analytical numeric absorption correction using a multifaceted crystal model based on expressions derived by R.C. Clark & J.S. (Clark, R. C. & Reid, J. S. (1995). Acta Cryst. A51, 887-897) |
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. |
x | y | z | Uiso*/Ueq | Occ. (<1) | |
Br1 | 0.25 | 0.25 | 0.31140 (7) | 0.0495 (2) | |
Br2 | 0.75 | 0.25 | 0 | 0.05286 (19) | |
Cu1 | 0.25 | 0.25 | 0.67466 (8) | 0.0366 (2) | |
N1 | 0.22250 (14) | 0.39093 (14) | 0.6939 (3) | 0.0397 (5) | |
N2 | 0.21196 (15) | 0.54003 (15) | 0.7653 (3) | 0.0486 (6) | |
H2 | 0.2195 | 0.5922 | 0.823 | 0.058* | |
C1 | 0.16846 (19) | 0.4385 (2) | 0.5685 (4) | 0.0481 (7) | |
H1 | 0.141 | 0.4104 | 0.4693 | 0.058* | |
C2 | 0.16140 (19) | 0.5299 (2) | 0.6100 (4) | 0.0520 (8) | |
C3 | 0.24764 (19) | 0.4552 (2) | 0.8122 (4) | 0.0446 (7) | |
C4 | 0.1150 (3) | 0.6113 (2) | 0.5178 (5) | 0.0900 (14) | |
H4A | 0.0826 | 0.5888 | 0.4138 | 0.135* | |
H4B | 0.1623 | 0.6568 | 0.4836 | 0.135* | |
H4C | 0.0702 | 0.6408 | 0.5966 | 0.135* | |
C5 | 0.2915 (9) | 0.4385 (17) | 0.980 (3) | 0.059 (3) | 0.620 (8) |
H5A | 0.2972 | 0.3709 | 1.001 | 0.071* | 0.620 (8) |
H5B | 0.2533 | 0.4658 | 1.0744 | 0.071* | 0.620 (8) |
C6 | 0.3952 (5) | 0.4870 (5) | 0.9776 (9) | 0.087 (3) | 0.620 (8) |
H6A | 0.3886 | 0.5546 | 0.9672 | 0.131* | 0.620 (8) |
H6B | 0.4307 | 0.4632 | 0.8783 | 0.131* | 0.620 (8) |
H6C | 0.4279 | 0.4721 | 1.0859 | 0.131* | 0.620 (8) |
C5A | 0.3233 (13) | 0.438 (2) | 0.966 (4) | 0.043 (5) | 0.380 (8) |
H5A1 | 0.3232 | 0.3711 | 0.9977 | 0.052* | 0.380 (8) |
H5A2 | 0.386 | 0.4535 | 0.9218 | 0.052* | 0.380 (8) |
C6A | 0.3036 (11) | 0.4935 (7) | 1.1209 (14) | 0.123 (6) | 0.380 (8) |
H6A1 | 0.3115 | 0.5595 | 1.0934 | 0.184* | 0.380 (8) |
H6A2 | 0.3466 | 0.476 | 1.2143 | 0.184* | 0.380 (8) |
H6A3 | 0.2395 | 0.4822 | 1.1588 | 0.184* | 0.380 (8) |
U11 | U22 | U33 | U12 | U13 | U23 | |
Br1 | 0.0587 (3) | 0.0587 (3) | 0.0311 (3) | 0 | 0 | 0 |
Br2 | 0.0394 (2) | 0.0394 (2) | 0.0798 (5) | 0 | 0 | 0 |
Cu1 | 0.0350 (2) | 0.0350 (2) | 0.0397 (4) | 0 | 0 | 0 |
N1 | 0.0396 (13) | 0.0367 (12) | 0.0428 (14) | 0.0018 (10) | −0.0011 (10) | −0.0029 (10) |
N2 | 0.0519 (15) | 0.0364 (13) | 0.0576 (17) | −0.0021 (11) | 0.0071 (13) | −0.0080 (12) |
C1 | 0.0411 (17) | 0.0519 (19) | 0.0514 (18) | 0.0037 (14) | −0.0084 (14) | −0.0031 (15) |
C2 | 0.0455 (18) | 0.0466 (19) | 0.064 (2) | 0.0092 (14) | −0.0011 (16) | 0.0027 (16) |
C3 | 0.0485 (18) | 0.0436 (17) | 0.0418 (17) | −0.0049 (13) | 0.0058 (14) | −0.0022 (14) |
C4 | 0.086 (3) | 0.058 (2) | 0.127 (4) | 0.0231 (19) | −0.030 (2) | 0.007 (2) |
C5 | 0.060 (9) | 0.070 (5) | 0.048 (6) | −0.003 (8) | −0.003 (7) | −0.007 (4) |
C6 | 0.104 (6) | 0.079 (4) | 0.079 (6) | 0.010 (4) | −0.047 (4) | −0.021 (3) |
C5A | 0.038 (11) | 0.060 (8) | 0.033 (8) | −0.024 (10) | −0.007 (8) | 0.007 (6) |
C6A | 0.252 (18) | 0.065 (7) | 0.051 (7) | 0.045 (8) | −0.051 (9) | −0.023 (6) |
Cu1—Br1 | 2.7330 (8) | C4—H4A | 0.96 |
Cu1—N1i | 2.029 (2) | C4—H4B | 0.96 |
Cu1—N1 | 2.029 (2) | C4—H4C | 0.96 |
Cu1—N1ii | 2.029 (2) | C5—C6 | 1.613 (14) |
Cu1—N1iii | 2.029 (2) | C5—H5A | 0.97 |
N1—C3 | 1.319 (3) | C5—H5B | 0.97 |
N1—C1 | 1.385 (3) | C6—H6A | 0.96 |
N2—C3 | 1.344 (3) | C6—H6B | 0.96 |
N2—C2 | 1.376 (4) | C6—H6C | 0.96 |
N2—H2 | 0.86 | C5A—C6A | 1.43 (3) |
C1—C2 | 1.330 (4) | C5A—H5A1 | 0.97 |
C1—H1 | 0.93 | C5A—H5A2 | 0.97 |
C2—C4 | 1.492 (4) | C6A—H6A1 | 0.96 |
C3—C5 | 1.42 (2) | C6A—H6A2 | 0.96 |
C3—C5A | 1.59 (3) | C6A—H6A3 | 0.96 |
N1i—Cu1—N1 | 89.708 (9) | N2—C3—C5A | 125.4 (12) |
N1i—Cu1—N1ii | 89.707 (9) | C2—C4—H4A | 109.5 |
N1—Cu1—N1ii | 171.81 (12) | C2—C4—H4B | 109.5 |
N1i—Cu1—N1iii | 171.81 (12) | H4A—C4—H4B | 109.5 |
N1—Cu1—N1iii | 89.707 (9) | C2—C4—H4C | 109.5 |
N1ii—Cu1—N1iii | 89.708 (9) | H4A—C4—H4C | 109.5 |
N1i—Cu1—Br1 | 94.10 (6) | H4B—C4—H4C | 109.5 |
N1—Cu1—Br1 | 94.10 (6) | C3—C5—C6 | 108.3 (12) |
N1ii—Cu1—Br1 | 94.10 (6) | C3—C5—H5A | 110 |
N1iii—Cu1—Br1 | 94.10 (6) | C6—C5—H5A | 110 |
C3—N1—C1 | 106.0 (2) | C3—C5—H5B | 110 |
C3—N1—Cu1 | 132.03 (19) | C6—C5—H5B | 110 |
C1—N1—Cu1 | 122.00 (18) | H5A—C5—H5B | 108.4 |
C3—N2—C2 | 108.9 (2) | C6A—C5A—C3 | 112.1 (18) |
C3—N2—H2 | 125.5 | C6A—C5A—H5A1 | 109.2 |
C2—N2—H2 | 125.5 | C3—C5A—H5A1 | 109.2 |
C2—C1—N1 | 110.5 (3) | C6A—C5A—H5A2 | 109.2 |
C2—C1—H1 | 124.7 | C3—C5A—H5A2 | 109.2 |
N1—C1—H1 | 124.7 | H5A1—C5A—H5A2 | 107.9 |
C1—C2—N2 | 105.1 (2) | C5A—C6A—H6A1 | 109.5 |
C1—C2—C4 | 132.0 (3) | C5A—C6A—H6A2 | 109.5 |
N2—C2—C4 | 122.8 (3) | H6A1—C6A—H6A2 | 109.5 |
N1—C3—N2 | 109.5 (2) | C5A—C6A—H6A3 | 109.5 |
N1—C3—C5 | 127.0 (10) | H6A1—C6A—H6A3 | 109.5 |
N2—C3—C5 | 122.8 (10) | H6A2—C6A—H6A3 | 109.5 |
N1—C3—C5A | 124.3 (12) |
Symmetry codes: (i) −y+1/2, x, z; (ii) −x+1/2, −y+1/2, z; (iii) y, −x+1/2, z. |
D—H···A | D—H | H···A | D···A | D—H···A |
N2—H2···Br2iv | 0.86 | 2.63 | 3.488 (2) | 178 |
Symmetry code: (iv) −x+1, −y+1, −z+1. |
Experimental details
Crystal data | |
Chemical formula | [CuBr(C6H10N2)4]Br |
Mr | 664 |
Crystal system, space group | Tetragonal, P4/n |
Temperature (K) | 294 |
a, c (Å) | 14.0961 (4), 7.5236 (4) |
V (Å3) | 1494.94 (10) |
Z | 2 |
Radiation type | Mo Kα |
µ (mm−1) | 3.43 |
Crystal size (mm) | 0.54 × 0.45 × 0.33 |
Data collection | |
Diffractometer | Oxford Diffraction Xcalibur Sapphire2 |
Absorption correction | Analytical [CrysAlis PRO (Oxford Diffraction, 2006), based on expressions derived by Clark & Reid (1995)] |
Tmin, Tmax | 0.248, 0.44 |
No. of measured, independent and observed [I > 2s(I)] reflections | 5099, 1395, 898 |
Rint | 0.025 |
(sin θ/λ)max (Å−1) | 0.606 |
Refinement | |
R[F2 > 2σ(F2)], wR(F2), S | 0.027, 0.076, 0.95 |
No. of reflections | 1395 |
No. of parameters | 103 |
H-atom treatment | H-atom parameters constrained |
Δρmax, Δρmin (e Å−3) | 0.63, −0.39 |
Computer programs: CrysAlis PRO (Oxford Diffraction, 2006), CrysAlis RED (Oxford Diffraction, 2006), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 (Farrugia, 1997), WinGX (Farrugia, 1999).
Cu1—Br1 | 2.7330 (8) | Cu1—N1i | 2.029 (2) |
N1i—Cu1—N1 | 89.708 (9) | N1—Cu1—N1ii | 171.81 (12) |
Symmetry codes: (i) −y+1/2, x, z; (ii) −x+1/2, −y+1/2, z. |
D—H···A | D—H | H···A | D···A | D—H···A |
N2—H2···Br2iii | 0.86 | 2.63 | 3.488 (2) | 178 |
Symmetry code: (iii) −x+1, −y+1, −z+1. |
References
Anthony, S. P. & Radhakrishnan, T. P. (2001). Chem. Commun. pp. 931–932. Web of Science CSD CrossRef Google Scholar
Clark, R. C. & Reid, J. S. (1995). Acta Cryst. A51, 887–897. CrossRef CAS Web of Science IUCr Journals Google Scholar
Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565. CrossRef IUCr Journals Google Scholar
Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838. CrossRef CAS IUCr Journals Google Scholar
Godlewska, S., Socha, J., Baranowska, K. & Dołęga, A. (2011). Acta Cryst. E67, m1338. Web of Science CSD CrossRef IUCr Journals Google Scholar
Hossaini Sadr, M., Zare, D., Lewis, W., Wikaira, J., Robinson, W. T. & Ng, S. W. (2004). Acta Cryst. E60, m1324–m1326. Web of Science CSD CrossRef IUCr Journals Google Scholar
Li, T. B., Hu, Y. L., Li, J. K. & He, G. F. (2007). Acta Cryst. E63, m2536. Web of Science CSD CrossRef IUCr Journals Google Scholar
Liu, F.-Q., Liu, W.-L., Li, W., Li, R.-X. & Liu, G.-Y. (2007). Acta Cryst. E63, m2454. Web of Science CSD CrossRef IUCr Journals Google Scholar
Näther, C., Wriedt, M. & Jess, I. (2002a). Acta Cryst. E58, m63–m64. Web of Science CSD CrossRef IUCr Journals Google Scholar
Näther, C., Wriedt, M. & Jess, I. (2002b). Acta Cryst. E58, m107–m109. Web of Science CSD CrossRef IUCr Journals Google Scholar
Oxford Diffraction (2006). CrysAlis CCD and CrysAlis RED. Oxford Diffraction Ltd, Abingdon, England. Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.
The composition of (I) is very similar to the bromidotetrakis(1H2-isopropylimidazole-κN3)copper(II) bromide described previously (Godlewska et al., 2011). However these compounds display substantially different crystal packing. Four NH···Br hydrogen bonds surrounding Br2 in bromidotetrakis(1H2-isopropylimidazole-κN3)copper(II) bromide are almost planar whereas the corresponding hydrogen bonds in (I) form distorted tetrahedron around Br2 and therefore build a network extending in all three directions in crystal. Complex cations [Cu(C6H10N2)4Br]+ are dipoles aligned perfectly parallel to c axis in a head-to-tail manner (see Fig. 2). The disorder of alkyl substituents is typical of room temperature determinations (e.g. Näther et al. (2002a), Acta Cryst. E58, m63-m64).
The structure of (I) is shown in Fig. 1 and packing diagram of complex dipoles is presented in Fig.2.