organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

N,N,N′,N′-Tetra­ethyl­pyridine-2,6-dicarboxamide

aInstitute of Physics, AS CR, v.v.i., Na Slovance 2, 182 21 Praha 8, Czech Republic, bFaculty of Environmetal Sciences, Czech University of Life Sciences, Prague, Kamýcká 129, 165 21 Prague 6, Czech Republic, and cKhlopin Radium Institute, Research and Production Association, 2nd Murinskiy Prospect b. 28, 194021 St. Petersburg, Russian Federation
*Correspondence e-mail: pojarova@fzu.cz

(Received 14 October 2011; accepted 31 October 2011; online 5 November 2011)

The title compound, C15H23N3O2, crystallizes with two mol­ecules in the asymmetric unit which are linked by a C—H⋯N hydrogen bond. In the crystal, mol­ecules are connected via weak C—H⋯O and C—H⋯N hydrogen bonds between the amide O atoms and ethyl chains and between pyridine N atoms and aromatic H atoms in para positions. C—H⋯π inter­actions also occur.

Related literature

The title compound has been investigated for its extractive properties in a synergistic mixture with chlorinated cobalt dicarbollide towards trivalent metals, see: Alyapyshev et al. (2004[Alyapyshev, M. Y., Babain, V. A. & Smirnov, I. V. (2004). Radiochemistry, 46, 270-271.]). For details of the synthesis, see: Nikitskaya et al. (1958[Nikitskaya, E. S., Usovskaya, V. S. & Rubtzov, M. V. (1958). Zh. Obshch. Khim. 28, 161-166.]); Shimada et al. (2004[Shimada, A., Yaita, T., Narita, H., Tachimori, S. & Okuno, K. (2004). Solvent Extr. Ion Exch. 22, 147-161.]).

[Scheme 1]

Experimental

Crystal data
  • C15H23N3O2

  • Mr = 277.36

  • Triclinic, [P \overline 1]

  • a = 11.1919 (3) Å

  • b = 11.7913 (3) Å

  • c = 12.2774 (3) Å

  • α = 90.255 (2)°

  • β = 105.050 (2)°

  • γ = 102.600 (2)°

  • V = 1523.74 (7) Å3

  • Z = 4

  • Cu Kα radiation

  • μ = 0.65 mm−1

  • T = 120 K

  • 0.53 × 0.38 × 0.14 mm

Data collection
  • Agilent Xcalibur Atlas Gemini ultra diffractometer

  • Absorption correction: analytical (CrysAlis PRO; Agilent, 2011[Agilent (2011). CrysAlis PRO. Agilent Technologies, Yarnton, England.]) Tmin = 0.538, Tmax = 0.815

  • 17964 measured reflections

  • 5424 independent reflections

  • 5034 reflections with I > 2σ(I)

  • Rint = 0.023

Refinement
  • R[F2 > 2σ(F2)] = 0.033

  • wR(F2) = 0.089

  • S = 1.04

  • 5424 reflections

  • 369 parameters

  • H-atom parameters constrained

  • Δρmax = 0.24 e Å−3

  • Δρmin = −0.23 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

Cg2 is the centroid of the N4/C16–C20 ring.

D—H⋯A D—H H⋯A DA D—H⋯A
C3—H3⋯N4i 0.93 2.49 3.397 (1) 164
C9—H9B⋯O4ii 0.97 2.52 3.485 (1) 175
C12—H12B⋯O3ii 0.97 2.59 3.531 (1) 164
C18—H18⋯N1 0.93 2.52 3.427 (1) 166
C24—H24A⋯O2iii 0.97 2.46 3.417 (1) 169
C27—H27A⋯O1iii 0.97 2.54 3.496 (1) 168
C13—H13BCg(2)ii 0.97 2.97 3.726 (1) 139
Symmetry codes: (i) x, y-1, z; (ii) -x+1, -y+1, -z+1; (iii) -x+1, -y+1, -z+2.

Data collection: CrysAlis PRO (Agilent, 2011[Agilent (2011). CrysAlis PRO. Agilent Technologies, Yarnton, England.]); cell refinement: CrysAlis PRO; data reduction: CrysAlis PRO; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: Mercury (Macrae et al., 2006[Macrae, C. F., Edgington, P. R., McCabe, P., Pidcock, E., Shields, G. P., Taylor, R., Towler, M. & van de Streek, J. (2006). J. Appl. Cryst. 39, 453-457.]) and DIAMOND (Brandenburg & Putz, 2005[Brandenburg, K. & Putz, H. (2005). DIAMOND. Crystal Impact GbR, Bonn, Germany.]); software used to prepare material for publication: publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Supporting information


Comment top

The title compound, shown in Figure 1 and Scheme 1, has been investigated in mixture with the dicarbollylcobaltate anion and its halogen derivatives for significant extraction properties towards trivalent metal cations (Alyapyshev et al.,2004). It consists of pyridine ring with a diethylamide groups in position 2 and 6. The asymmetric unit contains two molecules of dipicolinamide connected via hydrogen bonds between pyridine nitrogen atom and aromatic hydrogen atoms in para position to nitrogen atoms (C3—H3···N4, and C18—H18···N1, Table 1). While at first impression, the amide groups seem to be related by a mirror plane, closer look reveals their differences. The carbon atoms of carbonyl groups do not lie in a plane of the pyridine ring and they differ in the distance to this plane (0.178 Å for C6 and 0.089 Å for C11 to pyridine plane with N1; 0.146 Å for C21 and 0.040 Å for C26 to pyridine plane with N4). The molecules form bands in direction of the c axis (Fig. 2) via system of hydrogen bonds between the amide oxygen atom and ethyl chains (Table 1).

Related literature top

The title compound has been investigated for its extractive properties in a synergistic mixture with chlorinated cobalt dicarbollide towards trivalent metals, see: Alyapyshev et al. (2004). For details of the synthesis, see: Nikitskaya et al. (1958); Shimada et al. (2004).

Experimental top

N,N,N',N'-Tetraethyl-2,6-dipicolinamide was synthesized as described in Shimada et al. (2004), and Nikitskaya et al. (1958). Crystals were prepared by slow evaporation from acetonitrile.

Refinement top

The hydrogen atoms were localized from the difference Fourier map. Despite that, all hydrogen atoms connected to C were constrained to ideal positions with C—H = 0.93 - 0.97Å. The isotropic temperature parameters of hydrogen atoms were calculated as 1.2*Ueq of the parent atom.

Structure description top

The title compound, shown in Figure 1 and Scheme 1, has been investigated in mixture with the dicarbollylcobaltate anion and its halogen derivatives for significant extraction properties towards trivalent metal cations (Alyapyshev et al.,2004). It consists of pyridine ring with a diethylamide groups in position 2 and 6. The asymmetric unit contains two molecules of dipicolinamide connected via hydrogen bonds between pyridine nitrogen atom and aromatic hydrogen atoms in para position to nitrogen atoms (C3—H3···N4, and C18—H18···N1, Table 1). While at first impression, the amide groups seem to be related by a mirror plane, closer look reveals their differences. The carbon atoms of carbonyl groups do not lie in a plane of the pyridine ring and they differ in the distance to this plane (0.178 Å for C6 and 0.089 Å for C11 to pyridine plane with N1; 0.146 Å for C21 and 0.040 Å for C26 to pyridine plane with N4). The molecules form bands in direction of the c axis (Fig. 2) via system of hydrogen bonds between the amide oxygen atom and ethyl chains (Table 1).

The title compound has been investigated for its extractive properties in a synergistic mixture with chlorinated cobalt dicarbollide towards trivalent metals, see: Alyapyshev et al. (2004). For details of the synthesis, see: Nikitskaya et al. (1958); Shimada et al. (2004).

Computing details top

Data collection: CrysAlis PRO (Agilent, 2011); cell refinement: CrysAlis PRO (Agilent, 2011); data reduction: CrysAlis PRO (Agilent, 2011); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: Mercury (Macrae et al., 2006) and DIAMOND (Brandenburg & Putz, 2005); software used to prepare material for publication: publCIF (Westrip, 2010).

Figures top
[Figure 1] Fig. 1. View of the asymmetric unit of N,N,N',N'-tetraethyl-2,6-dipicolinamide, together with atom-labelling scheme. Displacement ellipsoids are shown at the 50% probability level.
[Figure 2] Fig. 2. Projection along the b axis with highlighted hydrogen bonds between the molecules in the bands in direction of c axis.
N,N,N',N'-Tetraethylpyridine-2,6-dicarboxamide top
Crystal data top
C15H23N3O2Z = 4
Mr = 277.36F(000) = 600
Triclinic, P1Dx = 1.209 Mg m3
Hall symbol: -P 1Cu Kα radiation, λ = 1.5418 Å
a = 11.1919 (3) ÅCell parameters from 10531 reflections
b = 11.7913 (3) Åθ = 3.7–66.9°
c = 12.2774 (3) ŵ = 0.65 mm1
α = 90.255 (2)°T = 120 K
β = 105.050 (2)°Prism, colourless
γ = 102.600 (2)°0.53 × 0.38 × 0.14 mm
V = 1523.74 (7) Å3
Data collection top
Agilent Xcalibur Atlas Gemini ultra
diffractometer
5424 independent reflections
Radiation source: Enhance Ultra (Cu) X-ray Source5034 reflections with I > 2σ(I)
Mirror monochromatorRint = 0.023
Detector resolution: 10.3784 pixels mm-1θmax = 67.0°, θmin = 3.7°
Rotation method data acquisition using ω scansh = 1313
Absorption correction: analytical
(CrysAlis PRO; Agilent, 2011)
k = 1414
Tmin = 0.538, Tmax = 0.815l = 1413
17964 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.033Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.089H-atom parameters constrained
S = 1.04 w = 1/[σ2(Fo2) + (0.0492P)2 + 0.3468P]
where P = (Fo2 + 2Fc2)/3
5424 reflections(Δ/σ)max < 0.001
369 parametersΔρmax = 0.24 e Å3
0 restraintsΔρmin = 0.23 e Å3
Crystal data top
C15H23N3O2γ = 102.600 (2)°
Mr = 277.36V = 1523.74 (7) Å3
Triclinic, P1Z = 4
a = 11.1919 (3) ÅCu Kα radiation
b = 11.7913 (3) ŵ = 0.65 mm1
c = 12.2774 (3) ÅT = 120 K
α = 90.255 (2)°0.53 × 0.38 × 0.14 mm
β = 105.050 (2)°
Data collection top
Agilent Xcalibur Atlas Gemini ultra
diffractometer
5424 independent reflections
Absorption correction: analytical
(CrysAlis PRO; Agilent, 2011)
5034 reflections with I > 2σ(I)
Tmin = 0.538, Tmax = 0.815Rint = 0.023
17964 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0330 restraints
wR(F2) = 0.089H-atom parameters constrained
S = 1.04Δρmax = 0.24 e Å3
5424 reflectionsΔρmin = 0.23 e Å3
369 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. The hydrogen atoms were localized from the difference Fourier map. Despite of that, all hydrogen atoms connected to C were constrained to ideal positions with C—H = 0.93 - 0.97Å. The isotropic temperature parameters of hydrogen atoms were calculated as 1.2*Ueq of the parent atom.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.34518 (10)0.08087 (9)0.64634 (8)0.0204 (2)
C20.33423 (11)0.03673 (9)0.66482 (9)0.0246 (2)
H20.25510.08820.64840.030*
C30.44453 (11)0.07514 (9)0.70844 (9)0.0269 (2)
H30.44050.15330.72180.032*
C40.56088 (11)0.00389 (9)0.73192 (9)0.0243 (2)
H40.63580.01960.76370.029*
C50.56290 (10)0.11901 (9)0.70686 (8)0.0203 (2)
C60.23248 (10)0.13636 (9)0.61227 (9)0.0211 (2)
C70.08199 (10)0.20920 (10)0.46756 (10)0.0263 (2)
H7A0.03430.20470.52370.032*
H7B0.02350.17530.39620.032*
C80.13952 (11)0.33599 (10)0.45498 (10)0.0294 (2)
H8A0.19950.36900.52480.035*
H8B0.07340.37820.43620.035*
H8C0.18200.34090.39600.035*
C90.22324 (10)0.09539 (10)0.41142 (9)0.0245 (2)
H9A0.31020.08800.44130.029*
H9B0.22170.14920.35180.029*
C100.14003 (12)0.02268 (11)0.36241 (11)0.0343 (3)
H10A0.15160.07910.41810.041*
H10B0.16320.04590.29710.041*
H10C0.05260.01780.34100.041*
C110.68695 (10)0.20972 (9)0.73695 (9)0.0213 (2)
C120.63999 (11)0.27551 (10)0.54038 (9)0.0264 (2)
H12A0.58750.19710.52290.032*
H12B0.70090.28540.49560.032*
C130.55615 (12)0.36185 (12)0.50620 (11)0.0357 (3)
H13A0.49170.34920.54620.043*
H13B0.51680.35120.42630.043*
H13C0.60700.43980.52440.043*
C140.82160 (11)0.38506 (10)0.69519 (10)0.0282 (2)
H14A0.84430.39900.77670.034*
H14B0.80010.45490.66190.034*
C150.93595 (11)0.36358 (11)0.66058 (12)0.0344 (3)
H15A0.96130.29740.69690.041*
H15B1.00480.43100.68290.041*
H15C0.91410.34880.58010.041*
N10.45723 (8)0.15775 (7)0.66542 (7)0.01987 (19)
N20.18053 (8)0.14265 (8)0.50181 (7)0.0226 (2)
N30.70930 (8)0.28815 (8)0.66088 (8)0.0229 (2)
O10.19638 (7)0.17751 (7)0.68735 (7)0.02933 (19)
O20.76002 (8)0.21063 (7)0.83144 (6)0.02971 (19)
C160.34289 (10)0.58314 (9)0.77594 (8)0.0194 (2)
C170.33178 (10)0.46562 (9)0.75081 (9)0.0226 (2)
H170.25250.41440.72850.027*
C180.44214 (11)0.42685 (9)0.75996 (9)0.0243 (2)
H180.43810.34890.74310.029*
C190.55846 (10)0.50556 (9)0.79455 (9)0.0227 (2)
H190.63360.48200.79910.027*
C200.56057 (10)0.62050 (9)0.82237 (8)0.0192 (2)
C210.22925 (9)0.63767 (9)0.75813 (9)0.0199 (2)
C220.07365 (10)0.70041 (10)0.83483 (10)0.0259 (2)
H22A0.01970.66360.88100.031*
H22B0.02300.69100.75680.031*
C230.12039 (12)0.82907 (10)0.87084 (11)0.0326 (3)
H23A0.16910.83860.94850.039*
H23B0.04900.86410.86240.039*
H23C0.17270.86600.82440.039*
C240.22581 (10)0.59551 (10)0.95535 (9)0.0240 (2)
H24A0.21830.64521.01520.029*
H24B0.31500.59560.96750.029*
C250.15180 (11)0.47232 (10)0.96115 (10)0.0295 (3)
H25A0.06240.46970.93790.035*
H25B0.17430.44931.03730.035*
H25C0.17190.42020.91190.035*
C260.68515 (10)0.70986 (9)0.85781 (9)0.0201 (2)
C270.62809 (10)0.77044 (10)1.02959 (9)0.0256 (2)
H27A0.68470.77761.10520.031*
H27B0.57370.69271.01770.031*
C280.54606 (12)0.85895 (12)1.02167 (11)0.0358 (3)
H28A0.59920.93621.03340.043*
H28B0.50030.84661.07840.043*
H28C0.48690.85000.94820.043*
C290.81996 (11)0.87818 (10)0.97545 (10)0.0279 (2)
H29A0.80020.94771.00200.034*
H29B0.84750.89580.90750.034*
C300.92803 (11)0.84799 (11)1.06496 (10)0.0318 (3)
H30A0.90230.83251.13320.038*
H30B1.00080.91221.07970.038*
H30C0.94940.78021.03870.038*
N40.45478 (8)0.65964 (7)0.81247 (7)0.01912 (18)
N50.17952 (8)0.64264 (8)0.84598 (7)0.02175 (19)
N60.70426 (8)0.78454 (8)0.94712 (7)0.0219 (2)
O30.18965 (7)0.67712 (7)0.66658 (6)0.02781 (18)
O40.76290 (7)0.71225 (7)0.80198 (7)0.02781 (18)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0241 (5)0.0214 (5)0.0163 (5)0.0032 (4)0.0081 (4)0.0002 (4)
C20.0278 (6)0.0213 (5)0.0241 (5)0.0010 (4)0.0098 (4)0.0018 (4)
C30.0376 (6)0.0189 (5)0.0270 (6)0.0070 (4)0.0133 (5)0.0052 (4)
C40.0290 (6)0.0251 (5)0.0230 (5)0.0111 (4)0.0100 (4)0.0053 (4)
C50.0241 (5)0.0224 (5)0.0165 (5)0.0064 (4)0.0083 (4)0.0009 (4)
C60.0210 (5)0.0185 (5)0.0227 (5)0.0007 (4)0.0083 (4)0.0002 (4)
C70.0235 (5)0.0312 (6)0.0254 (5)0.0083 (4)0.0067 (4)0.0032 (4)
C80.0324 (6)0.0287 (6)0.0262 (6)0.0089 (5)0.0048 (5)0.0022 (4)
C90.0258 (5)0.0292 (6)0.0206 (5)0.0063 (4)0.0098 (4)0.0019 (4)
C100.0350 (6)0.0342 (6)0.0333 (6)0.0032 (5)0.0127 (5)0.0066 (5)
C110.0221 (5)0.0226 (5)0.0214 (5)0.0078 (4)0.0077 (4)0.0012 (4)
C120.0272 (6)0.0311 (6)0.0216 (5)0.0029 (4)0.0105 (4)0.0028 (4)
C130.0374 (7)0.0403 (7)0.0306 (6)0.0104 (5)0.0101 (5)0.0123 (5)
C140.0261 (6)0.0228 (5)0.0348 (6)0.0007 (4)0.0107 (5)0.0021 (5)
C150.0237 (6)0.0341 (6)0.0444 (7)0.0020 (5)0.0113 (5)0.0022 (5)
N10.0224 (4)0.0198 (4)0.0183 (4)0.0045 (3)0.0074 (3)0.0010 (3)
N20.0223 (4)0.0248 (5)0.0224 (4)0.0060 (4)0.0085 (4)0.0019 (4)
N30.0223 (4)0.0222 (4)0.0240 (5)0.0022 (4)0.0083 (4)0.0001 (4)
O10.0282 (4)0.0382 (5)0.0241 (4)0.0096 (3)0.0098 (3)0.0030 (3)
O20.0281 (4)0.0343 (4)0.0237 (4)0.0062 (3)0.0022 (3)0.0003 (3)
C160.0215 (5)0.0209 (5)0.0160 (5)0.0032 (4)0.0068 (4)0.0018 (4)
C170.0241 (5)0.0210 (5)0.0210 (5)0.0007 (4)0.0068 (4)0.0013 (4)
C180.0323 (6)0.0185 (5)0.0233 (5)0.0060 (4)0.0092 (5)0.0012 (4)
C190.0250 (5)0.0243 (5)0.0211 (5)0.0088 (4)0.0075 (4)0.0011 (4)
C200.0223 (5)0.0211 (5)0.0155 (5)0.0052 (4)0.0069 (4)0.0027 (4)
C210.0189 (5)0.0175 (5)0.0211 (5)0.0002 (4)0.0052 (4)0.0003 (4)
C220.0235 (5)0.0312 (6)0.0270 (6)0.0107 (4)0.0097 (4)0.0040 (4)
C230.0401 (7)0.0298 (6)0.0355 (6)0.0147 (5)0.0177 (5)0.0055 (5)
C240.0245 (5)0.0300 (6)0.0191 (5)0.0084 (4)0.0069 (4)0.0025 (4)
C250.0321 (6)0.0316 (6)0.0275 (6)0.0095 (5)0.0105 (5)0.0076 (5)
C260.0204 (5)0.0203 (5)0.0207 (5)0.0065 (4)0.0059 (4)0.0048 (4)
C270.0255 (5)0.0301 (6)0.0200 (5)0.0025 (4)0.0074 (4)0.0014 (4)
C280.0366 (7)0.0418 (7)0.0326 (6)0.0125 (5)0.0124 (5)0.0073 (5)
C290.0269 (6)0.0210 (5)0.0323 (6)0.0016 (4)0.0075 (5)0.0004 (4)
C300.0247 (6)0.0346 (6)0.0306 (6)0.0031 (5)0.0057 (5)0.0005 (5)
N40.0205 (4)0.0197 (4)0.0177 (4)0.0042 (3)0.0062 (3)0.0021 (3)
N50.0217 (4)0.0238 (4)0.0214 (4)0.0069 (3)0.0071 (4)0.0022 (3)
N60.0216 (4)0.0205 (4)0.0225 (4)0.0014 (3)0.0070 (4)0.0007 (3)
O30.0256 (4)0.0365 (4)0.0233 (4)0.0096 (3)0.0076 (3)0.0083 (3)
O40.0248 (4)0.0331 (4)0.0282 (4)0.0045 (3)0.0135 (3)0.0022 (3)
Geometric parameters (Å, º) top
C1—N11.3412 (13)C16—N41.3397 (13)
C1—C21.3900 (15)C16—C171.3900 (15)
C1—C61.5108 (15)C16—C211.5141 (14)
C2—C31.3851 (17)C17—C181.3864 (16)
C2—H20.9300C17—H170.9300
C3—C41.3857 (16)C18—C191.3852 (16)
C3—H30.9300C18—H180.9300
C4—C51.3899 (15)C19—C201.3899 (15)
C4—H40.9300C19—H190.9300
C5—N11.3383 (14)C20—N41.3393 (14)
C5—C111.5134 (14)C20—C261.5112 (14)
C6—O11.2342 (13)C21—O31.2296 (13)
C6—N21.3390 (14)C21—N51.3424 (14)
C7—N21.4658 (14)C22—N51.4682 (14)
C7—C81.5190 (16)C22—C231.5160 (17)
C7—H7A0.9700C22—H22A0.9700
C7—H7B0.9700C22—H22B0.9700
C8—H8A0.9600C23—H23A0.9600
C8—H8B0.9600C23—H23B0.9600
C8—H8C0.9600C23—H23C0.9600
C9—N21.4686 (14)C24—N51.4667 (14)
C9—C101.5177 (16)C24—C251.5191 (16)
C9—H9A0.9700C24—H24A0.9700
C9—H9B0.9700C24—H24B0.9700
C10—H10A0.9600C25—H25A0.9600
C10—H10B0.9600C25—H25B0.9600
C10—H10C0.9600C25—H25C0.9600
C11—O21.2320 (13)C26—O41.2357 (13)
C11—N31.3484 (14)C26—N61.3457 (14)
C12—N31.4711 (14)C27—N61.4722 (14)
C12—C131.5195 (17)C27—C281.5213 (17)
C12—H12A0.9700C27—H27A0.9700
C12—H12B0.9700C27—H27B0.9700
C13—H13A0.9600C28—H28A0.9600
C13—H13B0.9600C28—H28B0.9600
C13—H13C0.9600C28—H28C0.9600
C14—N31.4686 (14)C29—N61.4682 (13)
C14—C151.5184 (16)C29—C301.5161 (17)
C14—H14A0.9700C29—H29A0.9700
C14—H14B0.9700C29—H29B0.9700
C15—H15A0.9600C30—H30A0.9600
C15—H15B0.9600C30—H30B0.9600
C15—H15C0.9600C30—H30C0.9600
N1—C1—C2123.17 (10)N4—C16—C17123.29 (10)
N1—C1—C6113.32 (9)N4—C16—C21113.76 (9)
C2—C1—C6123.33 (9)C17—C16—C21122.86 (9)
C3—C2—C1118.12 (10)C18—C17—C16118.14 (10)
C3—C2—H2120.9C18—C17—H17120.9
C1—C2—H2120.9C16—C17—H17120.9
C2—C3—C4119.41 (10)C19—C18—C17119.22 (10)
C2—C3—H3120.3C19—C18—H18120.4
C4—C3—H3120.3C17—C18—H18120.4
C3—C4—C5118.44 (10)C18—C19—C20118.61 (10)
C3—C4—H4120.8C18—C19—H19120.7
C5—C4—H4120.8C20—C19—H19120.7
N1—C5—C4122.88 (10)N4—C20—C19122.84 (9)
N1—C5—C11116.55 (9)N4—C20—C26116.66 (9)
C4—C5—C11120.30 (10)C19—C20—C26120.35 (9)
O1—C6—N2123.47 (10)O3—C21—N5123.73 (10)
O1—C6—C1118.47 (9)O3—C21—C16119.16 (9)
N2—C6—C1117.99 (9)N5—C21—C16117.09 (9)
N2—C7—C8111.25 (9)N5—C22—C23111.66 (9)
N2—C7—H7A109.4N5—C22—H22A109.3
C8—C7—H7A109.4C23—C22—H22A109.3
N2—C7—H7B109.4N5—C22—H22B109.3
C8—C7—H7B109.4C23—C22—H22B109.3
H7A—C7—H7B108.0H22A—C22—H22B107.9
C7—C8—H8A109.5C22—C23—H23A109.5
C7—C8—H8B109.5C22—C23—H23B109.5
H8A—C8—H8B109.5H23A—C23—H23B109.5
C7—C8—H8C109.5C22—C23—H23C109.5
H8A—C8—H8C109.5H23A—C23—H23C109.5
H8B—C8—H8C109.5H23B—C23—H23C109.5
N2—C9—C10111.82 (9)N5—C24—C25111.75 (9)
N2—C9—H9A109.3N5—C24—H24A109.3
C10—C9—H9A109.3C25—C24—H24A109.3
N2—C9—H9B109.3N5—C24—H24B109.3
C10—C9—H9B109.3C25—C24—H24B109.3
H9A—C9—H9B107.9H24A—C24—H24B107.9
C9—C10—H10A109.5C24—C25—H25A109.5
C9—C10—H10B109.5C24—C25—H25B109.5
H10A—C10—H10B109.5H25A—C25—H25B109.5
C9—C10—H10C109.5C24—C25—H25C109.5
H10A—C10—H10C109.5H25A—C25—H25C109.5
H10B—C10—H10C109.5H25B—C25—H25C109.5
O2—C11—N3123.47 (10)O4—C26—N6123.44 (9)
O2—C11—C5118.13 (9)O4—C26—C20118.43 (9)
N3—C11—C5118.34 (9)N6—C26—C20118.11 (9)
N3—C12—C13113.75 (9)N6—C27—C28113.31 (10)
N3—C12—H12A108.8N6—C27—H27A108.9
C13—C12—H12A108.8C28—C27—H27A108.9
N3—C12—H12B108.8N6—C27—H27B108.9
C13—C12—H12B108.8C28—C27—H27B108.9
H12A—C12—H12B107.7H27A—C27—H27B107.7
C12—C13—H13A109.5C27—C28—H28A109.5
C12—C13—H13B109.5C27—C28—H28B109.5
H13A—C13—H13B109.5H28A—C28—H28B109.5
C12—C13—H13C109.5C27—C28—H28C109.5
H13A—C13—H13C109.5H28A—C28—H28C109.5
H13B—C13—H13C109.5H28B—C28—H28C109.5
N3—C14—C15113.57 (9)N6—C29—C30113.32 (9)
N3—C14—H14A108.9N6—C29—H29A108.9
C15—C14—H14A108.9C30—C29—H29A108.9
N3—C14—H14B108.9N6—C29—H29B108.9
C15—C14—H14B108.9C30—C29—H29B108.9
H14A—C14—H14B107.7H29A—C29—H29B107.7
C14—C15—H15A109.5C29—C30—H30A109.5
C14—C15—H15B109.5C29—C30—H30B109.5
H15A—C15—H15B109.5H30A—C30—H30B109.5
C14—C15—H15C109.5C29—C30—H30C109.5
H15A—C15—H15C109.5H30A—C30—H30C109.5
H15B—C15—H15C109.5H30B—C30—H30C109.5
C5—N1—C1117.90 (9)C20—N4—C16117.81 (9)
C6—N2—C7118.62 (9)C21—N5—C24124.13 (9)
C6—N2—C9124.19 (9)C21—N5—C22119.09 (9)
C7—N2—C9116.98 (9)C24—N5—C22116.76 (8)
C11—N3—C14118.41 (9)C26—N6—C29118.26 (9)
C11—N3—C12124.65 (9)C26—N6—C27125.00 (9)
C14—N3—C12116.35 (9)C29—N6—C27116.11 (8)
Hydrogen-bond geometry (Å, º) top
Cg2 is the centroid of the N4/C16–C20 ring.
D—H···AD—HH···AD···AD—H···A
C3—H3···N4i0.932.493.397 (1)164
C9—H9B···O4ii0.972.523.485 (1)175
C12—H12B···O3ii0.972.593.531 (1)164
C18—H18···N10.932.523.427 (1)166
C24—H24A···O2iii0.972.463.417 (1)169
C27—H27A···O1iii0.972.543.496 (1)168
C13—H13B···Cg(2)ii0.972.973.726 (1)139
Symmetry codes: (i) x, y1, z; (ii) x+1, y+1, z+1; (iii) x+1, y+1, z+2.

Experimental details

Crystal data
Chemical formulaC15H23N3O2
Mr277.36
Crystal system, space groupTriclinic, P1
Temperature (K)120
a, b, c (Å)11.1919 (3), 11.7913 (3), 12.2774 (3)
α, β, γ (°)90.255 (2), 105.050 (2), 102.600 (2)
V3)1523.74 (7)
Z4
Radiation typeCu Kα
µ (mm1)0.65
Crystal size (mm)0.53 × 0.38 × 0.14
Data collection
DiffractometerAgilent Xcalibur Atlas Gemini ultra
Absorption correctionAnalytical
(CrysAlis PRO; Agilent, 2011)
Tmin, Tmax0.538, 0.815
No. of measured, independent and
observed [I > 2σ(I)] reflections
17964, 5424, 5034
Rint0.023
(sin θ/λ)max1)0.597
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.033, 0.089, 1.04
No. of reflections5424
No. of parameters369
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.24, 0.23

Computer programs: CrysAlis PRO (Agilent, 2011), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), Mercury (Macrae et al., 2006) and DIAMOND (Brandenburg & Putz, 2005), publCIF (Westrip, 2010).

Hydrogen-bond geometry (Å, º) top
Cg2 is the centroid of the N4/C16–C20 ring.
D—H···AD—HH···AD···AD—H···A
C3—H3···N4i0.932.493.397 (1)164
C9—H9B···O4ii0.972.523.485 (1)175
C12—H12B···O3ii0.972.593.531 (1)164
C18—H18···N10.932.523.427 (1)166
C24—H24A···O2iii0.972.463.417 (1)169
C27—H27A···O1iii0.972.543.496 (1)168
C13—H13B···Cg(2)ii0.972.973.726 (1)139
Symmetry codes: (i) x, y1, z; (ii) x+1, y+1, z+1; (iii) x+1, y+1, z+2.
 

Acknowledgements

The project was supported by the Institutional research plan No. AVOZ10100521 of the Institute of Physics and the project Praemium Academiae of the Academy of Science of the Czech Republic and by the Grant Agency of the Faculty of Environmental Sciences, Czech University of Life Sciences, Prague (Project. No. 42900/1312/3114 "Environmental Aspects of Sustainable Development of Society").

References

First citationAgilent (2011). CrysAlis PRO. Agilent Technologies, Yarnton, England.  Google Scholar
First citationAlyapyshev, M. Y., Babain, V. A. & Smirnov, I. V. (2004). Radiochemistry, 46, 270–271.  CrossRef CAS Google Scholar
First citationBrandenburg, K. & Putz, H. (2005). DIAMOND. Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationMacrae, C. F., Edgington, P. R., McCabe, P., Pidcock, E., Shields, G. P., Taylor, R., Towler, M. & van de Streek, J. (2006). J. Appl. Cryst. 39, 453–457.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationNikitskaya, E. S., Usovskaya, V. S. & Rubtzov, M. V. (1958). Zh. Obshch. Khim. 28, 161–166.  CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationShimada, A., Yaita, T., Narita, H., Tachimori, S. & Okuno, K. (2004). Solvent Extr. Ion Exch. 22, 147–161.  Web of Science CrossRef CAS Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds