organic compounds
2-Amino-4,6-dimethylpyrimidin-1-ium 2,3,5-triiodobenzoate 2,3,5-triiodobenzoic acid monosolvate
aSchool of Chemistry, Bharathidasan University, Tiruchirappalli 620 024, Tamilnadu, India
*Correspondence e-mail: tommtrichy@yahoo.co.in
In the 6H10N3+·C7H2I3O2−·C7H3I3O2, two R22(8) motifs are observed. One is generated by the interaction of the 2-amino-4,6-dimethylpyrimidin-1-ium cation with the carboxylate group of the 2,3,5-triiodobenzoate anion via N—H⋯O hydrogen bonds. The other R22(8) motif is formed by the interaction of two centrosymmentrically related pyrimidine moieties through N—H⋯N hydrogen bonds. The two motifs combine to form a linear heterotetrameric unit. Heterotetrameric units are linked by a carboxyl–carboxylate O—H⋯O hydrogen bond (involving the O—H group of neutral 2,3,5-triiodobenzoic acid and an O atom of the anion), forming a supramolecular chain along the a axis. In addition, components are held by weak I⋯O interactions in the range 3.023 (5) to 3.382 (5) Å and I⋯I interactions in the range 3.6327 (7) to 4.0025 (8) Å.
of the title compound, CRelated literature
For the role of aminopyrimidine– carboxylate interactions see: Hunt et al. (1980); Baker & Santi (1965). For hydrogen-bond motifs, see: Bernstein et al. (1995); Etter (1990). For carboxyl–carboxylate interactions, see: Sawyer & James (1982). For iodine–iodine interactions, see: Stenzel et al. (1995). For halogen–oxygen interactions, see: Thalladi et al. (1996). For related structures see: Devi & Muthiah (2007); Ebenezer & Muthiah (2010).
Experimental
Crystal data
|
Refinement
|
Data collection: APEX2 (Bruker, 2008); cell SAINT (Bruker, 2008); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: PLATON (Spek, 2009) and POV-RAY (Cason, 2004); software used to prepare material for publication: PLATON.
Supporting information
https://doi.org/10.1107/S160053681104534X/hg5115sup1.cif
contains datablocks global, I. DOI:Structure factors: contains datablock I. DOI: https://doi.org/10.1107/S160053681104534X/hg5115Isup2.hkl
Supporting information file. DOI: https://doi.org/10.1107/S160053681104534X/hg5115Isup3.cml
Hot ethanolic solution of 2-amino-4,6-dimethylpyrimidine(30 mg, Aldrich) and 2,3,5-triiodobenzoic acid (125 mg, Loba Chemie) were mixed and warmed over a water bath for half an hour. The resulting solution was allowed to cool slowly at room temperature. After a week, brown coloured prismatic crystals were obtained.
All hydrogen atoms were positioned geometrically and were refined using a riding model. The N—H, O—H and C—H bond lengths are 0.86,0.82 and 0.93–0.96 Å, respectively [Uiso(H)=1.2 Ueq (parent atom)].
Aminopyrimidine derivatives are used as antifolate drugs. (Hunt et al., 1980; Baker & Santi, 1965). 2,3,5-triiodobenzoic acid is an auxin polar transport inhibitor. Abnormal development of embryos induced by inhibitor results in plantlets without shoots and roots. The crystal structures of 2-amino-4,6-dimethyl pyrimidine terephthalic acid (Devi et al., 2007) and 2-amino-4,6-dimethyl pyrimidine anthranilic acid (Ebenezer et al., 2010) have been reported from our laboratory.
The
of the title compound (I) (Scheme.1) contains one 2-amino-4,6-dimethylpyrimidin-1-ium cation, one 2,3,5-triiodobenzoate anion and a neutral molecule of 2,3,5-triiodobenzoic acid as shown in Fig. 1.Protonation at N1 position of the pyrimidine base is reflected by an increase in internal bond angle (C2—N1—C6= 121.8 (5) °) when compared with the unprotonated N3 atom of pyrimidine ring (C2—N3—C4=118.0 (6) °). The carboxylate group of the triiodobenzoate anion interacts with the protonated N1 and the 2-amino group of the pyrimidine moiety through a pair of N—H···O hydrogen bonds (Table. 1) to form robust R22(8) ring motif (Etter, 1990; Bernstein et al., 1995). In addition, another type of R22(8) motif is formed by centrosymmetrically related pyrimidine molecules through a pair of N—H···N hydrogen bonds. These two different R22(8) motifs generate a linear heterotetrameric unit (Ebenezer et al., 2010).
The linear heterotetrameric units are interlinked through carboxyl- carboxylate interaction (Sawyer & James, 1982) via O—H···O hydrogen bond (involving carboxylic O—H group of neutral triiodobenzoic acid and carboxylate O atom of anion) and weak intermolecular I···O interaction. The presence of halogen-oxygen interaction is widely used in crystal engineering (Thalladi et al.,1996). These intermolecular interactions generate supramolecular chain along a axis. The
of (I) also exhibits weak intermolecular I···I interactions (Stenzel et al.,1995). The presence of weak intermolecular (I2A···I3Aiii) (symmetry code: 1 + x, y, z) interaction links the supramolecular chain and generate supramolecular ladder like arrangement (Fig. 2).For the role of aminopyrimidine– carboxylate interactions see: Hunt et al. (1980); Baker & Santi (1965). For hydrogen-bond motifs, see: Bernstein et al. (1995); Etter (1990). For carboxyl–carboxylate interactions, see: Sawyer & James (1982). For iodine–iodine interactions, see: Stenzel et al. (1995). For halogen–oxygen interactions, see: Thalladi et al. (1996). For related structures see: Devi & Muthiah (2007); Ebenezer & Muthiah (2010).
Data collection: APEX2 (Bruker, 2008); cell
SAINT (Bruker, 2008); data reduction: SAINT (Bruker, 2008); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: PLATON (Spek, 2009) and POV-RAY (Cason, 2004); software used to prepare material for publication: PLATON (Spek, 2009).C6H10N3+·C7H2I3O2−·C7H3I3O2 | F(000) = 2024 |
Mr = 1122.75 | Dx = 2.616 Mg m−3 |
Monoclinic, P21/c | Mo Kα radiation, λ = 0.71073 Å |
Hall symbol: -P 2ybc | Cell parameters from 9270 reflections |
a = 9.4654 (2) Å | θ = 2.2–31.5° |
b = 9.6683 (2) Å | µ = 6.57 mm−1 |
c = 31.1553 (5) Å | T = 296 K |
β = 90.366 (1)° | Prism, brown |
V = 2851.10 (10) Å3 | 0.08 × 0.06 × 0.05 mm |
Z = 4 |
Bruker SMART APEXII CCD area-detector diffractometer | 9270 independent reflections |
Radiation source: fine-focus sealed tube | 6369 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.032 |
φ and ω scans | θmax = 31.5°, θmin = 2.2° |
Absorption correction: multi-scan (SADABS; Bruker, 2008) | h = −13→13 |
Tmin = 0.622, Tmax = 0.735 | k = −12→14 |
34656 measured reflections | l = −42→45 |
Refinement on F2 | Primary atom site location: structure-invariant direct methods |
Least-squares matrix: full | Secondary atom site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.051 | Hydrogen site location: inferred from neighbouring sites |
wR(F2) = 0.110 | H-atom parameters constrained |
S = 1.03 | w = 1/[σ2(Fo2) + (0.0274P)2 + 21.1246P] where P = (Fo2 + 2Fc2)/3 |
9270 reflections | (Δ/σ)max = 0.001 |
301 parameters | Δρmax = 3.16 e Å−3 |
0 restraints | Δρmin = −2.46 e Å−3 |
C6H10N3+·C7H2I3O2−·C7H3I3O2 | V = 2851.10 (10) Å3 |
Mr = 1122.75 | Z = 4 |
Monoclinic, P21/c | Mo Kα radiation |
a = 9.4654 (2) Å | µ = 6.57 mm−1 |
b = 9.6683 (2) Å | T = 296 K |
c = 31.1553 (5) Å | 0.08 × 0.06 × 0.05 mm |
β = 90.366 (1)° |
Bruker SMART APEXII CCD area-detector diffractometer | 9270 independent reflections |
Absorption correction: multi-scan (SADABS; Bruker, 2008) | 6369 reflections with I > 2σ(I) |
Tmin = 0.622, Tmax = 0.735 | Rint = 0.032 |
34656 measured reflections |
R[F2 > 2σ(F2)] = 0.051 | 0 restraints |
wR(F2) = 0.110 | H-atom parameters constrained |
S = 1.03 | w = 1/[σ2(Fo2) + (0.0274P)2 + 21.1246P] where P = (Fo2 + 2Fc2)/3 |
9270 reflections | Δρmax = 3.16 e Å−3 |
301 parameters | Δρmin = −2.46 e Å−3 |
Geometry. Bond distances, angles etc. have been calculated using the rounded fractional coordinates. All su's are estimated from the variances of the (full) variance-covariance matrix. The cell e.s.d.'s are taken into account in the estimation of distances, angles and torsion angles |
Refinement. Refinement on F2 for ALL reflections except those flagged by the user for potential systematic errors. Weighted R-factors wR and all goodnesses of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The observed criterion of F2 > σ(F2) is used only for calculating -R-factor-obs etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R-factors based on ALL data will be even larger. |
x | y | z | Uiso*/Ueq | ||
N1 | 0.2405 (6) | 0.4799 (5) | 0.08733 (17) | 0.0397 (17) | |
N2 | 0.0962 (7) | 0.6082 (6) | 0.0433 (2) | 0.057 (2) | |
N3 | 0.1215 (6) | 0.3771 (6) | 0.02881 (19) | 0.0470 (17) | |
C2 | 0.1514 (7) | 0.4889 (7) | 0.0532 (2) | 0.0427 (19) | |
C4 | 0.1811 (8) | 0.2583 (7) | 0.0393 (2) | 0.049 (3) | |
C5 | 0.2730 (9) | 0.2453 (7) | 0.0741 (2) | 0.055 (3) | |
C6 | 0.3011 (7) | 0.3597 (7) | 0.0988 (2) | 0.044 (2) | |
C7 | 0.1431 (10) | 0.1371 (8) | 0.0115 (3) | 0.066 (3) | |
C8 | 0.3923 (10) | 0.3610 (8) | 0.1379 (2) | 0.060 (3) | |
I1B | 0.93595 (6) | 0.31957 (5) | 0.15828 (2) | 0.0591 (2) | |
I2B | 0.76353 (6) | 0.61372 (5) | 0.10775 (2) | 0.0586 (2) | |
I3B | 0.53107 (6) | 0.23899 (5) | −0.02715 (2) | 0.0579 (2) | |
O1B | 0.7956 (5) | −0.0616 (5) | 0.1151 (2) | 0.0603 (19) | |
O2B | 0.9947 (5) | 0.0399 (5) | 0.09629 (18) | 0.0530 (17) | |
C9B | 0.8596 (7) | 0.0346 (6) | 0.10190 (18) | 0.0340 (17) | |
C10B | 0.7882 (6) | 0.1663 (6) | 0.08586 (19) | 0.0337 (17) | |
C11B | 0.8101 (7) | 0.2970 (6) | 0.1036 (2) | 0.0367 (17) | |
C12B | 0.7461 (7) | 0.4111 (6) | 0.0840 (2) | 0.0400 (19) | |
C13B | 0.6653 (8) | 0.3941 (7) | 0.0469 (2) | 0.044 (2) | |
C14B | 0.6441 (7) | 0.2637 (7) | 0.0302 (2) | 0.0407 (19) | |
C15B | 0.7020 (7) | 0.1499 (6) | 0.0502 (2) | 0.0407 (19) | |
I1A | 0.50939 (4) | 0.95714 (4) | 0.15717 (1) | 0.0386 (1) | |
I2A | 0.46466 (6) | 1.15333 (7) | 0.25657 (2) | 0.0728 (2) | |
I3A | −0.14705 (5) | 1.01436 (7) | 0.25537 (2) | 0.0637 (2) | |
O1A | 0.2849 (5) | 0.6901 (5) | 0.14042 (16) | 0.0494 (16) | |
O2A | 0.1319 (5) | 0.8203 (5) | 0.10451 (15) | 0.0508 (17) | |
C9A | 0.2086 (6) | 0.7931 (6) | 0.13696 (19) | 0.0357 (17) | |
C10A | 0.2004 (6) | 0.8924 (6) | 0.17413 (18) | 0.0324 (17) | |
C11A | 0.3163 (6) | 0.9645 (6) | 0.19021 (18) | 0.0310 (17) | |
C12A | 0.2980 (7) | 1.0461 (7) | 0.2266 (2) | 0.0387 (17) | |
C13A | 0.1688 (7) | 1.0587 (7) | 0.2459 (2) | 0.044 (2) | |
C14A | 0.0549 (7) | 0.9898 (7) | 0.2285 (2) | 0.042 (2) | |
C15A | 0.0688 (7) | 0.9075 (7) | 0.19306 (19) | 0.0397 (19) | |
H1 | 0.25870 | 0.55320 | 0.10200 | 0.0470* | |
H2A | 0.04120 | 0.61530 | 0.02130 | 0.0680* | |
H2B | 0.11480 | 0.67980 | 0.05870 | 0.0680* | |
H5 | 0.31470 | 0.16060 | 0.08050 | 0.0660* | |
H7A | 0.04290 | 0.12240 | 0.01240 | 0.0990* | |
H7B | 0.19100 | 0.05610 | 0.02190 | 0.0990* | |
H7C | 0.17120 | 0.15540 | −0.01750 | 0.0990* | |
H8A | 0.43350 | 0.45110 | 0.14140 | 0.0900* | |
H8B | 0.46600 | 0.29350 | 0.13500 | 0.0900* | |
H8C | 0.33630 | 0.33930 | 0.16260 | 0.0900* | |
H2 | 1.02910 | −0.03670 | 0.10070 | 0.0790* | |
H13B | 0.62560 | 0.47070 | 0.03330 | 0.0530* | |
H15B | 0.68310 | 0.06170 | 0.03970 | 0.0480* | |
H13A | 0.15830 | 1.11290 | 0.27030 | 0.0530* | |
H15A | −0.00950 | 0.86190 | 0.18170 | 0.0480* |
U11 | U22 | U33 | U12 | U13 | U23 | |
N1 | 0.044 (3) | 0.032 (3) | 0.043 (3) | −0.001 (2) | −0.003 (2) | −0.012 (2) |
N2 | 0.066 (4) | 0.045 (3) | 0.060 (4) | 0.013 (3) | −0.026 (3) | −0.022 (3) |
N3 | 0.052 (3) | 0.040 (3) | 0.049 (3) | −0.006 (3) | −0.001 (3) | −0.017 (3) |
C2 | 0.046 (4) | 0.039 (3) | 0.043 (3) | −0.004 (3) | −0.001 (3) | −0.014 (3) |
C4 | 0.061 (5) | 0.043 (4) | 0.043 (4) | −0.006 (3) | 0.010 (3) | −0.012 (3) |
C5 | 0.077 (5) | 0.029 (3) | 0.060 (5) | 0.006 (3) | 0.004 (4) | −0.009 (3) |
C6 | 0.049 (4) | 0.039 (3) | 0.044 (4) | 0.002 (3) | 0.002 (3) | −0.004 (3) |
C7 | 0.098 (7) | 0.046 (4) | 0.055 (5) | −0.018 (4) | 0.008 (4) | −0.025 (4) |
C8 | 0.082 (6) | 0.048 (4) | 0.049 (4) | 0.010 (4) | −0.011 (4) | −0.003 (3) |
I1B | 0.0803 (4) | 0.0520 (3) | 0.0447 (3) | 0.0091 (3) | −0.0230 (2) | −0.0098 (2) |
I2B | 0.0829 (4) | 0.0309 (2) | 0.0617 (3) | 0.0075 (2) | −0.0179 (3) | −0.0117 (2) |
I3B | 0.0672 (3) | 0.0557 (3) | 0.0505 (3) | 0.0017 (2) | −0.0239 (2) | −0.0032 (2) |
O1B | 0.048 (3) | 0.034 (3) | 0.099 (4) | 0.003 (2) | 0.008 (3) | 0.014 (3) |
O2B | 0.046 (3) | 0.041 (3) | 0.072 (3) | 0.009 (2) | −0.004 (2) | 0.013 (2) |
C9B | 0.044 (3) | 0.027 (3) | 0.031 (3) | 0.003 (2) | 0.000 (2) | −0.005 (2) |
C10B | 0.035 (3) | 0.031 (3) | 0.035 (3) | 0.002 (2) | 0.001 (2) | −0.001 (2) |
C11B | 0.038 (3) | 0.034 (3) | 0.038 (3) | 0.003 (2) | −0.001 (2) | −0.007 (2) |
C12B | 0.051 (4) | 0.029 (3) | 0.040 (3) | 0.000 (3) | 0.001 (3) | −0.005 (2) |
C13B | 0.057 (4) | 0.030 (3) | 0.045 (4) | 0.010 (3) | −0.010 (3) | 0.000 (3) |
C14B | 0.047 (4) | 0.037 (3) | 0.038 (3) | 0.005 (3) | −0.011 (3) | −0.007 (3) |
C15B | 0.048 (4) | 0.032 (3) | 0.042 (3) | 0.006 (3) | −0.005 (3) | −0.009 (3) |
I1A | 0.0379 (2) | 0.0348 (2) | 0.0432 (2) | 0.0043 (2) | 0.0009 (2) | −0.0010 (2) |
I2A | 0.0538 (3) | 0.0821 (4) | 0.0824 (4) | −0.0050 (3) | −0.0137 (3) | −0.0484 (3) |
I3A | 0.0448 (3) | 0.0929 (4) | 0.0535 (3) | 0.0138 (3) | 0.0113 (2) | 0.0087 (3) |
O1A | 0.059 (3) | 0.034 (2) | 0.055 (3) | 0.014 (2) | −0.017 (2) | −0.013 (2) |
O2A | 0.064 (3) | 0.044 (3) | 0.044 (3) | 0.017 (2) | −0.022 (2) | −0.017 (2) |
C9A | 0.036 (3) | 0.032 (3) | 0.039 (3) | 0.000 (2) | −0.005 (2) | −0.009 (2) |
C10A | 0.037 (3) | 0.025 (3) | 0.035 (3) | 0.003 (2) | −0.007 (2) | −0.002 (2) |
C11A | 0.035 (3) | 0.028 (3) | 0.030 (3) | 0.006 (2) | 0.000 (2) | −0.002 (2) |
C12A | 0.041 (3) | 0.037 (3) | 0.038 (3) | 0.006 (3) | −0.005 (3) | −0.010 (3) |
C13A | 0.053 (4) | 0.045 (4) | 0.035 (3) | 0.011 (3) | −0.004 (3) | −0.012 (3) |
C14A | 0.045 (4) | 0.049 (4) | 0.033 (3) | 0.010 (3) | 0.003 (3) | 0.005 (3) |
C15A | 0.043 (4) | 0.041 (3) | 0.035 (3) | −0.001 (3) | −0.003 (3) | −0.001 (3) |
I1B—C11B | 2.084 (6) | C7—H7A | 0.9600 |
I2B—C12B | 2.100 (6) | C7—H7B | 0.9600 |
I3B—C14B | 2.090 (6) | C7—H7C | 0.9600 |
I1A—C11A | 2.105 (6) | C8—H8C | 0.9600 |
I2A—C12A | 2.102 (7) | C8—H8A | 0.9600 |
I3A—C14A | 2.105 (7) | C8—H8B | 0.9600 |
O1B—C9B | 1.185 (8) | C9B—C10B | 1.524 (8) |
O2B—C9B | 1.293 (8) | C10B—C11B | 1.394 (8) |
O2B—H2 | 0.8200 | C10B—C15B | 1.383 (9) |
O1A—C9A | 1.235 (7) | C11B—C12B | 1.397 (9) |
O2A—C9A | 1.268 (7) | C12B—C13B | 1.392 (9) |
N1—C2 | 1.356 (8) | C13B—C14B | 1.378 (9) |
N1—C6 | 1.343 (8) | C14B—C15B | 1.377 (9) |
N2—C2 | 1.303 (9) | C13B—H13B | 0.9300 |
N3—C2 | 1.350 (9) | C15B—H15B | 0.9300 |
N3—C4 | 1.320 (9) | C9A—C10A | 1.507 (8) |
N1—H1 | 0.8600 | C10A—C11A | 1.391 (8) |
N2—H2A | 0.8600 | C10A—C15A | 1.389 (9) |
N2—H2B | 0.8600 | C11A—C12A | 1.393 (9) |
C4—C5 | 1.391 (10) | C12A—C13A | 1.372 (9) |
C4—C7 | 1.500 (11) | C13A—C14A | 1.376 (9) |
C5—C6 | 1.373 (9) | C14A—C15A | 1.368 (9) |
C6—C8 | 1.489 (10) | C13A—H13A | 0.9300 |
C5—H5 | 0.9300 | C15A—H15A | 0.9300 |
I1A···O1A | 3.382 (5) | N3···N2x | 3.042 (9) |
I1A···O1Bi | 3.023 (5) | N3···H2Ax | 2.1900 |
I1A···C9Bi | 3.819 (6) | C4···O2Bvi | 3.281 (9) |
I1A···I2A | 3.6584 (8) | C5···O2Bvi | 3.374 (9) |
I1A···I2Aii | 3.9877 (8) | C7···O2Bvi | 3.144 (11) |
I1B···I2B | 3.6327 (7) | C8···O1A | 3.341 (9) |
I1B···I3Aii | 3.8352 (8) | C9A···N1 | 3.414 (8) |
I1B···O2B | 3.371 (5) | C9A···O2Bviii | 3.371 (8) |
I2A···I1A | 3.6584 (8) | C9B···I1Avii | 3.819 (6) |
I2A···I3Aiii | 3.9136 (8) | C9B···O2Aix | 3.308 (8) |
I2A···I1Aiv | 3.9878 (7) | C10A···O2Bviii | 3.413 (8) |
I2B···I3Bv | 4.0025 (8) | C15A···O2Bviii | 3.346 (8) |
I2B···I1B | 3.6327 (7) | C4···H2Ax | 3.0700 |
I2B···O1Bi | 3.162 (5) | C7···H15Bxi | 3.0000 |
I3A···I2Avi | 3.9136 (8) | C9A···H2viii | 2.6200 |
I3A···I1Biv | 3.8351 (8) | C9A···H2B | 2.8100 |
I3B···I2Bv | 4.0026 (8) | C9A···H1 | 2.6100 |
I1A···H8Bi | 3.3500 | C10A···H2viii | 2.8800 |
I3B···H13Bv | 3.1800 | C15A···H2viii | 2.9500 |
O1A···C8 | 3.341 (9) | H1···O1A | 1.8000 |
O1A···I1A | 3.382 (5) | H1···O2A | 2.8500 |
O1A···N1 | 2.652 (7) | H1···H8A | 2.2800 |
O1B···I1Avii | 3.023 (5) | H1···C9A | 2.6100 |
O1B···I2Bvii | 3.162 (5) | H1···H2B | 2.2700 |
O2A···O2Bviii | 2.501 (7) | H2···O2Aix | 1.6900 |
O2A···C9Bviii | 3.308 (8) | H2···C15Aix | 2.9500 |
O2A···N2 | 2.819 (8) | H2···C9Aix | 2.6200 |
O2B···C4iii | 3.281 (9) | H2···C10Aix | 2.8800 |
O2B···C15Aix | 3.346 (8) | H2A···N3x | 2.1900 |
O2B···O2Aix | 2.501 (7) | H2A···C4x | 3.0700 |
O2B···C10Aix | 3.413 (8) | H2B···O2A | 1.9800 |
O2B···I1B | 3.371 (5) | H2B···C9A | 2.8100 |
O2B···C7iii | 3.144 (11) | H2B···H1 | 2.2700 |
O2B···C5iii | 3.374 (9) | H5···H8B | 2.5600 |
O2B···C9Aix | 3.371 (8) | H5···H7B | 2.3900 |
O1A···H1 | 1.8000 | H7A···O2Bvi | 2.7700 |
O1A···H8A | 2.7100 | H7B···H5 | 2.3900 |
O1B···H15Aix | 2.8600 | H7B···H15Bxi | 2.5400 |
O1B···H15B | 2.8400 | H8A···H1 | 2.2800 |
O2A···H2B | 1.9800 | H8A···O1A | 2.7100 |
O2A···H2viii | 1.6900 | H8B···I1Avii | 3.3500 |
O2A···H15A | 2.7900 | H8B···H5 | 2.5600 |
O2A···H1 | 2.8500 | H13B···I3Bv | 3.1800 |
O2B···H7Aiii | 2.7700 | H15A···O1Bviii | 2.8600 |
N1···C9A | 3.414 (8) | H15A···O2A | 2.7900 |
N1···O1A | 2.652 (7) | H15B···O1B | 2.8400 |
N2···N3x | 3.042 (9) | H15B···C7xi | 3.0000 |
N2···O2A | 2.819 (8) | H15B···H7Bxi | 2.5400 |
C9B—O2B—H2 | 109.00 | C9B—C10B—C11B | 124.2 (5) |
C2—N1—C6 | 121.8 (5) | I1B—C11B—C10B | 120.1 (4) |
C2—N3—C4 | 118.0 (6) | C10B—C11B—C12B | 118.7 (6) |
C6—N1—H1 | 119.00 | I1B—C11B—C12B | 121.2 (4) |
C2—N1—H1 | 119.00 | I2B—C12B—C11B | 123.3 (5) |
C2—N2—H2A | 120.00 | C11B—C12B—C13B | 120.3 (6) |
H2A—N2—H2B | 120.00 | I2B—C12B—C13B | 116.4 (5) |
C2—N2—H2B | 120.00 | C12B—C13B—C14B | 120.0 (6) |
N2—C2—N3 | 119.6 (6) | I3B—C14B—C13B | 120.0 (5) |
N1—C2—N3 | 121.1 (6) | C13B—C14B—C15B | 120.3 (6) |
N1—C2—N2 | 119.3 (6) | I3B—C14B—C15B | 119.7 (5) |
C5—C4—C7 | 121.7 (6) | C10B—C15B—C14B | 120.2 (6) |
N3—C4—C5 | 122.4 (6) | C12B—C13B—H13B | 120.00 |
N3—C4—C7 | 115.9 (6) | C14B—C13B—H13B | 120.00 |
C4—C5—C6 | 118.8 (6) | C10B—C15B—H15B | 120.00 |
C5—C6—C8 | 125.1 (6) | C14B—C15B—H15B | 120.00 |
N1—C6—C5 | 117.9 (6) | O1A—C9A—O2A | 124.6 (6) |
N1—C6—C8 | 117.1 (6) | O1A—C9A—C10A | 118.7 (5) |
C6—C5—H5 | 121.00 | O2A—C9A—C10A | 116.7 (5) |
C4—C5—H5 | 121.00 | C9A—C10A—C11A | 123.5 (5) |
C4—C7—H7B | 109.00 | C9A—C10A—C15A | 116.4 (5) |
C4—C7—H7C | 109.00 | C11A—C10A—C15A | 120.1 (5) |
H7A—C7—H7B | 110.00 | I1A—C11A—C10A | 119.5 (4) |
H7A—C7—H7C | 110.00 | I1A—C11A—C12A | 122.0 (4) |
H7B—C7—H7C | 110.00 | C10A—C11A—C12A | 118.4 (5) |
C4—C7—H7A | 109.00 | I2A—C12A—C11A | 123.0 (5) |
C6—C8—H8A | 109.00 | I2A—C12A—C13A | 115.5 (5) |
C6—C8—H8C | 109.00 | C11A—C12A—C13A | 121.5 (6) |
H8A—C8—H8B | 109.00 | C12A—C13A—C14A | 118.9 (6) |
H8A—C8—H8C | 109.00 | I3A—C14A—C13A | 120.0 (5) |
H8B—C8—H8C | 109.00 | I3A—C14A—C15A | 118.6 (5) |
C6—C8—H8B | 110.00 | C13A—C14A—C15A | 121.4 (6) |
O1B—C9B—O2B | 125.9 (6) | C10A—C15A—C14A | 119.7 (6) |
O1B—C9B—C10B | 122.9 (6) | C12A—C13A—H13A | 121.00 |
O2B—C9B—C10B | 111.1 (5) | C14A—C13A—H13A | 121.00 |
C9B—C10B—C15B | 115.2 (5) | C10A—C15A—H15A | 120.00 |
C11B—C10B—C15B | 120.5 (5) | C14A—C15A—H15A | 120.00 |
C6—N1—C2—N2 | −179.6 (6) | I2B—C12B—C13B—C14B | −177.5 (5) |
C6—N1—C2—N3 | −1.0 (10) | C11B—C12B—C13B—C14B | 2.3 (10) |
C2—N1—C6—C5 | 1.7 (10) | C12B—C13B—C14B—I3B | −177.0 (5) |
C2—N1—C6—C8 | −177.5 (6) | C12B—C13B—C14B—C15B | 0.3 (10) |
C4—N3—C2—N1 | 0.3 (10) | I3B—C14B—C15B—C10B | 173.8 (5) |
C2—N3—C4—C7 | 179.3 (6) | C13B—C14B—C15B—C10B | −3.5 (10) |
C4—N3—C2—N2 | 178.9 (6) | O1A—C9A—C10A—C11A | 61.3 (8) |
C2—N3—C4—C5 | −0.3 (10) | O1A—C9A—C10A—C15A | −117.3 (6) |
N3—C4—C5—C6 | 1.0 (11) | O2A—C9A—C10A—C11A | −120.8 (6) |
C7—C4—C5—C6 | −178.7 (7) | O2A—C9A—C10A—C15A | 60.6 (7) |
C4—C5—C6—C8 | 177.5 (7) | C9A—C10A—C11A—I1A | 8.1 (8) |
C4—C5—C6—N1 | −1.6 (10) | C9A—C10A—C11A—C12A | −175.6 (6) |
O1B—C9B—C10B—C11B | 119.6 (7) | C15A—C10A—C11A—I1A | −173.4 (5) |
O1B—C9B—C10B—C15B | −63.2 (8) | C15A—C10A—C11A—C12A | 2.9 (9) |
O2B—C9B—C10B—C11B | −64.7 (8) | C9A—C10A—C15A—C14A | 176.3 (6) |
O2B—C9B—C10B—C15B | 112.4 (6) | C11A—C10A—C15A—C14A | −2.3 (9) |
C9B—C10B—C11B—I1B | −4.6 (8) | I1A—C11A—C12A—I2A | −6.9 (7) |
C9B—C10B—C11B—C12B | 175.4 (6) | I1A—C11A—C12A—C13A | 174.8 (5) |
C15B—C10B—C11B—I1B | 178.4 (5) | C10A—C11A—C12A—I2A | 176.9 (4) |
C15B—C10B—C11B—C12B | −1.6 (9) | C10A—C11A—C12A—C13A | −1.5 (9) |
C9B—C10B—C15B—C14B | −173.1 (6) | I2A—C12A—C13A—C14A | −179.1 (5) |
C11B—C10B—C15B—C14B | 4.2 (9) | C11A—C12A—C13A—C14A | −0.6 (10) |
I1B—C11B—C12B—I2B | −1.9 (8) | C12A—C13A—C14A—I3A | −177.0 (5) |
I1B—C11B—C12B—C13B | 178.4 (5) | C12A—C13A—C14A—C15A | 1.3 (10) |
C10B—C11B—C12B—I2B | 178.1 (5) | I3A—C14A—C15A—C10A | 178.4 (5) |
C10B—C11B—C12B—C13B | −1.6 (10) | C13A—C14A—C15A—C10A | 0.2 (10) |
Symmetry codes: (i) x, y+1, z; (ii) −x+1, y−1/2, −z+1/2; (iii) x+1, y, z; (iv) −x+1, y+1/2, −z+1/2; (v) −x+1, −y+1, −z; (vi) x−1, y, z; (vii) x, y−1, z; (viii) x−1, y+1, z; (ix) x+1, y−1, z; (x) −x, −y+1, −z; (xi) −x+1, −y, −z. |
D—H···A | D—H | H···A | D···A | D—H···A |
N1—H1···O1A | 0.86 | 1.80 | 2.652 (7) | 170 |
N2—H2B···O2A | 0.86 | 1.98 | 2.819 (8) | 166 |
N2—H2A···N3x | 0.86 | 2.19 | 3.042 (9) | 172 |
O2B—H2···O2Aix | 0.82 | 1.69 | 2.501 (7) | 167 |
Symmetry codes: (ix) x+1, y−1, z; (x) −x, −y+1, −z. |
Experimental details
Crystal data | |
Chemical formula | C6H10N3+·C7H2I3O2−·C7H3I3O2 |
Mr | 1122.75 |
Crystal system, space group | Monoclinic, P21/c |
Temperature (K) | 296 |
a, b, c (Å) | 9.4654 (2), 9.6683 (2), 31.1553 (5) |
β (°) | 90.366 (1) |
V (Å3) | 2851.10 (10) |
Z | 4 |
Radiation type | Mo Kα |
µ (mm−1) | 6.57 |
Crystal size (mm) | 0.08 × 0.06 × 0.05 |
Data collection | |
Diffractometer | Bruker SMART APEXII CCD area-detector |
Absorption correction | Multi-scan (SADABS; Bruker, 2008) |
Tmin, Tmax | 0.622, 0.735 |
No. of measured, independent and observed [I > 2σ(I)] reflections | 34656, 9270, 6369 |
Rint | 0.032 |
(sin θ/λ)max (Å−1) | 0.736 |
Refinement | |
R[F2 > 2σ(F2)], wR(F2), S | 0.051, 0.110, 1.03 |
No. of reflections | 9270 |
No. of parameters | 301 |
H-atom treatment | H-atom parameters constrained |
w = 1/[σ2(Fo2) + (0.0274P)2 + 21.1246P] where P = (Fo2 + 2Fc2)/3 | |
Δρmax, Δρmin (e Å−3) | 3.16, −2.46 |
Computer programs: APEX2 (Bruker, 2008), SAINT (Bruker, 2008), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), PLATON (Spek, 2009) and POV-RAY (Cason, 2004), PLATON (Spek, 2009).
D—H···A | D—H | H···A | D···A | D—H···A |
N1—H1···O1A | 0.8600 | 1.8000 | 2.652 (7) | 170.00 |
N2—H2B···O2A | 0.8600 | 1.9800 | 2.819 (8) | 166.00 |
N2—H2A···N3i | 0.8600 | 2.1900 | 3.042 (9) | 172.00 |
O2B—H2···O2Aii | 0.8200 | 1.6900 | 2.501 (7) | 167.00 |
Symmetry codes: (i) −x, −y+1, −z; (ii) x+1, y−1, z. |
Acknowledgements
The authors thank the DST-India (FIST programme) for the use of the diffractometer at the School of Chemistry, Bharathidasan University, Tiruchirappalli, Tamilnadu, India
References
Baker, B. R. & Santi, D. V. (1965). J. Pharm. Sci. 54, 1252–1257. CrossRef CAS PubMed Web of Science Google Scholar
Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573. CrossRef CAS Web of Science Google Scholar
Bruker (2008). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA. Google Scholar
Cason, C. J. (2004). POV-RAY for Windows. Persistence of Vision, Raytracer Pty. Ltd, Victoria, Australia. URL: http://www.povray.org Google Scholar
Devi, P. & Muthiah, P. T. (2007). Acta Cryst. E63, o4822–o4823. Web of Science CSD CrossRef IUCr Journals Google Scholar
Ebenezer, S. & Muthiah, P. T. (2010). Acta Cryst. E66, o516. Web of Science CSD CrossRef IUCr Journals Google Scholar
Etter, M. C. (1990). Acc. Chem. Res. 23, 120–126. CrossRef CAS Web of Science Google Scholar
Hunt, W. E., Schwalbe, C. H., Bird, K. & Mallinson, P. D. (1980). Biochem. J. 187, 533–536. CrossRef CAS PubMed Web of Science Google Scholar
Sawyer, L. & James, M. N. G. (1982). Nature (London), 295, 79–80. CrossRef CAS PubMed Web of Science Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Spek, A. L. (2009). Acta Cryst. D65, 148–155. Web of Science CrossRef CAS IUCr Journals Google Scholar
Stenzel, V., Jeske, J., Mont, W. W. & Jones, G. (1995). Inorg. Chem. 34, 5166–5170. CrossRef CAS Web of Science Google Scholar
Thalladi, V. R., Goud, S. B., Hoy, V. J., Allen, F. H., Howard, J. A. K. & Desiraju, G. R. (1996). Chem. Commun. pp. 401–402. CSD CrossRef Web of Science Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.
Aminopyrimidine derivatives are used as antifolate drugs. (Hunt et al., 1980; Baker & Santi, 1965). 2,3,5-triiodobenzoic acid is an auxin polar transport inhibitor. Abnormal development of embryos induced by inhibitor results in plantlets without shoots and roots. The crystal structures of 2-amino-4,6-dimethyl pyrimidine terephthalic acid (Devi et al., 2007) and 2-amino-4,6-dimethyl pyrimidine anthranilic acid (Ebenezer et al., 2010) have been reported from our laboratory.
The asymmetric unit of the title compound (I) (Scheme.1) contains one 2-amino-4,6-dimethylpyrimidin-1-ium cation, one 2,3,5-triiodobenzoate anion and a neutral molecule of 2,3,5-triiodobenzoic acid as shown in Fig. 1.
Protonation at N1 position of the pyrimidine base is reflected by an increase in internal bond angle (C2—N1—C6= 121.8 (5) °) when compared with the unprotonated N3 atom of pyrimidine ring (C2—N3—C4=118.0 (6) °). The carboxylate group of the triiodobenzoate anion interacts with the protonated N1 and the 2-amino group of the pyrimidine moiety through a pair of N—H···O hydrogen bonds (Table. 1) to form robust R22(8) ring motif (Etter, 1990; Bernstein et al., 1995). In addition, another type of R22(8) motif is formed by centrosymmetrically related pyrimidine molecules through a pair of N—H···N hydrogen bonds. These two different R22(8) motifs generate a linear heterotetrameric unit (Ebenezer et al., 2010).
The linear heterotetrameric units are interlinked through carboxyl- carboxylate interaction (Sawyer & James, 1982) via O—H···O hydrogen bond (involving carboxylic O—H group of neutral triiodobenzoic acid and carboxylate O atom of anion) and weak intermolecular I···O interaction. The presence of halogen-oxygen interaction is widely used in crystal engineering (Thalladi et al.,1996). These intermolecular interactions generate supramolecular chain along a axis. The crystal structure of (I) also exhibits weak intermolecular I···I interactions (Stenzel et al.,1995). The presence of weak intermolecular (I2A···I3Aiii) (symmetry code: 1 + x, y, z) interaction links the supramolecular chain and generate supramolecular ladder like arrangement (Fig. 2).