organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

2-Amino-4,6-di­methyl­pyrimidin-1-ium 2,3,5-tri­iodo­benzoate 2,3,5-tri­iodo­benzoic acid monosolvate

aSchool of Chemistry, Bharathidasan University, Tiruchirappalli 620 024, Tamilnadu, India
*Correspondence e-mail: tommtrichy@yahoo.co.in

(Received 22 October 2011; accepted 28 October 2011; online 9 November 2011)

In the crystal structure of the title compound, C6H10N3+·C7H2I3O2·C7H3I3O2, two R22(8) motifs are observed. One is generated by the inter­action of the 2-amino-4,6-dimethyl­pyrimidin-1-ium cation with the carboxyl­ate group of the 2,3,5-triiodo­benzoate anion via N—H⋯O hydrogen bonds. The other R22(8) motif is formed by the inter­action of two centrosymmentrically related pyrimidine moieties through N—H⋯N hydrogen bonds. The two motifs combine to form a linear heterotetra­meric unit. Heterotetra­meric units are linked by a carbox­yl–carboxyl­ate O—H⋯O hydrogen bond (involving the O—H group of neutral 2,3,5-triiodo­benzoic acid and an O atom of the anion), forming a supra­molecular chain along the a axis. In addition, components are held by weak I⋯O interactions in the range 3.023 (5) to 3.382 (5) Å and I⋯I inter­actions in the range 3.6327 (7) to 4.0025 (8) Å.

Related literature

For the role of amino­pyrimidine– carboxyl­ate inter­actions see: Hunt et al. (1980[Hunt, W. E., Schwalbe, C. H., Bird, K. & Mallinson, P. D. (1980). Biochem. J. 187, 533-536.]); Baker & Santi (1965[Baker, B. R. & Santi, D. V. (1965). J. Pharm. Sci. 54, 1252-1257.]). For hydrogen-bond motifs, see: Bernstein et al. (1995[Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555-1573.]); Etter (1990[Etter, M. C. (1990). Acc. Chem. Res. 23, 120-126.]). For carbox­yl–carboxyl­ate inter­actions, see: Sawyer & James (1982[Sawyer, L. & James, M. N. G. (1982). Nature (London), 295, 79-80.]). For iodine–iodine inter­actions, see: Stenzel et al. (1995[Stenzel, V., Jeske, J., Mont, W. W. & Jones, G. (1995). Inorg. Chem. 34, 5166-5170.]). For halogen–oxygen inter­actions, see: Thalladi et al. (1996[Thalladi, V. R., Goud, S. B., Hoy, V. J., Allen, F. H., Howard, J. A. K. & Desiraju, G. R. (1996). Chem. Commun. pp. 401-402.]). For related structures see: Devi & Muthiah (2007[Devi, P. & Muthiah, P. T. (2007). Acta Cryst. E63, o4822-o4823.]); Ebenezer & Muthiah (2010[Ebenezer, S. & Muthiah, P. T. (2010). Acta Cryst. E66, o516.]).

[Scheme 1]

Experimental

Crystal data
  • C6H10N3+·C7H2I3O2·C7H3I3O2

  • Mr = 1122.75

  • Monoclinic, P 21 /c

  • a = 9.4654 (2) Å

  • b = 9.6683 (2) Å

  • c = 31.1553 (5) Å

  • β = 90.366 (1)°

  • V = 2851.10 (10) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 6.57 mm−1

  • T = 296 K

  • 0.08 × 0.06 × 0.05 mm

Data collection
  • Bruker SMART APEXII CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2008[Bruker (2008). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.622, Tmax = 0.735

  • 34656 measured reflections

  • 9270 independent reflections

  • 6369 reflections with I > 2σ(I)

  • Rint = 0.032

Refinement
  • R[F2 > 2σ(F2)] = 0.051

  • wR(F2) = 0.110

  • S = 1.03

  • 9270 reflections

  • 301 parameters

  • H-atom parameters constrained

  • Δρmax = 3.16 e Å−3

  • Δρmin = −2.46 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1⋯O1A 0.86 1.80 2.652 (7) 170
N2—H2B⋯O2A 0.86 1.98 2.819 (8) 166
N2—H2A⋯N3i 0.86 2.19 3.042 (9) 172
O2B—H2⋯O2Aii 0.82 1.69 2.501 (7) 167
Symmetry codes: (i) -x, -y+1, -z; (ii) x+1, y-1, z.

Data collection: APEX2 (Bruker, 2008[Bruker (2008). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2008[Bruker (2008). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]) and POV-RAY (Cason, 2004[Cason, C. J. (2004). POV-RAY for Windows. Persistence of Vision, Raytracer Pty. Ltd, Victoria, Australia. URL: http://www.povray.org]); software used to prepare material for publication: PLATON.

Supporting information


Comment top

Aminopyrimidine derivatives are used as antifolate drugs. (Hunt et al., 1980; Baker & Santi, 1965). 2,3,5-triiodobenzoic acid is an auxin polar transport inhibitor. Abnormal development of embryos induced by inhibitor results in plantlets without shoots and roots. The crystal structures of 2-amino-4,6-dimethyl pyrimidine terephthalic acid (Devi et al., 2007) and 2-amino-4,6-dimethyl pyrimidine anthranilic acid (Ebenezer et al., 2010) have been reported from our laboratory.

The asymmetric unit of the title compound (I) (Scheme.1) contains one 2-amino-4,6-dimethylpyrimidin-1-ium cation, one 2,3,5-triiodobenzoate anion and a neutral molecule of 2,3,5-triiodobenzoic acid as shown in Fig. 1.

Protonation at N1 position of the pyrimidine base is reflected by an increase in internal bond angle (C2—N1—C6= 121.8 (5) °) when compared with the unprotonated N3 atom of pyrimidine ring (C2—N3—C4=118.0 (6) °). The carboxylate group of the triiodobenzoate anion interacts with the protonated N1 and the 2-amino group of the pyrimidine moiety through a pair of N—H···O hydrogen bonds (Table. 1) to form robust R22(8) ring motif (Etter, 1990; Bernstein et al., 1995). In addition, another type of R22(8) motif is formed by centrosymmetrically related pyrimidine molecules through a pair of N—H···N hydrogen bonds. These two different R22(8) motifs generate a linear heterotetrameric unit (Ebenezer et al., 2010).

The linear heterotetrameric units are interlinked through carboxyl- carboxylate interaction (Sawyer & James, 1982) via O—H···O hydrogen bond (involving carboxylic O—H group of neutral triiodobenzoic acid and carboxylate O atom of anion) and weak intermolecular I···O interaction. The presence of halogen-oxygen interaction is widely used in crystal engineering (Thalladi et al.,1996). These intermolecular interactions generate supramolecular chain along a axis. The crystal structure of (I) also exhibits weak intermolecular I···I interactions (Stenzel et al.,1995). The presence of weak intermolecular (I2A···I3Aiii) (symmetry code: 1 + x, y, z) interaction links the supramolecular chain and generate supramolecular ladder like arrangement (Fig. 2).

Related literature top

For the role of aminopyrimidine– carboxylate interactions see: Hunt et al. (1980); Baker & Santi (1965). For hydrogen-bond motifs, see: Bernstein et al. (1995); Etter (1990). For carboxyl–carboxylate interactions, see: Sawyer & James (1982). For iodine–iodine interactions, see: Stenzel et al. (1995). For halogen–oxygen interactions, see: Thalladi et al. (1996). For related structures see: Devi & Muthiah (2007); Ebenezer & Muthiah (2010).

Experimental top

Hot ethanolic solution of 2-amino-4,6-dimethylpyrimidine(30 mg, Aldrich) and 2,3,5-triiodobenzoic acid (125 mg, Loba Chemie) were mixed and warmed over a water bath for half an hour. The resulting solution was allowed to cool slowly at room temperature. After a week, brown coloured prismatic crystals were obtained.

Refinement top

All hydrogen atoms were positioned geometrically and were refined using a riding model. The N—H, O—H and C—H bond lengths are 0.86,0.82 and 0.93–0.96 Å, respectively [Uiso(H)=1.2 Ueq (parent atom)].

Structure description top

Aminopyrimidine derivatives are used as antifolate drugs. (Hunt et al., 1980; Baker & Santi, 1965). 2,3,5-triiodobenzoic acid is an auxin polar transport inhibitor. Abnormal development of embryos induced by inhibitor results in plantlets without shoots and roots. The crystal structures of 2-amino-4,6-dimethyl pyrimidine terephthalic acid (Devi et al., 2007) and 2-amino-4,6-dimethyl pyrimidine anthranilic acid (Ebenezer et al., 2010) have been reported from our laboratory.

The asymmetric unit of the title compound (I) (Scheme.1) contains one 2-amino-4,6-dimethylpyrimidin-1-ium cation, one 2,3,5-triiodobenzoate anion and a neutral molecule of 2,3,5-triiodobenzoic acid as shown in Fig. 1.

Protonation at N1 position of the pyrimidine base is reflected by an increase in internal bond angle (C2—N1—C6= 121.8 (5) °) when compared with the unprotonated N3 atom of pyrimidine ring (C2—N3—C4=118.0 (6) °). The carboxylate group of the triiodobenzoate anion interacts with the protonated N1 and the 2-amino group of the pyrimidine moiety through a pair of N—H···O hydrogen bonds (Table. 1) to form robust R22(8) ring motif (Etter, 1990; Bernstein et al., 1995). In addition, another type of R22(8) motif is formed by centrosymmetrically related pyrimidine molecules through a pair of N—H···N hydrogen bonds. These two different R22(8) motifs generate a linear heterotetrameric unit (Ebenezer et al., 2010).

The linear heterotetrameric units are interlinked through carboxyl- carboxylate interaction (Sawyer & James, 1982) via O—H···O hydrogen bond (involving carboxylic O—H group of neutral triiodobenzoic acid and carboxylate O atom of anion) and weak intermolecular I···O interaction. The presence of halogen-oxygen interaction is widely used in crystal engineering (Thalladi et al.,1996). These intermolecular interactions generate supramolecular chain along a axis. The crystal structure of (I) also exhibits weak intermolecular I···I interactions (Stenzel et al.,1995). The presence of weak intermolecular (I2A···I3Aiii) (symmetry code: 1 + x, y, z) interaction links the supramolecular chain and generate supramolecular ladder like arrangement (Fig. 2).

For the role of aminopyrimidine– carboxylate interactions see: Hunt et al. (1980); Baker & Santi (1965). For hydrogen-bond motifs, see: Bernstein et al. (1995); Etter (1990). For carboxyl–carboxylate interactions, see: Sawyer & James (1982). For iodine–iodine interactions, see: Stenzel et al. (1995). For halogen–oxygen interactions, see: Thalladi et al. (1996). For related structures see: Devi & Muthiah (2007); Ebenezer & Muthiah (2010).

Computing details top

Data collection: APEX2 (Bruker, 2008); cell refinement: SAINT (Bruker, 2008); data reduction: SAINT (Bruker, 2008); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: PLATON (Spek, 2009) and POV-RAY (Cason, 2004); software used to prepare material for publication: PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. The asymmetric unit of (I), showing 30% probability displacement ellipsoids. Dashed lines indicate hydrogen bonds.
[Figure 2] Fig. 2. A view of supramolecular chain running along a axis. [symmetry codes: (i)-x,1 - y,-z; (ii) 1 + x,-1 + y,z; (iii) 1 + x, y, z]
2-Amino-4,6-dimethylpyrimidin-1-ium 2,3,5-triiodobenzoate 2,3,5-triiodobenzoic acid monosolvate top
Crystal data top
C6H10N3+·C7H2I3O2·C7H3I3O2F(000) = 2024
Mr = 1122.75Dx = 2.616 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 9270 reflections
a = 9.4654 (2) Åθ = 2.2–31.5°
b = 9.6683 (2) ŵ = 6.57 mm1
c = 31.1553 (5) ÅT = 296 K
β = 90.366 (1)°Prism, brown
V = 2851.10 (10) Å30.08 × 0.06 × 0.05 mm
Z = 4
Data collection top
Bruker SMART APEXII CCD area-detector
diffractometer
9270 independent reflections
Radiation source: fine-focus sealed tube6369 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.032
φ and ω scansθmax = 31.5°, θmin = 2.2°
Absorption correction: multi-scan
(SADABS; Bruker, 2008)
h = 1313
Tmin = 0.622, Tmax = 0.735k = 1214
34656 measured reflectionsl = 4245
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.051Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.110H-atom parameters constrained
S = 1.03 w = 1/[σ2(Fo2) + (0.0274P)2 + 21.1246P]
where P = (Fo2 + 2Fc2)/3
9270 reflections(Δ/σ)max = 0.001
301 parametersΔρmax = 3.16 e Å3
0 restraintsΔρmin = 2.46 e Å3
Crystal data top
C6H10N3+·C7H2I3O2·C7H3I3O2V = 2851.10 (10) Å3
Mr = 1122.75Z = 4
Monoclinic, P21/cMo Kα radiation
a = 9.4654 (2) ŵ = 6.57 mm1
b = 9.6683 (2) ÅT = 296 K
c = 31.1553 (5) Å0.08 × 0.06 × 0.05 mm
β = 90.366 (1)°
Data collection top
Bruker SMART APEXII CCD area-detector
diffractometer
9270 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2008)
6369 reflections with I > 2σ(I)
Tmin = 0.622, Tmax = 0.735Rint = 0.032
34656 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0510 restraints
wR(F2) = 0.110H-atom parameters constrained
S = 1.03 w = 1/[σ2(Fo2) + (0.0274P)2 + 21.1246P]
where P = (Fo2 + 2Fc2)/3
9270 reflectionsΔρmax = 3.16 e Å3
301 parametersΔρmin = 2.46 e Å3
Special details top

Geometry. Bond distances, angles etc. have been calculated using the rounded fractional coordinates. All su's are estimated from the variances of the (full) variance-covariance matrix. The cell e.s.d.'s are taken into account in the estimation of distances, angles and torsion angles

Refinement. Refinement on F2 for ALL reflections except those flagged by the user for potential systematic errors. Weighted R-factors wR and all goodnesses of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The observed criterion of F2 > σ(F2) is used only for calculating -R-factor-obs etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R-factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
N10.2405 (6)0.4799 (5)0.08733 (17)0.0397 (17)
N20.0962 (7)0.6082 (6)0.0433 (2)0.057 (2)
N30.1215 (6)0.3771 (6)0.02881 (19)0.0470 (17)
C20.1514 (7)0.4889 (7)0.0532 (2)0.0427 (19)
C40.1811 (8)0.2583 (7)0.0393 (2)0.049 (3)
C50.2730 (9)0.2453 (7)0.0741 (2)0.055 (3)
C60.3011 (7)0.3597 (7)0.0988 (2)0.044 (2)
C70.1431 (10)0.1371 (8)0.0115 (3)0.066 (3)
C80.3923 (10)0.3610 (8)0.1379 (2)0.060 (3)
I1B0.93595 (6)0.31957 (5)0.15828 (2)0.0591 (2)
I2B0.76353 (6)0.61372 (5)0.10775 (2)0.0586 (2)
I3B0.53107 (6)0.23899 (5)0.02715 (2)0.0579 (2)
O1B0.7956 (5)0.0616 (5)0.1151 (2)0.0603 (19)
O2B0.9947 (5)0.0399 (5)0.09629 (18)0.0530 (17)
C9B0.8596 (7)0.0346 (6)0.10190 (18)0.0340 (17)
C10B0.7882 (6)0.1663 (6)0.08586 (19)0.0337 (17)
C11B0.8101 (7)0.2970 (6)0.1036 (2)0.0367 (17)
C12B0.7461 (7)0.4111 (6)0.0840 (2)0.0400 (19)
C13B0.6653 (8)0.3941 (7)0.0469 (2)0.044 (2)
C14B0.6441 (7)0.2637 (7)0.0302 (2)0.0407 (19)
C15B0.7020 (7)0.1499 (6)0.0502 (2)0.0407 (19)
I1A0.50939 (4)0.95714 (4)0.15717 (1)0.0386 (1)
I2A0.46466 (6)1.15333 (7)0.25657 (2)0.0728 (2)
I3A0.14705 (5)1.01436 (7)0.25537 (2)0.0637 (2)
O1A0.2849 (5)0.6901 (5)0.14042 (16)0.0494 (16)
O2A0.1319 (5)0.8203 (5)0.10451 (15)0.0508 (17)
C9A0.2086 (6)0.7931 (6)0.13696 (19)0.0357 (17)
C10A0.2004 (6)0.8924 (6)0.17413 (18)0.0324 (17)
C11A0.3163 (6)0.9645 (6)0.19021 (18)0.0310 (17)
C12A0.2980 (7)1.0461 (7)0.2266 (2)0.0387 (17)
C13A0.1688 (7)1.0587 (7)0.2459 (2)0.044 (2)
C14A0.0549 (7)0.9898 (7)0.2285 (2)0.042 (2)
C15A0.0688 (7)0.9075 (7)0.19306 (19)0.0397 (19)
H10.258700.553200.102000.0470*
H2A0.041200.615300.021300.0680*
H2B0.114800.679800.058700.0680*
H50.314700.160600.080500.0660*
H7A0.042900.122400.012400.0990*
H7B0.191000.056100.021900.0990*
H7C0.171200.155400.017500.0990*
H8A0.433500.451100.141400.0900*
H8B0.466000.293500.135000.0900*
H8C0.336300.339300.162600.0900*
H21.029100.036700.100700.0790*
H13B0.625600.470700.033300.0530*
H15B0.683100.061700.039700.0480*
H13A0.158301.112900.270300.0530*
H15A0.009500.861900.181700.0480*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
N10.044 (3)0.032 (3)0.043 (3)0.001 (2)0.003 (2)0.012 (2)
N20.066 (4)0.045 (3)0.060 (4)0.013 (3)0.026 (3)0.022 (3)
N30.052 (3)0.040 (3)0.049 (3)0.006 (3)0.001 (3)0.017 (3)
C20.046 (4)0.039 (3)0.043 (3)0.004 (3)0.001 (3)0.014 (3)
C40.061 (5)0.043 (4)0.043 (4)0.006 (3)0.010 (3)0.012 (3)
C50.077 (5)0.029 (3)0.060 (5)0.006 (3)0.004 (4)0.009 (3)
C60.049 (4)0.039 (3)0.044 (4)0.002 (3)0.002 (3)0.004 (3)
C70.098 (7)0.046 (4)0.055 (5)0.018 (4)0.008 (4)0.025 (4)
C80.082 (6)0.048 (4)0.049 (4)0.010 (4)0.011 (4)0.003 (3)
I1B0.0803 (4)0.0520 (3)0.0447 (3)0.0091 (3)0.0230 (2)0.0098 (2)
I2B0.0829 (4)0.0309 (2)0.0617 (3)0.0075 (2)0.0179 (3)0.0117 (2)
I3B0.0672 (3)0.0557 (3)0.0505 (3)0.0017 (2)0.0239 (2)0.0032 (2)
O1B0.048 (3)0.034 (3)0.099 (4)0.003 (2)0.008 (3)0.014 (3)
O2B0.046 (3)0.041 (3)0.072 (3)0.009 (2)0.004 (2)0.013 (2)
C9B0.044 (3)0.027 (3)0.031 (3)0.003 (2)0.000 (2)0.005 (2)
C10B0.035 (3)0.031 (3)0.035 (3)0.002 (2)0.001 (2)0.001 (2)
C11B0.038 (3)0.034 (3)0.038 (3)0.003 (2)0.001 (2)0.007 (2)
C12B0.051 (4)0.029 (3)0.040 (3)0.000 (3)0.001 (3)0.005 (2)
C13B0.057 (4)0.030 (3)0.045 (4)0.010 (3)0.010 (3)0.000 (3)
C14B0.047 (4)0.037 (3)0.038 (3)0.005 (3)0.011 (3)0.007 (3)
C15B0.048 (4)0.032 (3)0.042 (3)0.006 (3)0.005 (3)0.009 (3)
I1A0.0379 (2)0.0348 (2)0.0432 (2)0.0043 (2)0.0009 (2)0.0010 (2)
I2A0.0538 (3)0.0821 (4)0.0824 (4)0.0050 (3)0.0137 (3)0.0484 (3)
I3A0.0448 (3)0.0929 (4)0.0535 (3)0.0138 (3)0.0113 (2)0.0087 (3)
O1A0.059 (3)0.034 (2)0.055 (3)0.014 (2)0.017 (2)0.013 (2)
O2A0.064 (3)0.044 (3)0.044 (3)0.017 (2)0.022 (2)0.017 (2)
C9A0.036 (3)0.032 (3)0.039 (3)0.000 (2)0.005 (2)0.009 (2)
C10A0.037 (3)0.025 (3)0.035 (3)0.003 (2)0.007 (2)0.002 (2)
C11A0.035 (3)0.028 (3)0.030 (3)0.006 (2)0.000 (2)0.002 (2)
C12A0.041 (3)0.037 (3)0.038 (3)0.006 (3)0.005 (3)0.010 (3)
C13A0.053 (4)0.045 (4)0.035 (3)0.011 (3)0.004 (3)0.012 (3)
C14A0.045 (4)0.049 (4)0.033 (3)0.010 (3)0.003 (3)0.005 (3)
C15A0.043 (4)0.041 (3)0.035 (3)0.001 (3)0.003 (3)0.001 (3)
Geometric parameters (Å, º) top
I1B—C11B2.084 (6)C7—H7A0.9600
I2B—C12B2.100 (6)C7—H7B0.9600
I3B—C14B2.090 (6)C7—H7C0.9600
I1A—C11A2.105 (6)C8—H8C0.9600
I2A—C12A2.102 (7)C8—H8A0.9600
I3A—C14A2.105 (7)C8—H8B0.9600
O1B—C9B1.185 (8)C9B—C10B1.524 (8)
O2B—C9B1.293 (8)C10B—C11B1.394 (8)
O2B—H20.8200C10B—C15B1.383 (9)
O1A—C9A1.235 (7)C11B—C12B1.397 (9)
O2A—C9A1.268 (7)C12B—C13B1.392 (9)
N1—C21.356 (8)C13B—C14B1.378 (9)
N1—C61.343 (8)C14B—C15B1.377 (9)
N2—C21.303 (9)C13B—H13B0.9300
N3—C21.350 (9)C15B—H15B0.9300
N3—C41.320 (9)C9A—C10A1.507 (8)
N1—H10.8600C10A—C11A1.391 (8)
N2—H2A0.8600C10A—C15A1.389 (9)
N2—H2B0.8600C11A—C12A1.393 (9)
C4—C51.391 (10)C12A—C13A1.372 (9)
C4—C71.500 (11)C13A—C14A1.376 (9)
C5—C61.373 (9)C14A—C15A1.368 (9)
C6—C81.489 (10)C13A—H13A0.9300
C5—H50.9300C15A—H15A0.9300
I1A···O1A3.382 (5)N3···N2x3.042 (9)
I1A···O1Bi3.023 (5)N3···H2Ax2.1900
I1A···C9Bi3.819 (6)C4···O2Bvi3.281 (9)
I1A···I2A3.6584 (8)C5···O2Bvi3.374 (9)
I1A···I2Aii3.9877 (8)C7···O2Bvi3.144 (11)
I1B···I2B3.6327 (7)C8···O1A3.341 (9)
I1B···I3Aii3.8352 (8)C9A···N13.414 (8)
I1B···O2B3.371 (5)C9A···O2Bviii3.371 (8)
I2A···I1A3.6584 (8)C9B···I1Avii3.819 (6)
I2A···I3Aiii3.9136 (8)C9B···O2Aix3.308 (8)
I2A···I1Aiv3.9878 (7)C10A···O2Bviii3.413 (8)
I2B···I3Bv4.0025 (8)C15A···O2Bviii3.346 (8)
I2B···I1B3.6327 (7)C4···H2Ax3.0700
I2B···O1Bi3.162 (5)C7···H15Bxi3.0000
I3A···I2Avi3.9136 (8)C9A···H2viii2.6200
I3A···I1Biv3.8351 (8)C9A···H2B2.8100
I3B···I2Bv4.0026 (8)C9A···H12.6100
I1A···H8Bi3.3500C10A···H2viii2.8800
I3B···H13Bv3.1800C15A···H2viii2.9500
O1A···C83.341 (9)H1···O1A1.8000
O1A···I1A3.382 (5)H1···O2A2.8500
O1A···N12.652 (7)H1···H8A2.2800
O1B···I1Avii3.023 (5)H1···C9A2.6100
O1B···I2Bvii3.162 (5)H1···H2B2.2700
O2A···O2Bviii2.501 (7)H2···O2Aix1.6900
O2A···C9Bviii3.308 (8)H2···C15Aix2.9500
O2A···N22.819 (8)H2···C9Aix2.6200
O2B···C4iii3.281 (9)H2···C10Aix2.8800
O2B···C15Aix3.346 (8)H2A···N3x2.1900
O2B···O2Aix2.501 (7)H2A···C4x3.0700
O2B···C10Aix3.413 (8)H2B···O2A1.9800
O2B···I1B3.371 (5)H2B···C9A2.8100
O2B···C7iii3.144 (11)H2B···H12.2700
O2B···C5iii3.374 (9)H5···H8B2.5600
O2B···C9Aix3.371 (8)H5···H7B2.3900
O1A···H11.8000H7A···O2Bvi2.7700
O1A···H8A2.7100H7B···H52.3900
O1B···H15Aix2.8600H7B···H15Bxi2.5400
O1B···H15B2.8400H8A···H12.2800
O2A···H2B1.9800H8A···O1A2.7100
O2A···H2viii1.6900H8B···I1Avii3.3500
O2A···H15A2.7900H8B···H52.5600
O2A···H12.8500H13B···I3Bv3.1800
O2B···H7Aiii2.7700H15A···O1Bviii2.8600
N1···C9A3.414 (8)H15A···O2A2.7900
N1···O1A2.652 (7)H15B···O1B2.8400
N2···N3x3.042 (9)H15B···C7xi3.0000
N2···O2A2.819 (8)H15B···H7Bxi2.5400
C9B—O2B—H2109.00C9B—C10B—C11B124.2 (5)
C2—N1—C6121.8 (5)I1B—C11B—C10B120.1 (4)
C2—N3—C4118.0 (6)C10B—C11B—C12B118.7 (6)
C6—N1—H1119.00I1B—C11B—C12B121.2 (4)
C2—N1—H1119.00I2B—C12B—C11B123.3 (5)
C2—N2—H2A120.00C11B—C12B—C13B120.3 (6)
H2A—N2—H2B120.00I2B—C12B—C13B116.4 (5)
C2—N2—H2B120.00C12B—C13B—C14B120.0 (6)
N2—C2—N3119.6 (6)I3B—C14B—C13B120.0 (5)
N1—C2—N3121.1 (6)C13B—C14B—C15B120.3 (6)
N1—C2—N2119.3 (6)I3B—C14B—C15B119.7 (5)
C5—C4—C7121.7 (6)C10B—C15B—C14B120.2 (6)
N3—C4—C5122.4 (6)C12B—C13B—H13B120.00
N3—C4—C7115.9 (6)C14B—C13B—H13B120.00
C4—C5—C6118.8 (6)C10B—C15B—H15B120.00
C5—C6—C8125.1 (6)C14B—C15B—H15B120.00
N1—C6—C5117.9 (6)O1A—C9A—O2A124.6 (6)
N1—C6—C8117.1 (6)O1A—C9A—C10A118.7 (5)
C6—C5—H5121.00O2A—C9A—C10A116.7 (5)
C4—C5—H5121.00C9A—C10A—C11A123.5 (5)
C4—C7—H7B109.00C9A—C10A—C15A116.4 (5)
C4—C7—H7C109.00C11A—C10A—C15A120.1 (5)
H7A—C7—H7B110.00I1A—C11A—C10A119.5 (4)
H7A—C7—H7C110.00I1A—C11A—C12A122.0 (4)
H7B—C7—H7C110.00C10A—C11A—C12A118.4 (5)
C4—C7—H7A109.00I2A—C12A—C11A123.0 (5)
C6—C8—H8A109.00I2A—C12A—C13A115.5 (5)
C6—C8—H8C109.00C11A—C12A—C13A121.5 (6)
H8A—C8—H8B109.00C12A—C13A—C14A118.9 (6)
H8A—C8—H8C109.00I3A—C14A—C13A120.0 (5)
H8B—C8—H8C109.00I3A—C14A—C15A118.6 (5)
C6—C8—H8B110.00C13A—C14A—C15A121.4 (6)
O1B—C9B—O2B125.9 (6)C10A—C15A—C14A119.7 (6)
O1B—C9B—C10B122.9 (6)C12A—C13A—H13A121.00
O2B—C9B—C10B111.1 (5)C14A—C13A—H13A121.00
C9B—C10B—C15B115.2 (5)C10A—C15A—H15A120.00
C11B—C10B—C15B120.5 (5)C14A—C15A—H15A120.00
C6—N1—C2—N2179.6 (6)I2B—C12B—C13B—C14B177.5 (5)
C6—N1—C2—N31.0 (10)C11B—C12B—C13B—C14B2.3 (10)
C2—N1—C6—C51.7 (10)C12B—C13B—C14B—I3B177.0 (5)
C2—N1—C6—C8177.5 (6)C12B—C13B—C14B—C15B0.3 (10)
C4—N3—C2—N10.3 (10)I3B—C14B—C15B—C10B173.8 (5)
C2—N3—C4—C7179.3 (6)C13B—C14B—C15B—C10B3.5 (10)
C4—N3—C2—N2178.9 (6)O1A—C9A—C10A—C11A61.3 (8)
C2—N3—C4—C50.3 (10)O1A—C9A—C10A—C15A117.3 (6)
N3—C4—C5—C61.0 (11)O2A—C9A—C10A—C11A120.8 (6)
C7—C4—C5—C6178.7 (7)O2A—C9A—C10A—C15A60.6 (7)
C4—C5—C6—C8177.5 (7)C9A—C10A—C11A—I1A8.1 (8)
C4—C5—C6—N11.6 (10)C9A—C10A—C11A—C12A175.6 (6)
O1B—C9B—C10B—C11B119.6 (7)C15A—C10A—C11A—I1A173.4 (5)
O1B—C9B—C10B—C15B63.2 (8)C15A—C10A—C11A—C12A2.9 (9)
O2B—C9B—C10B—C11B64.7 (8)C9A—C10A—C15A—C14A176.3 (6)
O2B—C9B—C10B—C15B112.4 (6)C11A—C10A—C15A—C14A2.3 (9)
C9B—C10B—C11B—I1B4.6 (8)I1A—C11A—C12A—I2A6.9 (7)
C9B—C10B—C11B—C12B175.4 (6)I1A—C11A—C12A—C13A174.8 (5)
C15B—C10B—C11B—I1B178.4 (5)C10A—C11A—C12A—I2A176.9 (4)
C15B—C10B—C11B—C12B1.6 (9)C10A—C11A—C12A—C13A1.5 (9)
C9B—C10B—C15B—C14B173.1 (6)I2A—C12A—C13A—C14A179.1 (5)
C11B—C10B—C15B—C14B4.2 (9)C11A—C12A—C13A—C14A0.6 (10)
I1B—C11B—C12B—I2B1.9 (8)C12A—C13A—C14A—I3A177.0 (5)
I1B—C11B—C12B—C13B178.4 (5)C12A—C13A—C14A—C15A1.3 (10)
C10B—C11B—C12B—I2B178.1 (5)I3A—C14A—C15A—C10A178.4 (5)
C10B—C11B—C12B—C13B1.6 (10)C13A—C14A—C15A—C10A0.2 (10)
Symmetry codes: (i) x, y+1, z; (ii) x+1, y1/2, z+1/2; (iii) x+1, y, z; (iv) x+1, y+1/2, z+1/2; (v) x+1, y+1, z; (vi) x1, y, z; (vii) x, y1, z; (viii) x1, y+1, z; (ix) x+1, y1, z; (x) x, y+1, z; (xi) x+1, y, z.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1···O1A0.861.802.652 (7)170
N2—H2B···O2A0.861.982.819 (8)166
N2—H2A···N3x0.862.193.042 (9)172
O2B—H2···O2Aix0.821.692.501 (7)167
Symmetry codes: (ix) x+1, y1, z; (x) x, y+1, z.

Experimental details

Crystal data
Chemical formulaC6H10N3+·C7H2I3O2·C7H3I3O2
Mr1122.75
Crystal system, space groupMonoclinic, P21/c
Temperature (K)296
a, b, c (Å)9.4654 (2), 9.6683 (2), 31.1553 (5)
β (°) 90.366 (1)
V3)2851.10 (10)
Z4
Radiation typeMo Kα
µ (mm1)6.57
Crystal size (mm)0.08 × 0.06 × 0.05
Data collection
DiffractometerBruker SMART APEXII CCD area-detector
Absorption correctionMulti-scan
(SADABS; Bruker, 2008)
Tmin, Tmax0.622, 0.735
No. of measured, independent and
observed [I > 2σ(I)] reflections
34656, 9270, 6369
Rint0.032
(sin θ/λ)max1)0.736
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.051, 0.110, 1.03
No. of reflections9270
No. of parameters301
H-atom treatmentH-atom parameters constrained
w = 1/[σ2(Fo2) + (0.0274P)2 + 21.1246P]
where P = (Fo2 + 2Fc2)/3
Δρmax, Δρmin (e Å3)3.16, 2.46

Computer programs: APEX2 (Bruker, 2008), SAINT (Bruker, 2008), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), PLATON (Spek, 2009) and POV-RAY (Cason, 2004), PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1···O1A0.86001.80002.652 (7)170.00
N2—H2B···O2A0.86001.98002.819 (8)166.00
N2—H2A···N3i0.86002.19003.042 (9)172.00
O2B—H2···O2Aii0.82001.69002.501 (7)167.00
Symmetry codes: (i) x, y+1, z; (ii) x+1, y1, z.
 

Acknowledgements

The authors thank the DST-India (FIST programme) for the use of the diffractometer at the School of Chemistry, Bharathidasan University, Tiruchirappalli, Tamilnadu, India

References

First citationBaker, B. R. & Santi, D. V. (1965). J. Pharm. Sci. 54, 1252–1257.  CrossRef CAS PubMed Web of Science Google Scholar
First citationBernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573.  CrossRef CAS Web of Science Google Scholar
First citationBruker (2008). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationCason, C. J. (2004). POV-RAY for Windows. Persistence of Vision, Raytracer Pty. Ltd, Victoria, Australia. URL: http://www.povray.org  Google Scholar
First citationDevi, P. & Muthiah, P. T. (2007). Acta Cryst. E63, o4822–o4823.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationEbenezer, S. & Muthiah, P. T. (2010). Acta Cryst. E66, o516.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationEtter, M. C. (1990). Acc. Chem. Res. 23, 120–126.  CrossRef CAS Web of Science Google Scholar
First citationHunt, W. E., Schwalbe, C. H., Bird, K. & Mallinson, P. D. (1980). Biochem. J. 187, 533–536.  CrossRef CAS PubMed Web of Science Google Scholar
First citationSawyer, L. & James, M. N. G. (1982). Nature (London), 295, 79–80.  CrossRef CAS PubMed Web of Science Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationStenzel, V., Jeske, J., Mont, W. W. & Jones, G. (1995). Inorg. Chem. 34, 5166–5170.  CrossRef CAS Web of Science Google Scholar
First citationThalladi, V. R., Goud, S. B., Hoy, V. J., Allen, F. H., Howard, J. A. K. & Desiraju, G. R. (1996). Chem. Commun. pp. 401–402.  CSD CrossRef Web of Science Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds