organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

1-Cyclo­hexyl-5-(4-meth­­oxy­phen­yl)-1H-pyrazole-4-carb­­oxy­lic acid

aX-ray Crystallography Unit, School of Physics, Universiti Sains Malaysia, 11800 USM, Penang, Malaysia, bDepartment of Chemistry, Manipal Institute of Technology, Manipal 576 104, India, cMedicinal Chemistry Division, Department of Chemistry, National Institute of Technology-Karnataka, Surathkal, Mangalore 575 025, India, and dDepartment of Printing, Manipal Institute of Technology, Manipal 576 104, India
*Correspondence e-mail: hkfun@usm.my

(Received 25 November 2011; accepted 26 November 2011; online 30 November 2011)

In the title compound, C17H20N2O3, the meth­oxy­phenyl unit is disordered over two sets of sites in a 0.715 (4):0.285 (4) ratio. The pyrazole ring forms dihedral angles of 55.88 (16) and 72.6 (4)° with the benzene rings of its major and minor components, respectively. The cyclo­hexane ring adopts a chair conformation and its C—N bond is in an equatorial orientation. In the crystal, mol­ecules are linked into inversion dimers by pairs of O—H⋯O hydrogen bonds, generating R22(8) loops.

Related literature

For bond-length data, see: Allen et al. (1987[Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1-19.]). For related structures and medicinal background to pyrazole derivatives, see: Fun et al. (2010a[Fun, H.-K., Quah, C. K., Chandrakantha, B., Isloor, A. M. & Shetty, P. (2010a). Acta Cryst. E66, o2228.],b[Fun, H.-K., Quah, C. K., Chandrakantha, B., Isloor, A. M. & Shetty, P. (2010b). Acta Cryst. E66, o2282-o2283.], 2011[Fun, H.-K., Quah, C. K., Malladi, S., Hebbar, R. & Isloor, A. M. (2011). Acta Cryst. E67, o3105.]). For hydrogen-bond motifs, see: Bernstein et al. (1995[Bernstein, J., Davis, R. E., Shimoni, L. & Chamg, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555-1573.]). For ring conformations, see: Cremer & Pople (1975[Cremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354-1358.]).

[Scheme 1]

Experimental

Crystal data
  • C17H20N2O3

  • Mr = 300.35

  • Monoclinic, P 21 /c

  • a = 12.0722 (9) Å

  • b = 12.7180 (9) Å

  • c = 11.7739 (8) Å

  • β = 118.698 (1)°

  • V = 1585.6 (2) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.09 mm−1

  • T = 296 K

  • 0.39 × 0.20 × 0.15 mm

Data collection
  • Bruker SMART APEXII DUO CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2009[Bruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.967, Tmax = 0.987

  • 24474 measured reflections

  • 4585 independent reflections

  • 2766 reflections with I > 2σ(I)

  • Rint = 0.049

Refinement
  • R[F2 > 2σ(F2)] = 0.056

  • wR(F2) = 0.159

  • S = 1.03

  • 4585 reflections

  • 239 parameters

  • 17 restraints

  • H-atom parameters constrained

  • Δρmax = 0.21 e Å−3

  • Δρmin = −0.28 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O2—H1O2⋯O1i 0.91 1.73 2.640 (2) 174
Symmetry code: (i) -x, -y+1, -z+2.

Data collection: APEX2 (Bruker, 2009[Bruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2009[Bruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Supporting information


Comment top

As part of our ongoing structural studies of pyrazole derivatives (Fun et al., 2010a, 2010b), we now describe the synthesis and structure of the title compound, (I).

The molecular structure is shown in Fig. 1. The methoxy phenyl moiety (O3/C4-C9/C17) is disordered over two sets of sites with refined site occupancies of 0.715 (4): 0.285 (4). The pyrazole ring (N1/N2/C1-C3) forms dihedral angles of 55.88 (16) and 72.6 (4)° with the benzene rings (C4-C9) of major and minor components of the methoxy phenyl moiety, respectively. Bond lengths (Allen et al., 1987) and angles are within normal ranges and are comparable to related structures (Fun et al., 2010a, 2010b, 2011). The cyclohexane ring (C10-C15) adopts a chair conformation with puckering parameters (Cremer & Pople, 1975) Q = 0.571 (2) Å, Θ = 1.0 (2)° and φ = 300 (19)°.

In the crystal (Fig. 2), molecules are linked into inversion dimers by pairs of O2–H1O2···O1 hydrogen bonds (Table 1), generating eight-membered R22(8) ring motifs (Bernstein et al., 1995).

Related literature top

For bond-length data, see: Allen et al. (1987). For related structures and medicinal background to pyrazole derivatives, see: Fun et al. (2010a,b, 2011). For hydrogen-bond motifs, see: Bernstein et al. (1995). For ring conformations, see: Cremer & Pople (1975).

Experimental top

A mixture of ethyl-3-(dimethylamino)-2-(4-methoxy phenylcarbonyl) prop-2-enoate (2.0g, 0.0088 mol) and cyclohexyl hydrazine (1.0 g, 0.0096 mol) in absolute ethanol (20 ml) was refluxed for 2h. On cooling, the separated colorless needle-shaped crystals of 5-(4-methoxy phenyl)-1-phenyl-1H-pyrazole-4- carboxylic acid ethyl ester were collected by filtration (yield: 2.0 g, 86%, m.p.: 390-395K). To a stirred solution of ester (1.0 g, 0.0031 mol) in THF with water (1:1, 20 ml) was added lithium hydroxide (0.26 g, 0.0062 mol) and the mixture was stirred at RT for 6h. The reaction mixture was concentrated and acidified with 10% citric acid solution. The solid that separated out was filtered and dried under high vacuum to afford title compound as colorless crystalline solid. Compound was recrystallized from methanol to yield colourless needles (yield: 1.5 g, 83%, m.p. 413-418K).

Refinement top

Atom H1O2 was located in a difference Fourier map and refined using a riding model with O2-H1O2 = 0.9133 Å and Uiso(H) = 1.5 Ueq(O). The remaining H atoms were positioned geometrically and refined using a riding model with C–H = 0.93-0.98 Å and Uiso(H) = 1.2 or 1.5 Ueq(C). A rotating-group model was applied for the methyl groups. The methoxy phenyl moiety (O3/C4-C9/C17) is disordered over two positions with refined site occupancies of 0.715 (4): 0.285 (4).

Structure description top

As part of our ongoing structural studies of pyrazole derivatives (Fun et al., 2010a, 2010b), we now describe the synthesis and structure of the title compound, (I).

The molecular structure is shown in Fig. 1. The methoxy phenyl moiety (O3/C4-C9/C17) is disordered over two sets of sites with refined site occupancies of 0.715 (4): 0.285 (4). The pyrazole ring (N1/N2/C1-C3) forms dihedral angles of 55.88 (16) and 72.6 (4)° with the benzene rings (C4-C9) of major and minor components of the methoxy phenyl moiety, respectively. Bond lengths (Allen et al., 1987) and angles are within normal ranges and are comparable to related structures (Fun et al., 2010a, 2010b, 2011). The cyclohexane ring (C10-C15) adopts a chair conformation with puckering parameters (Cremer & Pople, 1975) Q = 0.571 (2) Å, Θ = 1.0 (2)° and φ = 300 (19)°.

In the crystal (Fig. 2), molecules are linked into inversion dimers by pairs of O2–H1O2···O1 hydrogen bonds (Table 1), generating eight-membered R22(8) ring motifs (Bernstein et al., 1995).

For bond-length data, see: Allen et al. (1987). For related structures and medicinal background to pyrazole derivatives, see: Fun et al. (2010a,b, 2011). For hydrogen-bond motifs, see: Bernstein et al. (1995). For ring conformations, see: Cremer & Pople (1975).

Computing details top

Data collection: APEX2 (Bruker, 2009); cell refinement: SAINT (Bruker, 2009); data reduction: SAINT (Bruker, 2009); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound showing 30% probability displacement ellipsoids for non-H atoms. Both major and minor components of disorder are shown.
[Figure 2] Fig. 2. The crystal structure of the major component of the title compound, viewed along the a axis. H atoms not involved in hydrogen bonds (dashed lines) have been omitted for clarity.
1-Cyclohexyl-5-(4-methoxyphenyl)-1H-pyrazole-4-carboxylic acid top
Crystal data top
C17H20N2O3F(000) = 640
Mr = 300.35Dx = 1.258 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 5000 reflections
a = 12.0722 (9) Åθ = 2.5–29.8°
b = 12.7180 (9) ŵ = 0.09 mm1
c = 11.7739 (8) ÅT = 296 K
β = 118.698 (1)°Needle, colourless
V = 1585.6 (2) Å30.39 × 0.20 × 0.15 mm
Z = 4
Data collection top
Bruker SMART APEXII DUO CCD
diffractometer
4585 independent reflections
Radiation source: fine-focus sealed tube2766 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.049
φ and ω scansθmax = 29.9°, θmin = 1.9°
Absorption correction: multi-scan
(SADABS; Bruker, 2009)
h = 1616
Tmin = 0.967, Tmax = 0.987k = 1717
24474 measured reflectionsl = 1616
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.056Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.159H-atom parameters constrained
S = 1.03 w = 1/[σ2(Fo2) + (0.0614P)2 + 0.3536P]
where P = (Fo2 + 2Fc2)/3
4585 reflections(Δ/σ)max = 0.001
239 parametersΔρmax = 0.21 e Å3
17 restraintsΔρmin = 0.28 e Å3
Crystal data top
C17H20N2O3V = 1585.6 (2) Å3
Mr = 300.35Z = 4
Monoclinic, P21/cMo Kα radiation
a = 12.0722 (9) ŵ = 0.09 mm1
b = 12.7180 (9) ÅT = 296 K
c = 11.7739 (8) Å0.39 × 0.20 × 0.15 mm
β = 118.698 (1)°
Data collection top
Bruker SMART APEXII DUO CCD
diffractometer
4585 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2009)
2766 reflections with I > 2σ(I)
Tmin = 0.967, Tmax = 0.987Rint = 0.049
24474 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.05617 restraints
wR(F2) = 0.159H-atom parameters constrained
S = 1.03Δρmax = 0.21 e Å3
4585 reflectionsΔρmin = 0.28 e Å3
239 parameters
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
O10.07405 (12)0.45236 (14)0.92263 (12)0.0870 (5)
O20.15254 (12)0.47797 (13)1.13352 (11)0.0814 (5)
H1O20.07490.49991.11950.122*
O3A0.1055 (2)0.39532 (19)0.44671 (17)0.0769 (8)0.715 (4)
C4A0.2726 (5)0.3627 (5)0.8457 (5)0.0409 (10)0.715 (4)
C5A0.1549 (3)0.3174 (3)0.7674 (3)0.0528 (7)0.715 (4)
H5AA0.11370.28230.80570.063*0.715 (4)
C6A0.0978 (4)0.3237 (3)0.6330 (3)0.0573 (9)0.715 (4)
H6AA0.02060.29090.58200.069*0.715 (4)
C7A0.1563 (3)0.3787 (3)0.5760 (2)0.0489 (6)0.715 (4)
C8A0.2749 (3)0.4202 (2)0.6523 (3)0.0523 (7)0.715 (4)
H8AA0.31680.45400.61390.063*0.715 (4)
C9A0.3314 (3)0.4121 (2)0.7843 (3)0.0453 (6)0.715 (4)
H9AA0.41150.44050.83410.054*0.715 (4)
C17A0.0253 (3)0.3757 (3)0.3667 (3)0.0861 (11)0.715 (4)
H17A0.05040.39910.28020.129*0.715 (4)
H17B0.07270.41290.39990.129*0.715 (4)
H17C0.04130.30160.36570.129*0.715 (4)
O3B0.0427 (5)0.3332 (4)0.4351 (5)0.0707 (18)*0.285 (4)
C4B0.2589 (16)0.3476 (14)0.8323 (13)0.043 (3)*0.285 (4)
C5B0.1646 (8)0.2768 (6)0.7716 (8)0.051 (2)*0.285 (4)
H5B0.14750.22910.82110.061*0.285 (4)
C60.0940 (9)0.2735 (8)0.6402 (9)0.059 (2)0.285 (4)
H6B0.02770.22590.60060.070*0.285 (4)
C7B0.1219 (7)0.3407 (6)0.5680 (7)0.0456 (18)*0.285 (4)
C8B0.2195 (9)0.4113 (7)0.6240 (8)0.060 (2)*0.285 (4)
H8B0.23890.45510.57270.072*0.285 (4)
C9B0.2888 (8)0.4168 (8)0.7578 (9)0.062 (3)*0.285 (4)
H9B0.35390.46540.79760.074*0.285 (4)
C17B0.0494 (10)0.4149 (7)0.3569 (10)0.092 (3)*0.285 (4)
H17D0.01300.40340.26840.138*0.285 (4)
H17E0.13190.41570.36370.138*0.285 (4)
H17F0.03380.48120.38570.138*0.285 (4)
N10.44673 (12)0.32694 (11)1.06351 (12)0.0524 (3)
N20.48284 (13)0.34101 (14)1.19163 (13)0.0676 (4)
C10.38353 (16)0.38444 (16)1.19118 (16)0.0650 (5)
H1A0.38040.40351.26580.078*
C20.28347 (14)0.39865 (14)1.06610 (15)0.0525 (4)
C30.32756 (13)0.36065 (13)0.98426 (14)0.0460 (3)
C100.53239 (13)0.27005 (13)1.02944 (15)0.0482 (4)
H10A0.48870.26000.93540.058*
C110.56252 (17)0.16218 (14)1.09219 (18)0.0602 (4)
H11A0.48490.12271.06390.072*
H11B0.60210.16981.18550.072*
C120.65043 (16)0.10250 (14)1.05635 (18)0.0620 (5)
H12A0.67230.03551.10130.074*
H12B0.60720.08840.96400.074*
C130.76923 (16)0.16370 (16)1.0912 (2)0.0734 (6)
H13A0.82100.12541.06280.088*
H13B0.81710.17151.18450.088*
C140.73834 (17)0.27110 (16)1.0285 (2)0.0730 (6)
H14A0.69760.26320.93510.088*
H14B0.81590.31031.05550.088*
C150.65178 (16)0.33218 (14)1.0652 (2)0.0622 (5)
H15A0.69520.34601.15750.075*
H15B0.63020.39921.02030.075*
C160.16128 (15)0.44458 (16)1.03370 (16)0.0589 (4)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0572 (7)0.1573 (15)0.0477 (7)0.0425 (8)0.0262 (6)0.0055 (8)
O20.0613 (7)0.1362 (13)0.0527 (7)0.0334 (8)0.0323 (6)0.0050 (7)
O3A0.0761 (14)0.1104 (18)0.0383 (10)0.0057 (13)0.0227 (9)0.0049 (10)
C4A0.0356 (19)0.051 (2)0.0423 (17)0.0014 (13)0.0234 (14)0.0032 (16)
C5A0.0468 (14)0.068 (2)0.0531 (15)0.0086 (15)0.0315 (12)0.0019 (14)
C6A0.0447 (14)0.077 (2)0.0497 (16)0.0107 (18)0.0226 (12)0.0097 (17)
C7A0.0523 (16)0.0575 (17)0.0399 (13)0.0057 (14)0.0246 (12)0.0014 (12)
C8A0.0507 (16)0.0666 (16)0.0485 (14)0.0042 (13)0.0308 (13)0.0101 (11)
C9A0.0399 (14)0.0515 (14)0.0479 (14)0.0012 (12)0.0237 (12)0.0039 (10)
C17A0.0647 (18)0.121 (3)0.0512 (16)0.0264 (19)0.0110 (14)0.0099 (16)
C60.047 (4)0.073 (6)0.059 (4)0.013 (4)0.027 (3)0.003 (4)
N10.0429 (7)0.0684 (9)0.0456 (7)0.0084 (6)0.0212 (6)0.0078 (6)
N20.0543 (8)0.0971 (12)0.0453 (8)0.0182 (8)0.0190 (6)0.0117 (7)
C10.0571 (10)0.0919 (14)0.0469 (9)0.0174 (9)0.0257 (8)0.0064 (9)
C20.0466 (8)0.0704 (10)0.0457 (8)0.0107 (7)0.0261 (7)0.0011 (7)
C30.0401 (7)0.0557 (9)0.0461 (8)0.0029 (6)0.0238 (6)0.0001 (6)
C100.0380 (7)0.0575 (9)0.0505 (8)0.0035 (6)0.0224 (6)0.0086 (7)
C110.0566 (9)0.0603 (10)0.0690 (11)0.0006 (8)0.0344 (9)0.0028 (8)
C120.0566 (10)0.0564 (10)0.0689 (11)0.0086 (8)0.0268 (9)0.0059 (8)
C130.0450 (9)0.0802 (13)0.0877 (14)0.0097 (9)0.0259 (9)0.0166 (11)
C140.0508 (9)0.0802 (13)0.1005 (15)0.0074 (9)0.0463 (10)0.0130 (11)
C150.0515 (9)0.0560 (10)0.0826 (13)0.0032 (7)0.0351 (9)0.0106 (9)
C160.0501 (9)0.0872 (13)0.0474 (9)0.0161 (8)0.0297 (8)0.0036 (8)
Geometric parameters (Å, º) top
O1—C161.227 (2)C8B—H8B0.9300
O2—C161.3007 (19)C9B—H9B0.9300
O2—H1O20.9133C17B—H17D0.9600
O3A—C7A1.357 (3)C17B—H17E0.9600
O3A—C17A1.419 (4)C17B—H17F0.9600
C4A—C9A1.384 (4)N1—C31.3546 (19)
C4A—C5A1.394 (5)N1—N21.3660 (18)
C4A—C31.436 (5)N1—C101.4671 (18)
C5A—C6A1.393 (4)N2—C11.318 (2)
C5A—H5AA0.9300C1—C21.397 (2)
C6A—C7A1.376 (4)C1—H1A0.9300
C6A—H6AA0.9300C2—C31.392 (2)
C7A—C8A1.379 (4)C2—C161.457 (2)
C8A—C9A1.368 (4)C10—C151.515 (2)
C8A—H8AA0.9300C10—C111.517 (2)
C9A—H9AA0.9300C10—H10A0.9800
C17A—H17A0.9600C11—C121.520 (2)
C17A—H17B0.9600C11—H11A0.9700
C17A—H17C0.9600C11—H11B0.9700
O3B—C7B1.391 (8)C12—C131.505 (3)
O3B—C17B1.416 (10)C12—H12A0.9700
C4B—C5B1.355 (12)C12—H12B0.9700
C4B—C9B1.407 (13)C13—C141.512 (3)
C4B—C31.578 (14)C13—H13A0.9700
C5B—C61.363 (10)C13—H13B0.9700
C5B—H5B0.9300C14—C151.521 (2)
C6—C7B1.358 (10)C14—H14A0.9700
C6—H6B0.9300C14—H14B0.9700
C7B—C8B1.373 (9)C15—H15A0.9700
C8B—C9B1.386 (10)C15—H15B0.9700
C16—O2—H1O2117.2N2—C1—H1A123.7
C7A—O3A—C17A118.5 (3)C2—C1—H1A123.7
C9A—C4A—C5A117.3 (4)C3—C2—C1105.08 (14)
C9A—C4A—C3121.9 (4)C3—C2—C16129.32 (15)
C5A—C4A—C3120.8 (3)C1—C2—C16125.60 (15)
C6A—C5A—C4A121.2 (3)N1—C3—C2105.40 (13)
C6A—C5A—H5AA119.4N1—C3—C4A123.2 (3)
C4A—C5A—H5AA119.4C2—C3—C4A131.2 (3)
C7A—C6A—C5A119.6 (3)N1—C3—C4B123.6 (8)
C7A—C6A—H6AA120.2C2—C3—C4B130.8 (8)
C5A—C6A—H6AA120.2N1—C10—C15111.61 (13)
O3A—C7A—C6A124.4 (3)N1—C10—C11110.39 (13)
O3A—C7A—C8A116.1 (3)C15—C10—C11111.26 (13)
C6A—C7A—C8A119.5 (2)N1—C10—H10A107.8
C9A—C8A—C7A120.4 (2)C15—C10—H10A107.8
C9A—C8A—H8AA119.8C11—C10—H10A107.8
C7A—C8A—H8AA119.8C10—C11—C12110.64 (15)
C8A—C9A—C4A121.8 (3)C10—C11—H11A109.5
C8A—C9A—H9AA119.1C12—C11—H11A109.5
C4A—C9A—H9AA119.1C10—C11—H11B109.5
C7B—O3B—C17B117.3 (7)C12—C11—H11B109.5
C5B—C4B—C9B119.3 (11)H11A—C11—H11B108.1
C5B—C4B—C3121.2 (9)C13—C12—C11111.52 (15)
C9B—C4B—C3119.3 (9)C13—C12—H12A109.3
C4B—C5B—C6121.9 (9)C11—C12—H12A109.3
C4B—C5B—H5B119.0C13—C12—H12B109.3
C6—C5B—H5B119.0C11—C12—H12B109.3
C7B—C6—C5B118.9 (8)H12A—C12—H12B108.0
C7B—C6—H6B120.5C12—C13—C14110.78 (15)
C5B—C6—H6B120.5C12—C13—H13A109.5
C6—C7B—C8B121.7 (7)C14—C13—H13A109.5
C6—C7B—O3B114.7 (7)C12—C13—H13B109.5
C8B—C7B—O3B123.6 (7)C14—C13—H13B109.5
C7B—C8B—C9B119.3 (8)H13A—C13—H13B108.1
C7B—C8B—H8B120.3C13—C14—C15111.37 (17)
C9B—C8B—H8B120.3C13—C14—H14A109.4
C8B—C9B—C4B118.8 (9)C15—C14—H14A109.4
C8B—C9B—H9B120.6C13—C14—H14B109.4
C4B—C9B—H9B120.6C15—C14—H14B109.4
O3B—C17B—H17D109.5H14A—C14—H14B108.0
O3B—C17B—H17E109.5C10—C15—C14110.26 (14)
H17D—C17B—H17E109.5C10—C15—H15A109.6
O3B—C17B—H17F109.5C14—C15—H15A109.6
H17D—C17B—H17F109.5C10—C15—H15B109.6
H17E—C17B—H17F109.5C14—C15—H15B109.6
C3—N1—N2112.92 (12)H15A—C15—H15B108.1
C3—N1—C10128.51 (13)O1—C16—O2122.41 (15)
N2—N1—C10118.26 (12)O1—C16—C2123.66 (15)
C1—N2—N1104.07 (13)O2—C16—C2113.93 (14)
N2—C1—C2112.52 (15)
C9A—C4A—C5A—C6A1.4 (8)C1—C2—C3—N10.32 (19)
C3—C4A—C5A—C6A176.6 (4)C16—C2—C3—N1179.92 (18)
C4A—C5A—C6A—C7A2.3 (6)C1—C2—C3—C4A173.6 (3)
C17A—O3A—C7A—C6A14.3 (4)C16—C2—C3—C4A6.0 (4)
C17A—O3A—C7A—C8A166.1 (3)C1—C2—C3—C4B175.8 (7)
C5A—C6A—C7A—O3A175.6 (3)C16—C2—C3—C4B4.6 (7)
C5A—C6A—C7A—C8A4.8 (5)C9A—C4A—C3—N153.1 (7)
O3A—C7A—C8A—C9A176.7 (2)C5A—C4A—C3—N1129.0 (5)
C6A—C7A—C8A—C9A3.6 (4)C9A—C4A—C3—C2119.9 (5)
C7A—C8A—C9A—C4A0.1 (5)C5A—C4A—C3—C258.0 (7)
C5A—C4A—C9A—C8A2.6 (7)C9A—C4A—C3—C4B149 (8)
C3—C4A—C9A—C8A175.4 (4)C5A—C4A—C3—C4B33 (7)
C9B—C4B—C5B—C63 (2)C5B—C4B—C3—N1107.3 (15)
C3—C4B—C5B—C6171.7 (11)C9B—C4B—C3—N178.2 (17)
C4B—C5B—C6—C7B2.3 (17)C5B—C4B—C3—C267.5 (19)
C5B—C6—C7B—C8B0.3 (14)C9B—C4B—C3—C2107.0 (14)
C5B—C6—C7B—O3B178.5 (8)C5B—C4B—C3—C4A163 (9)
C17B—O3B—C7B—C6166.9 (8)C9B—C4B—C3—C4A11 (6)
C17B—O3B—C7B—C8B11.8 (12)C3—N1—C10—C15118.83 (18)
C6—C7B—C8B—C9B2.2 (14)N2—N1—C10—C1568.1 (2)
O3B—C7B—C8B—C9B176.4 (7)C3—N1—C10—C11116.88 (18)
C7B—C8B—C9B—C4B1.6 (16)N2—N1—C10—C1156.22 (19)
C5B—C4B—C9B—C8B1 (2)N1—C10—C11—C12179.54 (13)
C3—C4B—C9B—C8B173.8 (11)C15—C10—C11—C1255.96 (19)
C3—N1—N2—C10.0 (2)C10—C11—C12—C1355.8 (2)
C10—N1—N2—C1174.16 (16)C11—C12—C13—C1456.0 (2)
N1—N2—C1—C20.2 (2)C12—C13—C14—C1556.4 (2)
N2—C1—C2—C30.4 (2)N1—C10—C15—C14179.95 (15)
N2—C1—C2—C16179.98 (19)C11—C10—C15—C1456.3 (2)
N2—N1—C3—C20.20 (19)C13—C14—C15—C1056.4 (2)
C10—N1—C3—C2173.21 (16)C3—C2—C16—O13.2 (3)
N2—N1—C3—C4A174.3 (3)C1—C2—C16—O1177.3 (2)
C10—N1—C3—C4A12.2 (4)C3—C2—C16—O2176.26 (18)
N2—N1—C3—C4B176.1 (6)C1—C2—C16—O23.3 (3)
C10—N1—C3—C4B2.7 (6)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O2—H1O2···O1i0.911.732.640 (2)174
Symmetry code: (i) x, y+1, z+2.

Experimental details

Crystal data
Chemical formulaC17H20N2O3
Mr300.35
Crystal system, space groupMonoclinic, P21/c
Temperature (K)296
a, b, c (Å)12.0722 (9), 12.7180 (9), 11.7739 (8)
β (°) 118.698 (1)
V3)1585.6 (2)
Z4
Radiation typeMo Kα
µ (mm1)0.09
Crystal size (mm)0.39 × 0.20 × 0.15
Data collection
DiffractometerBruker SMART APEXII DUO CCD
Absorption correctionMulti-scan
(SADABS; Bruker, 2009)
Tmin, Tmax0.967, 0.987
No. of measured, independent and
observed [I > 2σ(I)] reflections
24474, 4585, 2766
Rint0.049
(sin θ/λ)max1)0.702
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.056, 0.159, 1.03
No. of reflections4585
No. of parameters239
No. of restraints17
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.21, 0.28

Computer programs: APEX2 (Bruker, 2009), SAINT (Bruker, 2009), SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O2—H1O2···O1i0.911.732.640 (2)174
Symmetry code: (i) x, y+1, z+2.
 

Footnotes

Thomson Reuters ResearcherID: A-3561-2009.

§Thomson Reuters ResearcherID: A-5525-2009.

Acknowledgements

HKF and CKQ thank Universiti Sains Malaysia (USM) for the Research University Grant (No. 1001/PFIZIK/811160). AMI thanks the Board for Research in Nuclear Sciences, Department of Atomic Energy, Government of India for the Young Scientist award.

References

First citationAllen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.  CSD CrossRef Web of Science Google Scholar
First citationBernstein, J., Davis, R. E., Shimoni, L. & Chamg, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573.  CrossRef CAS Web of Science Google Scholar
First citationBruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationCremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354–1358.  CrossRef CAS Web of Science Google Scholar
First citationFun, H.-K., Quah, C. K., Chandrakantha, B., Isloor, A. M. & Shetty, P. (2010a). Acta Cryst. E66, o2228.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationFun, H.-K., Quah, C. K., Chandrakantha, B., Isloor, A. M. & Shetty, P. (2010b). Acta Cryst. E66, o2282–o2283.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationFun, H.-K., Quah, C. K., Malladi, S., Hebbar, R. & Isloor, A. M. (2011). Acta Cryst. E67, o3105.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds