organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

4-(4-Bromo­phen­yl)-3-methyl-1-phenyl-6,7-di­hydro-1H-pyrazolo­[3,4-b]thieno[2,3-e]pyridine 5,5-dioxide

aSchool of Chemistry and Engineering, Jiangsu Key Laboratory of Green Synthetic Chemistry for Functional Materials, Xuzhou Normal University, Xuzhou, Jiangsu 221116, People's Republic of China
*Correspondence e-mail: ltj2008@xznu.edu.cn

(Received 27 October 2011; accepted 31 October 2011; online 5 November 2011)

In the title compound, C21H16BrN3O2S, the pyrazole and pyridine rings are nearly coplanar, the dihedral angle between their planes being 3.17 (14)°. The 2,3-dihydro­thio­phene ring adopts an envelope conformation. The 4-bromo­phen­yl/pyridine ring and phen­yl/pyrazole rings form dihedral angles of 60.06 (9) and 33.49 (11)°, respectively. There is an intra­molecular C—H⋯N hydrogen bond. The crystal packing is stabilized by inter­molecular C—H⋯O hydrogen bonding and C—H⋯π inter­actions.

Related literature

For the bioactivity of thienopyridine derivatives, see: Goerlitzer et al. (2004[Goerlitzer, K., Meyer, H., Walter, R. D., Jomaa, H. & Wiesner, J. (2004). Pharmazie, 59, 506-512.], 2000[Goerlitzer, K., Kramer, C. & Boyle, C. (2000). Pharmazie, 55, 595-600.]); Kamel et al. (2003[Kamel, M. M., El-Deen, E. M. M. & Abdou, W. A. M. (2003). Bull. Fac. Pharm. 41, 197-206.]). For the preparation of the title compound, see: Shi & Yang (2011[Shi, D.-Q. & Yang, F. (2011). J. Heterocycl. Chem. 48, 308-311.]).

[Scheme 1]

Experimental

Crystal data
  • C21H16BrN3O2S

  • Mr = 454.34

  • Triclinic, [P \overline 1]

  • a = 9.881 (3) Å

  • b = 9.904 (3) Å

  • c = 11.333 (4) Å

  • α = 108.642 (1)°

  • β = 102.000 (4)°

  • γ = 107.346 (3)°

  • V = 945.1 (5) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 2.31 mm−1

  • T = 113 K

  • 0.24 × 0.22 × 0.16 mm

Data collection
  • Rigaku Saturn CCD area-detector diffractometer

  • Absorption correction: multi-scan (CrystalClear; Rigaku/MSC, 2002)[Rigaku/MSC (2002). CrystalClear. Rigaku/MSC Inc., The Woodlands, Texas, USA.] Tmin = 0.607, Tmax = 0.709

  • 10810 measured reflections

  • 4429 independent reflections

  • 2695 reflections with I > 2σ(I)

  • Rint = 0.041

Refinement
  • R[F2 > 2σ(F2)] = 0.036

  • wR(F2) = 0.096

  • S = 0.98

  • 4429 reflections

  • 254 parameters

  • H-atom parameters constrained

  • Δρmax = 1.14 e Å−3

  • Δρmin = −0.58 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C3—H3⋯Cgi 0.95 2.84 3.235 (3) 106
C5—H5⋯O1ii 0.95 2.48 3.239 (3) 136
C19—H19⋯O1iii 0.95 2.57 3.514 (4) 174
C21—H21⋯N1 0.95 2.56 3.065 (3) 114
Symmetry codes: (i) -x+1, -y+1, -z+1; (ii) -x+1, -y+1, -z+2; (iii) x-1, y, z-1.

Data collection: CrystalClear (Rigaku/MSC, 2002[Rigaku/MSC (2002). CrystalClear. Rigaku/MSC Inc., The Woodlands, Texas, USA.]); cell refinement: CrystalClear; data reduction: CrystalClear; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

Some synthetic thienopyridine compounds exhibit antimalarial activities (Goerlitzer et al. 2004) and act as gyrase inhibitors (Goerlitzer et al. 2000). Recently, A-312110, a thienopyridine derivative was also reported as a potent KATP channel opener (Kamel et al. 2003). These reports inspired us to study the relationship between their structures and activities. During the synthesis of thienopyridine derivatives, the title compound, (I) was isolated and its structure was determined by X-ray diffraction. In the molecular structure (Fig. 1), the pyrazole and pyridine rings adopt planar conformations, with RMS of 0.0035 Å and 0.0170 Å, respectively. The largest deviation of the two rings are 0.005 (1) Å(N2) and 0.0325 (2) Å(C7), respectively. They are nearly coplanar, since the dihedral angle between them is 3.17 (14) °. The 2,3-dihydrothiophene ring adopts an envelope conformation. The distance between atom C9 and the plane of C10/C11/C8/S1 is 0.322 (4) Å. Besides, the 4-bromophenyl and pyridine ring, phenyl and pyrazole ring forms dihedral angles of 60.06 (9)° and 33.49 (11)° respectively. There is an intramolecular C—H···O hydrogen bond. In addition, the crystal packing is stabilized by intermolecular C—H···O hydrogen bond and C—H··· π interactions (Fig. 2).

Related literature top

For the bioactivity of thienopyridine derivatives, see: Goerlitzer et al. (2004, 2000); Kamel et al. (2003). For the preparation of the title compound, see: Shi & Yang (2011).

Experimental top

The title compound was synthesized according to the procedure (Shi et al. 2011). A dry 50 ml flask was charged with 4-bromobenzaldehyde (1 mmol), dihydrothiophen-3(2H)-one 1,1-dioxide (1 mmol), 5-amino-3-methyl-1-phenyl-pyrazole (1 mmol), and ionic liquid [bmim]Br (2 ml). The mixture was stirred at 363 K for 1.5 h to complete the reaction (monitored by TLC), then 5 ml water was added. The solid was filtered off and washed with water. The crude product was purified by recrystallization from the mixture of DMF and ethanol to give pure product.The recrystallization gave single-crystals suitable for X-ray diffraction.

Refinement top

The H atoms were placed in calculated positions, with C—H = 0.95 Å (aromatic), 0.98Å (methyl) or 0.99Å (methylene)and included in the final cycles of refinement using a riding model, with Uiso(H) = 1.2UeqC(aromatic, methylene) and 1.5UeqC(methyl).

Structure description top

Some synthetic thienopyridine compounds exhibit antimalarial activities (Goerlitzer et al. 2004) and act as gyrase inhibitors (Goerlitzer et al. 2000). Recently, A-312110, a thienopyridine derivative was also reported as a potent KATP channel opener (Kamel et al. 2003). These reports inspired us to study the relationship between their structures and activities. During the synthesis of thienopyridine derivatives, the title compound, (I) was isolated and its structure was determined by X-ray diffraction. In the molecular structure (Fig. 1), the pyrazole and pyridine rings adopt planar conformations, with RMS of 0.0035 Å and 0.0170 Å, respectively. The largest deviation of the two rings are 0.005 (1) Å(N2) and 0.0325 (2) Å(C7), respectively. They are nearly coplanar, since the dihedral angle between them is 3.17 (14) °. The 2,3-dihydrothiophene ring adopts an envelope conformation. The distance between atom C9 and the plane of C10/C11/C8/S1 is 0.322 (4) Å. Besides, the 4-bromophenyl and pyridine ring, phenyl and pyrazole ring forms dihedral angles of 60.06 (9)° and 33.49 (11)° respectively. There is an intramolecular C—H···O hydrogen bond. In addition, the crystal packing is stabilized by intermolecular C—H···O hydrogen bond and C—H··· π interactions (Fig. 2).

For the bioactivity of thienopyridine derivatives, see: Goerlitzer et al. (2004, 2000); Kamel et al. (2003). For the preparation of the title compound, see: Shi & Yang (2011).

Computing details top

Data collection: CrystalClear (Rigaku/MSC, 2002); cell refinement: CrystalClear (Rigaku/MSC, 2002); data reduction: CrystalClear (Rigaku/MSC, 2002); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The structure of (I), showing 30% probability displacement ellipsoids and the atom-numbering scheme, hydrogen bond represented by the dashed line. Cg is the centroid of the ring of C16/C17/C18/C19/C20/C21.
[Figure 2] Fig. 2. The packing diagram of (I), hydrogen bond represented by the dashed line.
4-(4-Bromophenyl)-3-methyl-1-phenyl-6,7-dihydro-1H- pyrazolo[3,4-b]thieno[2,3-e]pyridine 5,5-dioxide top
Crystal data top
C21H16BrN3O2SZ = 2
Mr = 454.34F(000) = 460
Triclinic, P1Dx = 1.597 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 9.881 (3) ÅCell parameters from 3340 reflections
b = 9.904 (3) Åθ = 2.0–27.9°
c = 11.333 (4) ŵ = 2.31 mm1
α = 108.642 (1)°T = 113 K
β = 102.000 (4)°Prism, colorless
γ = 107.346 (3)°0.24 × 0.22 × 0.16 mm
V = 945.1 (5) Å3
Data collection top
Rigaku Saturn CCD area-detector
diffractometer
4429 independent reflections
Radiation source: rotating anode2695 reflections with I > 2σ(I)
Multilayer monochromatorRint = 0.041
Detector resolution: 14.63 pixels mm-1θmax = 27.9°, θmin = 2.0°
ω and φ scansh = 1112
Absorption correction: multi-scan
(CrystalClear; Rigaku/MSC, 2002)
k = 1313
Tmin = 0.607, Tmax = 0.709l = 1414
10810 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.036Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.096H-atom parameters constrained
S = 0.98 w = 1/[σ2(Fo2) + (0.0437P)2]
where P = (Fo2 + 2Fc2)/3
4429 reflections(Δ/σ)max = 0.001
254 parametersΔρmax = 1.14 e Å3
0 restraintsΔρmin = 0.58 e Å3
Crystal data top
C21H16BrN3O2Sγ = 107.346 (3)°
Mr = 454.34V = 945.1 (5) Å3
Triclinic, P1Z = 2
a = 9.881 (3) ÅMo Kα radiation
b = 9.904 (3) ŵ = 2.31 mm1
c = 11.333 (4) ÅT = 113 K
α = 108.642 (1)°0.24 × 0.22 × 0.16 mm
β = 102.000 (4)°
Data collection top
Rigaku Saturn CCD area-detector
diffractometer
4429 independent reflections
Absorption correction: multi-scan
(CrystalClear; Rigaku/MSC, 2002)
2695 reflections with I > 2σ(I)
Tmin = 0.607, Tmax = 0.709Rint = 0.041
10810 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0360 restraints
wR(F2) = 0.096H-atom parameters constrained
S = 0.98Δρmax = 1.14 e Å3
4429 reflectionsΔρmin = 0.58 e Å3
254 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Br11.02598 (4)0.80211 (4)1.16776 (3)0.04812 (13)
S10.45768 (7)0.09317 (7)0.71274 (6)0.02120 (15)
O10.4863 (2)0.1482 (2)0.85218 (18)0.0380 (5)
O20.5755 (2)0.0686 (2)0.6663 (2)0.0372 (5)
N10.1738 (2)0.1677 (2)0.4704 (2)0.0220 (5)
N20.1926 (2)0.4054 (2)0.4460 (2)0.0233 (5)
N30.2917 (2)0.5588 (2)0.5057 (2)0.0240 (5)
C10.5936 (3)0.4707 (3)0.8034 (2)0.0190 (5)
C20.7289 (3)0.4526 (3)0.8108 (2)0.0204 (5)
H20.73310.37120.74110.025*
C30.8563 (3)0.5509 (3)0.9177 (2)0.0243 (6)
H30.94900.53950.92060.029*
C40.8497 (3)0.6665 (3)1.0212 (2)0.0273 (6)
C50.7152 (3)0.6852 (3)1.0175 (3)0.0318 (7)
H50.71110.76441.08920.038*
C60.5877 (3)0.5877 (3)0.9089 (3)0.0270 (6)
H60.49540.60010.90570.032*
C70.4559 (3)0.3682 (3)0.6872 (2)0.0193 (5)
C80.3902 (3)0.2086 (3)0.6455 (2)0.0183 (5)
C90.2875 (3)0.0719 (3)0.6279 (3)0.0416 (8)
H9A0.30880.16590.59380.050*
H9B0.23070.08390.68880.050*
C100.1963 (3)0.0532 (3)0.5156 (3)0.0291 (6)
H10A0.20620.11340.43160.035*
H10B0.08870.09190.50760.035*
C110.2532 (3)0.1152 (3)0.5425 (2)0.0210 (5)
C120.2421 (3)0.3213 (3)0.5059 (2)0.0205 (5)
C130.3777 (3)0.4255 (3)0.6098 (2)0.0206 (5)
C140.4020 (3)0.5728 (3)0.6035 (2)0.0214 (5)
C150.5315 (3)0.7246 (3)0.6841 (3)0.0267 (6)
H15A0.54340.78670.63200.040*
H15B0.62360.70690.70990.040*
H15C0.51270.78000.76360.040*
C160.0596 (3)0.3565 (3)0.3378 (3)0.0260 (6)
C170.0100 (3)0.4602 (4)0.3356 (3)0.0310 (7)
H170.03000.56090.40490.037*
C180.1381 (3)0.4129 (4)0.2301 (3)0.0393 (8)
H180.18570.48280.22730.047*
C190.1981 (3)0.2683 (4)0.1296 (3)0.0446 (8)
H190.28720.23800.05890.054*
C200.1277 (3)0.1653 (4)0.1315 (3)0.0433 (8)
H200.16800.06510.06160.052*
C210.0016 (3)0.2105 (3)0.2362 (3)0.0337 (7)
H210.05020.14120.23790.040*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Br10.0535 (2)0.02996 (18)0.02916 (18)0.00753 (16)0.01463 (14)0.00030 (13)
S10.0202 (3)0.0170 (3)0.0251 (3)0.0074 (3)0.0038 (3)0.0093 (3)
O10.0592 (14)0.0385 (12)0.0241 (10)0.0289 (11)0.0091 (10)0.0163 (9)
O20.0347 (12)0.0336 (12)0.0642 (15)0.0229 (10)0.0272 (11)0.0300 (11)
N10.0198 (12)0.0196 (11)0.0260 (12)0.0070 (9)0.0047 (9)0.0112 (9)
N20.0201 (12)0.0233 (12)0.0277 (12)0.0089 (10)0.0036 (9)0.0141 (10)
N30.0222 (12)0.0209 (12)0.0294 (12)0.0080 (10)0.0067 (10)0.0124 (10)
C10.0213 (14)0.0160 (12)0.0218 (13)0.0071 (11)0.0065 (10)0.0109 (10)
C20.0237 (14)0.0172 (13)0.0193 (13)0.0087 (11)0.0046 (10)0.0072 (10)
C30.0228 (14)0.0219 (14)0.0245 (14)0.0077 (12)0.0018 (11)0.0097 (11)
C40.0302 (16)0.0198 (14)0.0196 (13)0.0047 (12)0.0028 (11)0.0048 (11)
C50.0472 (19)0.0215 (14)0.0224 (14)0.0138 (14)0.0121 (13)0.0032 (11)
C60.0306 (16)0.0253 (14)0.0293 (15)0.0153 (13)0.0128 (12)0.0107 (12)
C70.0173 (13)0.0190 (13)0.0225 (13)0.0085 (11)0.0061 (10)0.0086 (11)
C80.0186 (13)0.0196 (13)0.0192 (12)0.0092 (11)0.0063 (10)0.0095 (10)
C90.0330 (18)0.0248 (16)0.053 (2)0.0000 (14)0.0055 (14)0.0215 (15)
C100.0248 (15)0.0203 (14)0.0343 (16)0.0050 (12)0.0011 (12)0.0109 (12)
C110.0201 (14)0.0207 (13)0.0234 (13)0.0081 (11)0.0084 (11)0.0096 (11)
C120.0168 (13)0.0219 (13)0.0272 (14)0.0092 (11)0.0075 (11)0.0136 (11)
C130.0204 (14)0.0187 (13)0.0228 (13)0.0078 (11)0.0060 (11)0.0094 (11)
C140.0221 (14)0.0201 (13)0.0257 (14)0.0103 (12)0.0097 (11)0.0108 (11)
C150.0272 (15)0.0189 (13)0.0321 (15)0.0081 (12)0.0050 (12)0.0122 (12)
C160.0170 (14)0.0354 (16)0.0294 (15)0.0070 (12)0.0064 (11)0.0218 (13)
C170.0300 (17)0.0483 (19)0.0311 (15)0.0235 (15)0.0155 (13)0.0253 (14)
C180.0275 (17)0.069 (2)0.0427 (19)0.0285 (18)0.0170 (15)0.0368 (18)
C190.0242 (17)0.067 (2)0.0415 (19)0.0077 (16)0.0007 (13)0.0368 (18)
C200.0358 (18)0.046 (2)0.0355 (17)0.0008 (16)0.0005 (14)0.0236 (16)
C210.0294 (16)0.0334 (17)0.0348 (16)0.0070 (14)0.0014 (13)0.0205 (14)
Geometric parameters (Å, º) top
Br1—C41.890 (3)C8—C111.399 (3)
S1—O21.4261 (19)C9—C101.497 (4)
S1—O11.4304 (19)C9—H9A0.9900
S1—C91.763 (3)C9—H9B0.9900
S1—C81.770 (2)C10—C111.495 (4)
N1—C111.342 (3)C10—H10A0.9900
N1—C121.347 (3)C10—H10B0.9900
N2—C121.364 (3)C12—C131.411 (3)
N2—N31.381 (3)C13—C141.434 (3)
N2—C161.427 (3)C14—C151.490 (3)
N3—C141.322 (3)C15—H15A0.9800
C1—C21.390 (3)C15—H15B0.9800
C1—C61.400 (3)C15—H15C0.9800
C1—C71.481 (3)C16—C211.383 (4)
C2—C31.372 (3)C16—C171.400 (4)
C2—H20.9500C17—C181.382 (4)
C3—C41.381 (4)C17—H170.9500
C3—H30.9500C18—C191.367 (5)
C4—C51.389 (4)C18—H180.9500
C5—C61.380 (4)C19—C201.399 (4)
C5—H50.9500C19—H190.9500
C6—H60.9500C20—C211.389 (4)
C7—C81.388 (3)C20—H200.9500
C7—C131.409 (3)C21—H210.9500
O2—S1—O1117.48 (13)C11—C10—H10A110.1
O2—S1—C9111.19 (15)C9—C10—H10A110.1
O1—S1—C9110.26 (14)C11—C10—H10B110.1
O2—S1—C8109.80 (11)C9—C10—H10B110.1
O1—S1—C8111.74 (11)H10A—C10—H10B108.4
C9—S1—C893.92 (13)N1—C11—C8124.4 (2)
C11—N1—C12112.6 (2)N1—C11—C10120.2 (2)
C12—N2—N3110.6 (2)C8—C11—C10115.4 (2)
C12—N2—C16129.5 (2)N1—C12—N2125.9 (2)
N3—N2—C16119.9 (2)N1—C12—C13127.2 (2)
C14—N3—N2107.4 (2)N2—C12—C13106.9 (2)
C2—C1—C6119.0 (2)C7—C13—C12119.0 (2)
C2—C1—C7121.4 (2)C7—C13—C14136.0 (2)
C6—C1—C7119.5 (2)C12—C13—C14104.9 (2)
C3—C2—C1120.7 (2)N3—C14—C13110.2 (2)
C3—C2—H2119.6N3—C14—C15120.5 (2)
C1—C2—H2119.6C13—C14—C15129.3 (2)
C2—C3—C4119.8 (2)C14—C15—H15A109.5
C2—C3—H3120.1C14—C15—H15B109.5
C4—C3—H3120.1H15A—C15—H15B109.5
C3—C4—C5120.6 (2)C14—C15—H15C109.5
C3—C4—Br1119.6 (2)H15A—C15—H15C109.5
C5—C4—Br1119.8 (2)H15B—C15—H15C109.5
C6—C5—C4119.5 (2)C21—C16—C17120.6 (3)
C6—C5—H5120.3C21—C16—N2120.8 (2)
C4—C5—H5120.3C17—C16—N2118.6 (3)
C5—C6—C1120.3 (2)C18—C17—C16118.5 (3)
C5—C6—H6119.9C18—C17—H17120.8
C1—C6—H6119.9C16—C17—H17120.8
C8—C7—C13113.7 (2)C19—C18—C17121.8 (3)
C8—C7—C1123.8 (2)C19—C18—H18119.1
C13—C7—C1122.5 (2)C17—C18—H18119.1
C7—C8—C11122.9 (2)C18—C19—C20119.7 (3)
C7—C8—S1127.27 (19)C18—C19—H19120.2
C11—C8—S1109.75 (18)C20—C19—H19120.2
C10—C9—S1108.94 (19)C21—C20—C19119.6 (3)
C10—C9—H9A109.9C21—C20—H20120.2
S1—C9—H9A109.9C19—C20—H20120.2
C10—C9—H9B109.9C16—C21—C20119.9 (3)
S1—C9—H9B109.9C16—C21—H21120.1
H9A—C9—H9B108.3C20—C21—H21120.1
C11—C10—C9108.2 (2)
C12—N2—N3—C140.8 (3)S1—C8—C11—C101.0 (3)
C16—N2—N3—C14178.7 (2)C9—C10—C11—N1167.5 (2)
C6—C1—C2—C32.2 (4)C9—C10—C11—C812.2 (3)
C7—C1—C2—C3178.4 (2)C11—N1—C12—N2176.3 (2)
C1—C2—C3—C41.9 (4)C11—N1—C12—C133.1 (3)
C2—C3—C4—C50.6 (4)N3—N2—C12—N1178.5 (2)
C2—C3—C4—Br1179.70 (18)C16—N2—C12—N12.0 (4)
C3—C4—C5—C60.4 (4)N3—N2—C12—C130.9 (3)
Br1—C4—C5—C6178.66 (19)C16—N2—C12—C13178.5 (2)
C4—C5—C6—C10.1 (4)C8—C7—C13—C123.0 (3)
C2—C1—C6—C51.1 (4)C1—C7—C13—C12176.0 (2)
C7—C1—C6—C5179.5 (2)C8—C7—C13—C14174.1 (3)
C2—C1—C7—C859.7 (3)C1—C7—C13—C147.0 (4)
C6—C1—C7—C8119.7 (3)N1—C12—C13—C70.9 (4)
C2—C1—C7—C13121.5 (3)N2—C12—C13—C7178.6 (2)
C6—C1—C7—C1359.2 (3)N1—C12—C13—C14178.8 (2)
C13—C7—C8—C114.6 (3)N2—C12—C13—C140.7 (3)
C1—C7—C8—C11174.4 (2)N2—N3—C14—C130.3 (3)
C13—C7—C8—S1177.58 (18)N2—N3—C14—C15177.3 (2)
C1—C7—C8—S13.5 (3)C7—C13—C14—N3177.6 (3)
O2—S1—C8—C778.9 (2)C12—C13—C14—N30.2 (3)
O1—S1—C8—C753.3 (2)C7—C13—C14—C150.9 (5)
C9—S1—C8—C7166.9 (2)C12—C13—C14—C15176.5 (2)
O2—S1—C8—C11103.01 (19)C12—N2—C16—C2134.4 (4)
O1—S1—C8—C11124.82 (18)N3—N2—C16—C21146.2 (2)
C9—S1—C8—C1111.2 (2)C12—N2—C16—C17146.6 (2)
O2—S1—C9—C1095.0 (2)N3—N2—C16—C1732.9 (3)
O1—S1—C9—C10132.9 (2)C21—C16—C17—C180.4 (4)
C8—S1—C9—C1018.0 (2)N2—C16—C17—C18179.5 (2)
S1—C9—C10—C1119.6 (3)C16—C17—C18—C190.5 (4)
C12—N1—C11—C81.4 (3)C17—C18—C19—C201.0 (5)
C12—N1—C11—C10178.9 (2)C18—C19—C20—C210.7 (4)
C7—C8—C11—N12.5 (4)C17—C16—C21—C200.8 (4)
S1—C8—C11—N1179.29 (19)N2—C16—C21—C20179.8 (2)
C7—C8—C11—C10177.2 (2)C19—C20—C21—C160.2 (4)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C3—H3···Cgi0.952.843.235 (3)106
C5—H5···O1ii0.952.483.239 (3)136
C19—H19···O1iii0.952.573.514 (4)174
C21—H21···N10.952.563.065 (3)114
Symmetry codes: (i) x+1, y+1, z+1; (ii) x+1, y+1, z+2; (iii) x1, y, z1.

Experimental details

Crystal data
Chemical formulaC21H16BrN3O2S
Mr454.34
Crystal system, space groupTriclinic, P1
Temperature (K)113
a, b, c (Å)9.881 (3), 9.904 (3), 11.333 (4)
α, β, γ (°)108.642 (1), 102.000 (4), 107.346 (3)
V3)945.1 (5)
Z2
Radiation typeMo Kα
µ (mm1)2.31
Crystal size (mm)0.24 × 0.22 × 0.16
Data collection
DiffractometerRigaku Saturn CCD area-detector
Absorption correctionMulti-scan
(CrystalClear; Rigaku/MSC, 2002)
Tmin, Tmax0.607, 0.709
No. of measured, independent and
observed [I > 2σ(I)] reflections
10810, 4429, 2695
Rint0.041
(sin θ/λ)max1)0.658
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.036, 0.096, 0.98
No. of reflections4429
No. of parameters254
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)1.14, 0.58

Computer programs: CrystalClear (Rigaku/MSC, 2002), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C3—H3···Cgi0.952.843.235 (3)106.0
C5—H5···O1ii0.952.483.239 (3)136.4
C19—H19···O1iii0.952.573.514 (4)174.3
C21—H21···N10.952.563.065 (3)113.8
Symmetry codes: (i) x+1, y+1, z+1; (ii) x+1, y+1, z+2; (iii) x1, y, z1.
 

Acknowledgements

We are thankful to Dr Youquan Zhu (zyq8165@nankai.edu.cn) of Nankai University for the data collection and the Natural Science Foundation of Xuzhou Normal University for financial support (08XRL05).

References

First citationGoerlitzer, K., Kramer, C. & Boyle, C. (2000). Pharmazie, 55, 595–600.  Web of Science PubMed Google Scholar
First citationGoerlitzer, K., Meyer, H., Walter, R. D., Jomaa, H. & Wiesner, J. (2004). Pharmazie, 59, 506–512.  Web of Science PubMed CAS Google Scholar
First citationKamel, M. M., El-Deen, E. M. M. & Abdou, W. A. M. (2003). Bull. Fac. Pharm. 41, 197–206.  CAS Google Scholar
First citationRigaku/MSC (2002). CrystalClear. Rigaku/MSC Inc., The Woodlands, Texas, USA.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationShi, D.-Q. & Yang, F. (2011). J. Heterocycl. Chem. 48, 308–311.  Web of Science CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds