organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

1-Bromo-2-[(E)-2-nitro­ethen­yl]benzene

aResearch Center for Engineering Technology of Polymeric Composites of Shanxi Province, College of Materials Science and Engineering, North University of China, Taiyuan 030051, People's Republic of China, and bCollege of Chemsitry, Nankai University, Tianjin 300071, People's Republic of China
*Correspondence e-mail: zph2004@yahoo.com.cn

(Received 26 November 2011; accepted 27 November 2011; online 30 November 2011)

In the title compound, C8H6BrNO2, the dihedral angle between the planes of the benzene ring and the nitro group is 22.99 (12)°. In the crystal, inversion dimers associated by pairs of short Br⋯O contacts [3.2319 (17) Å] occur.

Related literature

For background to nitro-olefins and their synthetic applications, see: Barret & Graboski (1986[Barret, A. G. M. & Graboski, G. G. (1986). Chem. Rev. 86, 751-762.]); Berner et al. (2002[Berner, O. M., Tedeschi, L. & Enders, D. (2002). Eur. J. Org. Chem. pp. 1877-1894.]); Ballini et al. (1992[Ballini, R., Castagnani, R. & Petrini, M. (1992). J. Org. Chem. 57, 2160-2162.]).

[Scheme 1]

Experimental

Crystal data
  • C8H6BrNO2

  • Mr = 228.05

  • Monoclinic, P 21 /c

  • a = 6.9570 (18) Å

  • b = 15.646 (2) Å

  • c = 7.9470 (13) Å

  • β = 109.336 (5)°

  • V = 816.2 (3) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 4.99 mm−1

  • T = 113 K

  • 0.20 × 0.18 × 0.16 mm

Data collection
  • Rigaku Saturn724 CCD diffractometer

  • Absorption correction: multi-scan (CrystalClear; Rigaku/MSC, 2005[Rigaku/MSC (2005). CrystalClear. Rigaku/MSC Inc. The Woodlands, Texas, USA.]) Tmin = 0.435, Tmax = 0.502

  • 10346 measured reflections

  • 1945 independent reflections

  • 1466 reflections with I > 2σ(I)

  • Rint = 0.042

Refinement
  • R[F2 > 2σ(F2)] = 0.024

  • wR(F2) = 0.056

  • S = 1.08

  • 1945 reflections

  • 109 parameters

  • H-atom parameters constrained

  • Δρmax = 0.33 e Å−3

  • Δρmin = −0.78 e Å−3

Data collection: CrystalClear (Rigaku/MSC, 2005[Rigaku/MSC (2005). CrystalClear. Rigaku/MSC Inc. The Woodlands, Texas, USA.]); cell refinement: CrystalClear; data reduction: CrystalClear; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: CrystalStructure (Rigaku/MSC, 2005[Rigaku/MSC (2005). CrystalClear. Rigaku/MSC Inc. The Woodlands, Texas, USA.]).

Supporting information


Comment top

Nitro-olefins are useful building blocks in organic synthesis (Barret et al., 1986). Furthermore, the charater of these compounds as electron-deficient alkenes allows easy 1,4-addtion reactions and this opens the way to synthetically useful C—C and C—X (X = N, O) bond-forming reactions (Berner et al. (2002), Ballini et al. (1992)). The title compound, (I), belongs to the class of fuctionalized nitroolefins.

As shown in Fig. 1, the dihedral angle between carbon double bond and phenyl groups is 12.2 (2) °. As shown in Fig. 2, the crystal packing shows the weak O···Br intermolecular interactions.

Related literature top

For background to nitro-olefins and their synthetic applications, see: Barret & Graboski (1986); Berner et al. (2002); Ballini et al. (1992).

Experimental top

2-Bromobenzaladehyde (39.8 mmol, 7.36 g), nitromethane (99.2 mmol, 5.38 ml), and methanol (16.80 ml) are added to a 3-neck round bottomed flask and cooled to zero degree centigrade. While maintaining the internal reaction temperature between zero and ten degrees centigrade, aqueous 1M NaOH (100.2 mmol, 100.20 ml) is added by an additon funnel and the mixture is stirred for 15 min. Ice water mixture (70.00 ml) is added and the reaction is stirred at zero degree centigrade for 30 min. The reaction mixture is slowly added to aqueous 8M HCl (536.0 mmol, 67.00 ml) and allowed to stir until the rection is confirmed complete by TLC. The reaction mixture is filtered and recrystallized from ethanol to give the product. Colourless prisms of (I) were obtained by slow evaporation of the dichloromethane/n-hexane solutions at room temperature.

Refinement top

All the H atoms were positioned geometrically (C—H = 0.95 Å) and refined as riding with Uiso(H) = 1.2Ueq(C).

Structure description top

Nitro-olefins are useful building blocks in organic synthesis (Barret et al., 1986). Furthermore, the charater of these compounds as electron-deficient alkenes allows easy 1,4-addtion reactions and this opens the way to synthetically useful C—C and C—X (X = N, O) bond-forming reactions (Berner et al. (2002), Ballini et al. (1992)). The title compound, (I), belongs to the class of fuctionalized nitroolefins.

As shown in Fig. 1, the dihedral angle between carbon double bond and phenyl groups is 12.2 (2) °. As shown in Fig. 2, the crystal packing shows the weak O···Br intermolecular interactions.

For background to nitro-olefins and their synthetic applications, see: Barret & Graboski (1986); Berner et al. (2002); Ballini et al. (1992).

Computing details top

Data collection: CrystalClear (Rigaku/MSC, 2005); cell refinement: CrystalClear (Rigaku/MSC, 2005); data reduction: CrystalClear (Rigaku/MSC, 2005); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: CrystalStructure (Rigaku/MSC, 2005).

Figures top
[Figure 1] Fig. 1. The molecular structure of (I). Displacement ellipsoids are drawn at the 30% probability level and H atoms are shown as small spheres of arbitrary radii.
[Figure 2] Fig. 2. The crystal packing for (I).
1-Bromo-2-[(E)-2-nitroethenyl]benzene top
Crystal data top
C8H6BrNO2F(000) = 448
Mr = 228.05Dx = 1.856 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
a = 6.9570 (18) ÅCell parameters from 2970 reflections
b = 15.646 (2) Åθ = 2.6–28.0°
c = 7.9470 (13) ŵ = 4.99 mm1
β = 109.336 (5)°T = 113 K
V = 816.2 (3) Å3Prism, colorless
Z = 40.20 × 0.18 × 0.16 mm
Data collection top
Rigaku Saturn724 CCD
diffractometer
1945 independent reflections
Radiation source: rotating anode1466 reflections with I > 2σ(I)
Multilayer monochromatorRint = 0.042
Detector resolution: 14.22 pixels mm-1θmax = 27.8°, θmin = 2.6°
ω and φ scansh = 99
Absorption correction: multi-scan
(CrystalClear; Rigaku/MSC, 2005)
k = 2020
Tmin = 0.435, Tmax = 0.502l = 1010
10346 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.024Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.056H-atom parameters constrained
S = 1.08 w = 1/[σ2(Fo2) + (0.020P)2]
where P = (Fo2 + 2Fc2)/3
1945 reflections(Δ/σ)max = 0.003
109 parametersΔρmax = 0.33 e Å3
0 restraintsΔρmin = 0.78 e Å3
Crystal data top
C8H6BrNO2V = 816.2 (3) Å3
Mr = 228.05Z = 4
Monoclinic, P21/cMo Kα radiation
a = 6.9570 (18) ŵ = 4.99 mm1
b = 15.646 (2) ÅT = 113 K
c = 7.9470 (13) Å0.20 × 0.18 × 0.16 mm
β = 109.336 (5)°
Data collection top
Rigaku Saturn724 CCD
diffractometer
1945 independent reflections
Absorption correction: multi-scan
(CrystalClear; Rigaku/MSC, 2005)
1466 reflections with I > 2σ(I)
Tmin = 0.435, Tmax = 0.502Rint = 0.042
10346 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0240 restraints
wR(F2) = 0.056H-atom parameters constrained
S = 1.08Δρmax = 0.33 e Å3
1945 reflectionsΔρmin = 0.78 e Å3
109 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Br10.39712 (4)0.607142 (14)0.81215 (3)0.02051 (8)
O10.1113 (2)0.21839 (10)0.6270 (2)0.0218 (4)
O20.3362 (2)0.29119 (10)0.8336 (2)0.0238 (4)
N10.2150 (3)0.28344 (11)0.6807 (2)0.0153 (4)
C10.3043 (3)0.58570 (14)0.5620 (3)0.0141 (5)
C20.2914 (3)0.65593 (14)0.4508 (3)0.0153 (5)
H20.33160.71090.50070.018*
C30.2203 (3)0.64552 (14)0.2684 (3)0.0179 (5)
H30.20930.69350.19250.021*
C40.1644 (3)0.56451 (15)0.1954 (3)0.0190 (5)
H40.11560.55710.06960.023*
C50.1804 (3)0.49484 (14)0.3071 (3)0.0160 (5)
H50.14380.43980.25610.019*
C60.2490 (3)0.50341 (13)0.4930 (3)0.0119 (4)
C70.2672 (3)0.42903 (13)0.6100 (3)0.0132 (5)
H70.34050.43600.73340.016*
C80.1882 (3)0.35266 (13)0.5549 (3)0.0135 (5)
H80.11380.34350.43240.016*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Br10.02929 (14)0.01733 (14)0.01372 (13)0.00098 (11)0.00552 (10)0.00406 (9)
O10.0270 (10)0.0133 (8)0.0233 (9)0.0033 (7)0.0058 (8)0.0004 (7)
O20.0272 (10)0.0228 (9)0.0148 (9)0.0010 (7)0.0020 (7)0.0036 (7)
N10.0178 (10)0.0113 (10)0.0182 (10)0.0032 (8)0.0079 (8)0.0012 (8)
C10.0107 (11)0.0190 (12)0.0120 (11)0.0007 (9)0.0032 (9)0.0014 (9)
C20.0151 (12)0.0119 (12)0.0207 (13)0.0022 (9)0.0081 (10)0.0021 (9)
C30.0178 (12)0.0158 (12)0.0207 (13)0.0014 (10)0.0074 (10)0.0057 (10)
C40.0211 (13)0.0227 (14)0.0122 (12)0.0046 (10)0.0042 (10)0.0008 (10)
C50.0173 (12)0.0146 (12)0.0161 (12)0.0010 (9)0.0056 (10)0.0023 (9)
C60.0099 (11)0.0113 (11)0.0148 (12)0.0014 (8)0.0046 (9)0.0015 (9)
C70.0119 (11)0.0150 (12)0.0124 (11)0.0032 (9)0.0037 (9)0.0005 (9)
C80.0164 (12)0.0132 (12)0.0111 (12)0.0047 (9)0.0050 (9)0.0037 (9)
Geometric parameters (Å, º) top
Br1—C11.906 (2)C3—H30.9500
O1—N11.239 (2)C4—C51.387 (3)
O2—N11.234 (2)C4—H40.9500
N1—C81.444 (3)C5—C61.401 (3)
C1—C21.394 (3)C5—H50.9500
C1—C61.402 (3)C6—C71.468 (3)
C2—C31.377 (3)C7—C81.328 (3)
C2—H20.9500C7—H70.9500
C3—C41.395 (3)C8—H80.9500
O2—N1—O1123.39 (19)C3—C4—H4120.1
O2—N1—C8119.86 (18)C4—C5—C6121.8 (2)
O1—N1—C8116.75 (18)C4—C5—H5119.1
C2—C1—C6121.6 (2)C6—C5—H5119.1
C2—C1—Br1116.81 (16)C1—C6—C5116.97 (19)
C6—C1—Br1121.57 (16)C1—C6—C7121.70 (19)
C3—C2—C1119.9 (2)C5—C6—C7121.31 (19)
C3—C2—H2120.0C8—C7—C6124.4 (2)
C1—C2—H2120.0C8—C7—H7117.8
C2—C3—C4119.9 (2)C6—C7—H7117.8
C2—C3—H3120.0C7—C8—N1120.14 (19)
C4—C3—H3120.0C7—C8—H8119.9
C5—C4—C3119.7 (2)N1—C8—H8119.9
C5—C4—H4120.1
C6—C1—C2—C30.9 (3)Br1—C1—C6—C72.4 (3)
Br1—C1—C2—C3178.25 (16)C4—C5—C6—C11.0 (3)
C1—C2—C3—C41.0 (3)C4—C5—C6—C7179.4 (2)
C2—C3—C4—C50.2 (3)C1—C6—C7—C8168.8 (2)
C3—C4—C5—C60.9 (4)C5—C6—C7—C813.0 (3)
C2—C1—C6—C50.1 (3)C6—C7—C8—N1179.9 (2)
Br1—C1—C6—C5179.22 (16)O2—N1—C8—C710.9 (3)
C2—C1—C6—C7178.5 (2)O1—N1—C8—C7168.8 (2)

Experimental details

Crystal data
Chemical formulaC8H6BrNO2
Mr228.05
Crystal system, space groupMonoclinic, P21/c
Temperature (K)113
a, b, c (Å)6.9570 (18), 15.646 (2), 7.9470 (13)
β (°) 109.336 (5)
V3)816.2 (3)
Z4
Radiation typeMo Kα
µ (mm1)4.99
Crystal size (mm)0.20 × 0.18 × 0.16
Data collection
DiffractometerRigaku Saturn724 CCD
Absorption correctionMulti-scan
(CrystalClear; Rigaku/MSC, 2005)
Tmin, Tmax0.435, 0.502
No. of measured, independent and
observed [I > 2σ(I)] reflections
10346, 1945, 1466
Rint0.042
(sin θ/λ)max1)0.657
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.024, 0.056, 1.08
No. of reflections1945
No. of parameters109
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.33, 0.78

Computer programs: CrystalClear (Rigaku/MSC, 2005), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008), CrystalStructure (Rigaku/MSC, 2005).

 

Acknowledgements

This work was supported financially by the Start-up Foundation of North University of China and the Youth Foundation of North University of China.

References

First citationBallini, R., Castagnani, R. & Petrini, M. (1992). J. Org. Chem. 57, 2160–2162.  CrossRef CAS Web of Science Google Scholar
First citationBarret, A. G. M. & Graboski, G. G. (1986). Chem. Rev. 86, 751–762.  Google Scholar
First citationBerner, O. M., Tedeschi, L. & Enders, D. (2002). Eur. J. Org. Chem. pp. 1877–1894.  CrossRef Google Scholar
First citationRigaku/MSC (2005). CrystalClear. Rigaku/MSC Inc. The Woodlands, Texas, USA.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds