organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

2-(4-Bromo­phen­yl)-2-oxo­ethyl 4-methyl­benzoate

aX-ray Crystallography Unit, School of Physics, Universiti Sains Malaysia, 11800 USM, Penang, Malaysia, bMedicinal Chemistry Division, Department of Chemistry, National Institute of Technology-Karnataka, Surathkal, Mangalore 575 025, India, and cDepartment of Physics, National Institute of Technology-Karnataka, Surathkal, Mangalore 575 025, India
*Correspondence e-mail: hkfun@usm.my

(Received 25 October 2011; accepted 28 October 2011; online 2 November 2011)

The title compound, C16H13BrO3, consists of a toluene ring and a bromo­benzene ring which are linked together by a 2-oxopropyl acetate group. The dihedral angle formed between the toluene and bromo­benzene rings is 80.70 (7)°. In the crystal, inter­molecular C—H⋯O hydrogen bonds link the mol­ecules into a three-dimensional network.

Related literature

For applications of phenacyl benzoate derivatives, see: Rather & Reid (1919[Rather, J. B. & Reid, E. (1919). J. Am. Chem. Soc. 41, 75-83.]); Judefind & Reid (1920[Judefind, W. L. & Reid, E. E. (1920). J. Am. Chem. Soc. 42, 1043—-1055.]); Gandhi et al. (1995[Gandhi, S. S., Bell, K. L. & Gibson, M. S. (1995). Tetrahedron, 51, 13301-13308.]); Huang et al. (1996[Huang, W., Pian, J., Chen, B., Pei, W. & Ye, X. (1996). Tetrahedron, 52, 10131-10136.]); Sheehan & Umezaw (1973[Sheehan, J. C. & Umezaw, K. (1973). J. Org. Chem. 58, 3771-3773.]); Ruzicka et al. (2002[Ruzicka, R., Zabadal, M. & Klan, P. (2002). Synth. Commun. 32, 2581-2590.]); Litera et al. (2006[Litera, J. K., Loya, A. D. & Klan, P. (2006). J. Org. Chem. 71, 713-723.]). For a related structure, see: Fun et al. (2011[Fun, H.-K., Shahani, T., Garudachari, B., Isloor, A. M. & Shivananda, K. N. (2011). Acta Cryst. E67, o2682.]). For bond-length data, see: Allen et al. (1987[Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1-19.]).

[Scheme 1]

Experimental

Crystal data
  • C16H13BrO3

  • Mr = 333.17

  • Monoclinic, P 21 /c

  • a = 5.8368 (2) Å

  • b = 8.3438 (3) Å

  • c = 27.9684 (8) Å

  • β = 95.177 (1)°

  • V = 1356.54 (8) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 3.03 mm−1

  • T = 100 K

  • 0.50 × 0.14 × 0.12 mm

Data collection
  • Bruker SMART APEXII CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2009[Bruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wiscosin, USA.]) Tmin = 0.311, Tmax = 0.707

  • 14735 measured reflections

  • 3936 independent reflections

  • 3395 reflections with I > 2σ(I)

  • Rint = 0.026

Refinement
  • R[F2 > 2σ(F2)] = 0.028

  • wR(F2) = 0.074

  • S = 1.02

  • 3936 reflections

  • 182 parameters

  • H-atom parameters constrained

  • Δρmax = 0.45 e Å−3

  • Δρmin = −0.42 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C16—H16A⋯O2i 0.98 2.42 3.355 (2) 160
C16—H16B⋯O3ii 0.98 2.53 3.451 (2) 157
Symmetry codes: (i) [-x, y+{\script{1\over 2}}, -z+{\script{3\over 2}}]; (ii) [-x, y-{\script{1\over 2}}, -z+{\script{3\over 2}}].

Data collection: APEX2 (Bruker, 2009[Bruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wiscosin, USA.]); cell refinement: SAINT (Bruker, 2009[Bruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wiscosin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Supporting information


Comment top

In organic chemistry, phenacyl benzoate is a derivative of an acid which is formed by the reaction between an acid and a phenacyl bromide. They find applications in the field of synthetic chemistry (Rather & Reid, 1919; Huang et al., 1996; Gandhi et al., 1995) such as in the synthesis of oxazoles, imidazoles, benzoxazepines. They are also useful as photo-removable protecting groups for carboxylic acids in organic synthesis and biochemistry (Ruzicka et al., 2002; Litera et al., 2006; Sheehan & Umezaw, 1973). Keeping this in view, the title compound was synthesized to study its crystal structure.

The title compound, (Fig. 1), consists of a toluene ring (C10–C16) and a bromobenzene ring (C1–C6/Br1) which are linked together by a 2-oxopropyl acetate group (C7–C9/O1–O3). The dihedral angle formed between the toluene and bromobenzene rings is 80.70 (7)%. The bond lengths (Allen et al., 1987) and angles are within normal ranges and are comparable to these closely related structure (Fun et al., 2011).

In the crystal packing (Fig. 2), intermolecular C16—H16A···O2 and C16—H16B···O3 hydrogen bonds (Table 1) link the molecules into a three-dimensional network.

Related literature top

For applications of phenacyl benzoate derivatives, see: Rather & Reid (1919); Judefind & Reid (1920); Gandhi et al. (1995); Huang et al. (1996); Sheehan & Umezaw (1973); Ruzicka et al. (2002); Litera et al. (2006). For a related structure, see: Fun et al. (2011). For bond-length data, see: Allen et al. (1987).

Experimental top

The mixture of 4-methylbenzoic acid (1.0 g, 0.0073 mol), potassium carbonate (1.10 g, 0.0080 mol) and 2-bromo-1-(4-bromophenyl)ethanone (2.02 g, 0.0073 mol) in dimethylformamide (10 ml) was stirred at room temperature for 2 h. On cooling, the separated yellow needle-shaped crystals of 2-(4-bromophenyl)-2-oxoethyl 4-methylbenzoate were collected by filtration. Compound was recrystallized from ethanol. Yield: 2.22 g, 90.98%. M.p.: 425–426 K (Judefind & Reid, 1920).

Refinement top

All the H atoms were positioned geometrically [C–H = 0.9500–0.9900 Å] and were refined using a riding model, with Uiso(H) = 1.2 or 1.5Uiso(C).

Structure description top

In organic chemistry, phenacyl benzoate is a derivative of an acid which is formed by the reaction between an acid and a phenacyl bromide. They find applications in the field of synthetic chemistry (Rather & Reid, 1919; Huang et al., 1996; Gandhi et al., 1995) such as in the synthesis of oxazoles, imidazoles, benzoxazepines. They are also useful as photo-removable protecting groups for carboxylic acids in organic synthesis and biochemistry (Ruzicka et al., 2002; Litera et al., 2006; Sheehan & Umezaw, 1973). Keeping this in view, the title compound was synthesized to study its crystal structure.

The title compound, (Fig. 1), consists of a toluene ring (C10–C16) and a bromobenzene ring (C1–C6/Br1) which are linked together by a 2-oxopropyl acetate group (C7–C9/O1–O3). The dihedral angle formed between the toluene and bromobenzene rings is 80.70 (7)%. The bond lengths (Allen et al., 1987) and angles are within normal ranges and are comparable to these closely related structure (Fun et al., 2011).

In the crystal packing (Fig. 2), intermolecular C16—H16A···O2 and C16—H16B···O3 hydrogen bonds (Table 1) link the molecules into a three-dimensional network.

For applications of phenacyl benzoate derivatives, see: Rather & Reid (1919); Judefind & Reid (1920); Gandhi et al. (1995); Huang et al. (1996); Sheehan & Umezaw (1973); Ruzicka et al. (2002); Litera et al. (2006). For a related structure, see: Fun et al. (2011). For bond-length data, see: Allen et al. (1987).

Computing details top

Data collection: APEX2 (Bruker, 2009); cell refinement: SAINT (Bruker, 2009); data reduction: SAINT (Bruker, 2009); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound, showing 30% probability displacement ellipsoids and the atom-numbering scheme.
[Figure 2] Fig. 2. The crystal packing of the title compound, viewed along a axis. Intermolecular hydrogen bonds linked the molecules into three-dimensional network.
2-(4-Bromophenyl)-2-oxoethyl 4-methylbenzoate top
Crystal data top
C16H13BrO3F(000) = 672
Mr = 333.17Dx = 1.631 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 6134 reflections
a = 5.8368 (2) Åθ = 2.6–32.4°
b = 8.3438 (3) ŵ = 3.03 mm1
c = 27.9684 (8) ÅT = 100 K
β = 95.177 (1)°Needle, yellow
V = 1356.54 (8) Å30.50 × 0.14 × 0.12 mm
Z = 4
Data collection top
Bruker SMART APEXII CCD area-detector
diffractometer
3936 independent reflections
Radiation source: fine-focus sealed tube3395 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.026
φ and ω scansθmax = 30.0°, θmin = 1.5°
Absorption correction: multi-scan
(SADABS; Bruker, 2009)
h = 88
Tmin = 0.311, Tmax = 0.707k = 1111
14735 measured reflectionsl = 3939
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.028Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.074H-atom parameters constrained
S = 1.02 w = 1/[σ2(Fo2) + (0.0324P)2 + 1.2242P]
where P = (Fo2 + 2Fc2)/3
3936 reflections(Δ/σ)max = 0.002
182 parametersΔρmax = 0.45 e Å3
0 restraintsΔρmin = 0.42 e Å3
Crystal data top
C16H13BrO3V = 1356.54 (8) Å3
Mr = 333.17Z = 4
Monoclinic, P21/cMo Kα radiation
a = 5.8368 (2) ŵ = 3.03 mm1
b = 8.3438 (3) ÅT = 100 K
c = 27.9684 (8) Å0.50 × 0.14 × 0.12 mm
β = 95.177 (1)°
Data collection top
Bruker SMART APEXII CCD area-detector
diffractometer
3936 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2009)
3395 reflections with I > 2σ(I)
Tmin = 0.311, Tmax = 0.707Rint = 0.026
14735 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0280 restraints
wR(F2) = 0.074H-atom parameters constrained
S = 1.02Δρmax = 0.45 e Å3
3936 reflectionsΔρmin = 0.42 e Å3
182 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Br11.36051 (3)0.73030 (2)1.049704 (6)0.02370 (7)
O10.6371 (2)1.02498 (16)0.79328 (4)0.0188 (3)
O20.5266 (2)0.82885 (16)0.86329 (5)0.0228 (3)
O30.3804 (2)1.16704 (15)0.83172 (4)0.0193 (3)
C11.0857 (3)0.9333 (2)0.92209 (6)0.0166 (3)
H1A1.13341.00880.89960.020*
C21.2317 (3)0.8944 (2)0.96256 (6)0.0177 (3)
H2A1.37950.94230.96770.021*
C31.1589 (3)0.7853 (2)0.99509 (6)0.0171 (3)
C40.9420 (3)0.7134 (2)0.98883 (6)0.0184 (3)
H4A0.89350.64011.01190.022*
C50.7995 (3)0.7520 (2)0.94806 (7)0.0179 (3)
H5A0.65230.70320.94290.022*
C60.8693 (3)0.86164 (19)0.91454 (6)0.0154 (3)
C70.7111 (3)0.8959 (2)0.87074 (6)0.0161 (3)
C80.7881 (3)1.0191 (2)0.83609 (6)0.0177 (3)
H8A0.79361.12580.85160.021*
H8B0.94530.99250.82790.021*
C90.4324 (3)1.09906 (19)0.79604 (6)0.0150 (3)
C100.2867 (3)1.08669 (19)0.74980 (6)0.0146 (3)
C110.0783 (3)1.1700 (2)0.74432 (6)0.0161 (3)
H11A0.03691.23950.76900.019*
C120.0687 (3)1.1510 (2)0.70261 (6)0.0173 (3)
H12A0.21011.20810.69910.021*
C130.0108 (3)1.0493 (2)0.66597 (6)0.0155 (3)
C140.2036 (3)0.9726 (2)0.67110 (6)0.0168 (3)
H14A0.24900.90760.64570.020*
C150.3505 (3)0.9897 (2)0.71243 (6)0.0166 (3)
H15A0.49430.93570.71540.020*
C160.1776 (3)1.0169 (2)0.62159 (6)0.0178 (3)
H16A0.29071.10380.61760.027*
H16B0.25720.91500.62560.027*
H16C0.09171.01110.59310.027*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Br10.02204 (10)0.03193 (11)0.01642 (9)0.00268 (7)0.00216 (6)0.00657 (7)
O10.0149 (6)0.0279 (6)0.0133 (6)0.0042 (5)0.0009 (5)0.0007 (5)
O20.0189 (6)0.0216 (6)0.0267 (7)0.0048 (5)0.0049 (5)0.0034 (5)
O30.0223 (6)0.0201 (6)0.0151 (6)0.0030 (5)0.0003 (5)0.0024 (5)
C10.0174 (8)0.0179 (7)0.0143 (8)0.0008 (6)0.0001 (6)0.0017 (6)
C20.0166 (8)0.0202 (8)0.0159 (8)0.0012 (6)0.0000 (6)0.0002 (6)
C30.0179 (8)0.0201 (8)0.0130 (7)0.0040 (6)0.0006 (6)0.0005 (6)
C40.0183 (8)0.0190 (8)0.0183 (8)0.0017 (6)0.0045 (6)0.0039 (6)
C50.0153 (8)0.0177 (8)0.0207 (8)0.0006 (6)0.0014 (6)0.0017 (6)
C60.0168 (8)0.0142 (7)0.0148 (7)0.0009 (6)0.0003 (6)0.0008 (6)
C70.0166 (8)0.0152 (7)0.0160 (8)0.0020 (6)0.0005 (6)0.0011 (6)
C80.0155 (8)0.0220 (8)0.0150 (8)0.0003 (6)0.0025 (6)0.0022 (6)
C90.0157 (7)0.0138 (7)0.0154 (8)0.0005 (6)0.0007 (6)0.0022 (6)
C100.0154 (7)0.0146 (7)0.0136 (7)0.0004 (6)0.0012 (6)0.0011 (6)
C110.0168 (8)0.0177 (7)0.0139 (7)0.0011 (6)0.0014 (6)0.0003 (6)
C120.0153 (8)0.0188 (8)0.0176 (8)0.0031 (6)0.0006 (6)0.0023 (6)
C130.0167 (8)0.0164 (7)0.0134 (7)0.0033 (6)0.0020 (6)0.0036 (6)
C140.0204 (8)0.0154 (7)0.0151 (8)0.0001 (6)0.0036 (6)0.0018 (6)
C150.0162 (8)0.0163 (7)0.0175 (8)0.0018 (6)0.0016 (6)0.0005 (6)
C160.0164 (8)0.0174 (7)0.0198 (8)0.0002 (6)0.0018 (6)0.0033 (6)
Geometric parameters (Å, º) top
Br1—C31.8986 (16)C8—H8A0.9900
O1—C91.354 (2)C8—H8B0.9900
O1—C81.4222 (19)C9—C101.486 (2)
O2—C71.215 (2)C10—C111.397 (2)
O3—C91.210 (2)C10—C151.399 (2)
C1—C21.393 (2)C11—C121.394 (2)
C1—C61.396 (2)C11—H11A0.9500
C1—H1A0.9500C12—C131.395 (2)
C2—C31.381 (2)C12—H12A0.9500
C2—H2A0.9500C13—C141.402 (2)
C3—C41.397 (3)C13—C161.531 (2)
C4—C51.387 (2)C14—C151.383 (2)
C4—H4A0.9500C14—H14A0.9500
C5—C61.397 (2)C15—H15A0.9500
C5—H5A0.9500C16—H16A0.9800
C6—C71.494 (2)C16—H16B0.9800
C7—C81.509 (2)C16—H16C0.9800
C9—O1—C8116.81 (14)O3—C9—O1123.32 (15)
C2—C1—C6120.12 (16)O3—C9—C10125.74 (16)
C2—C1—H1A119.9O1—C9—C10110.94 (14)
C6—C1—H1A119.9C11—C10—C15119.59 (15)
C3—C2—C1119.15 (16)C11—C10—C9119.01 (15)
C3—C2—H2A120.4C15—C10—C9121.37 (15)
C1—C2—H2A120.4C12—C11—C10119.97 (16)
C2—C3—C4121.99 (16)C12—C11—H11A120.0
C2—C3—Br1118.94 (13)C10—C11—H11A120.0
C4—C3—Br1119.08 (13)C11—C12—C13120.80 (16)
C5—C4—C3118.20 (16)C11—C12—H12A119.6
C5—C4—H4A120.9C13—C12—H12A119.6
C3—C4—H4A120.9C12—C13—C14118.42 (15)
C4—C5—C6120.94 (16)C12—C13—C16121.62 (15)
C4—C5—H5A119.5C14—C13—C16119.94 (15)
C6—C5—H5A119.5C15—C14—C13121.25 (16)
C1—C6—C5119.59 (15)C15—C14—H14A119.4
C1—C6—C7121.73 (15)C13—C14—H14A119.4
C5—C6—C7118.66 (15)C14—C15—C10119.84 (16)
O2—C7—C6121.70 (16)C14—C15—H15A120.1
O2—C7—C8120.97 (15)C10—C15—H15A120.1
C6—C7—C8117.33 (14)C13—C16—H16A109.5
O1—C8—C7111.48 (14)C13—C16—H16B109.5
O1—C8—H8A109.3H16A—C16—H16B109.5
C7—C8—H8A109.3C13—C16—H16C109.5
O1—C8—H8B109.3H16A—C16—H16C109.5
C7—C8—H8B109.3H16B—C16—H16C109.5
H8A—C8—H8B108.0
C6—C1—C2—C30.5 (3)C8—O1—C9—O34.6 (2)
C1—C2—C3—C40.5 (3)C8—O1—C9—C10176.21 (14)
C1—C2—C3—Br1179.08 (13)O3—C9—C10—C115.6 (3)
C2—C3—C4—C51.2 (3)O1—C9—C10—C11173.61 (15)
Br1—C3—C4—C5178.36 (13)O3—C9—C10—C15172.35 (17)
C3—C4—C5—C61.0 (3)O1—C9—C10—C158.5 (2)
C2—C1—C6—C50.7 (3)C15—C10—C11—C122.6 (3)
C2—C1—C6—C7177.82 (16)C9—C10—C11—C12175.38 (16)
C4—C5—C6—C10.1 (3)C10—C11—C12—C130.1 (3)
C4—C5—C6—C7178.61 (16)C11—C12—C13—C143.0 (3)
C1—C6—C7—O2177.11 (17)C11—C12—C13—C16175.28 (16)
C5—C6—C7—O21.4 (3)C12—C13—C14—C153.4 (3)
C1—C6—C7—C83.6 (2)C16—C13—C14—C15174.92 (16)
C5—C6—C7—C8177.94 (16)C13—C14—C15—C100.8 (3)
C9—O1—C8—C775.60 (19)C11—C10—C15—C142.2 (3)
O2—C7—C8—O18.3 (2)C9—C10—C15—C14175.70 (16)
C6—C7—C8—O1172.36 (14)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C16—H16A···O2i0.982.423.355 (2)160
C16—H16B···O3ii0.982.533.451 (2)157
Symmetry codes: (i) x, y+1/2, z+3/2; (ii) x, y1/2, z+3/2.

Experimental details

Crystal data
Chemical formulaC16H13BrO3
Mr333.17
Crystal system, space groupMonoclinic, P21/c
Temperature (K)100
a, b, c (Å)5.8368 (2), 8.3438 (3), 27.9684 (8)
β (°) 95.177 (1)
V3)1356.54 (8)
Z4
Radiation typeMo Kα
µ (mm1)3.03
Crystal size (mm)0.50 × 0.14 × 0.12
Data collection
DiffractometerBruker SMART APEXII CCD area-detector
Absorption correctionMulti-scan
(SADABS; Bruker, 2009)
Tmin, Tmax0.311, 0.707
No. of measured, independent and
observed [I > 2σ(I)] reflections
14735, 3936, 3395
Rint0.026
(sin θ/λ)max1)0.703
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.028, 0.074, 1.02
No. of reflections3936
No. of parameters182
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.45, 0.42

Computer programs: APEX2 (Bruker, 2009), SAINT (Bruker, 2009), SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C16—H16A···O2i0.98002.42003.355 (2)160.00
C16—H16B···O3ii0.98002.53003.451 (2)157.00
Symmetry codes: (i) x, y+1/2, z+3/2; (ii) x, y1/2, z+3/2.
 

Footnotes

Thomson Reuters ResearcherID: A-3561-2009.

Acknowledgements

HKF and TSH thank Universiti Sains Malaysia (USM) for the Research University Grant (1001/PFIZIK/811160). TSH also thanks USM for the award of a research fellowship. AMI is thankful to the Department of Atomic Energy, Board for Research in Nuclear Sciences, Government of India for the Young Scientist award.

References

First citationAllen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.  CSD CrossRef Web of Science Google Scholar
First citationBruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wiscosin, USA.  Google Scholar
First citationFun, H.-K., Shahani, T., Garudachari, B., Isloor, A. M. & Shivananda, K. N. (2011). Acta Cryst. E67, o2682.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationGandhi, S. S., Bell, K. L. & Gibson, M. S. (1995). Tetrahedron, 51, 13301–13308.  CrossRef CAS Web of Science Google Scholar
First citationHuang, W., Pian, J., Chen, B., Pei, W. & Ye, X. (1996). Tetrahedron, 52, 10131–10136.  CrossRef CAS Web of Science Google Scholar
First citationJudefind, W. L. & Reid, E. E. (1920). J. Am. Chem. Soc. 42, 1043—-1055.  Google Scholar
First citationLitera, J. K., Loya, A. D. & Klan, P. (2006). J. Org. Chem. 71, 713–723.  Web of Science PubMed Google Scholar
First citationRather, J. B. & Reid, E. (1919). J. Am. Chem. Soc. 41, 75–83.  CrossRef CAS Google Scholar
First citationRuzicka, R., Zabadal, M. & Klan, P. (2002). Synth. Commun. 32, 2581–2590.  Web of Science CrossRef CAS Google Scholar
First citationSheehan, J. C. & Umezaw, K. (1973). J. Org. Chem. 58, 3771–3773.  CrossRef Web of Science Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds