organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

7′-(4-Bromo­phen­yl)-5′,6′,7′,7a'-tetra­hydro­di­spiro­[indan-2,5′-pyrrolo­[1,2-c][1,3]thia­zole-6′,2′′-indan]-1,3,1′′-trione

aInstitute for Research in Molecular Medicine, Universiti Sains Malaysia, 11800 USM, Penang, Malaysia, and bX-ray Crystallography Unit, School of Physics, Universiti Sains Malaysia, 11800 USM, Penang, Malaysia
*Correspondence e-mail: hkfun@usm.my

(Received 1 November 2011; accepted 4 November 2011; online 12 November 2011)

In the title compound, C28H20BrNO3S, the thia­zolidine, pyrrolidine and two five-membered carbocyclic rings are in envelope conformations. The bromo-bound phenyl ring forms dihedral angles of 61.97 (18) and 88.30 (17)° with the other two benzene rings. The two benzene rings form a dihedral angle of 30.3 (2)°. The mol­ecular structure features an intra­molecular C—H⋯O hydrogen bond, which generates an S(6) ring motif. In the crystal, mol­ecules are linked into inversion dimers by pairs of C—H⋯O hydrogen bonds.

Related literature

For related structures and background references, see: Wei et al. (2011a[Wei, A. C., Ali, M. A., Choon, T. S., Quah, C. K. & Fun, H.-K. (2011a). Acta Cryst. E67, o2383.],b[Wei, A. C., Ali, M. A., Ismail, R., Quah, C. K. & Fun, H.-K. (2011b). Acta Cryst. E67, o2381-o2382.],c[Wei, A. C., Ali, M. A., Yoon, Y. K., Quah, C. K. & Fun, H.-K. (2011c). Acta Cryst. E67, o2404.]); Kumar et al. (2010[Kumar, R. S., Osman, H., Ali, M. A., Quah, C. K. & Fun, H.-K. (2010). Acta Cryst. E66, o1540-o1541.]). For hydrogen-bond motifs, see: Bernstein et al. (1995[Bernstein, J., Davis, R. E., Shimoni, L. & Chamg, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555-1573.]). For ring conformations, see: Cremer & Pople (1975[Cremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354-1358.]). For bond-length data, see: Allen et al. (1987[Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1-19.]).

[Scheme 1]

Experimental

Crystal data
  • C28H20BrNO3S

  • Mr = 530.42

  • Triclinic, [P \overline 1]

  • a = 10.2871 (11) Å

  • b = 11.1375 (12) Å

  • c = 11.5877 (13) Å

  • α = 115.511 (2)°

  • β = 90.075 (2)°

  • γ = 97.347 (2)°

  • V = 1186.0 (2) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 1.85 mm−1

  • T = 296 K

  • 0.31 × 0.13 × 0.05 mm

Data collection
  • Bruker SMART APEXII DUO CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2009[Bruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.599, Tmax = 0.915

  • 17888 measured reflections

  • 5422 independent reflections

  • 3789 reflections with I > 2σ(I)

  • Rint = 0.028

Refinement
  • R[F2 > 2σ(F2)] = 0.044

  • wR(F2) = 0.136

  • S = 1.04

  • 5422 reflections

  • 307 parameters

  • H-atom parameters constrained

  • Δρmax = 0.76 e Å−3

  • Δρmin = −0.55 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C18—H18B⋯O1 0.97 2.42 3.080 (4) 125
C22—H22A⋯O2i 0.93 2.44 3.172 (4) 135
Symmetry code: (i) -x, -y+2, -z+2.

Data collection: APEX2 (Bruker, 2009[Bruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2009[Bruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Supporting information


Comment top

As part of our ongoing search for novel heterocyclic compounds with antitubercular activity (Wei et al., 2011a, 2011b, 2011c), our group has synthesized the title compound as described below.

The molecular structure is shown in Fig. 1. The thiazolidine (S1/N1/C26-C28), pyrrolidine (N1/C9/C10/C19/C26) and two five-membered carbocyclic (C1/C2/C7-C9 and C10-C12/C17/C18) rings are in envelope conformations, puckering parameters (Cremer & Pople, 1975) Q = 0.373 (3) Å and φ = 31.3 (5)° with atom C27 at the flap; Q = 0.456 (3) Å and φ = 243.8 (4)° with atom C10 at the flap; Q = 0.229 (4) Å and φ = 330.0 (9)° with atom C9 at the flap; and Q = 0.168 (3) Å and φ = 171.2 (12)° with atom C10 at the flap, respectively. Bond lengths (Allen et al., 1987) and angles are within normal ranges and are comparable to related structures (Kumar et al., 2010; Wei et al., 2011a,b,c). The bromo-bound phenyl (C20-C25) ring forms dihedral angles of 61.97 (18) and 88.30 (17)° with the other two phenyl (C2-C7 and C12-C17) rings, respectively. The two phenyl rings form a dihedral angle of 30.3 (2)°. The molecular structure is stabilized by an intramolecular C18–H18B···O1 hydrogen bond (Table 1), which generates an S(6) ring motif (Fig. 1, Bernstein et al., 1995).

In the crystal (Fig. 2), molecules are linked into inversion dimers by pairs of intermolecular C22–H22A···O2 hydrogen bonds (Table 1).

Related literature top

For related structures and background references, see: Wei et al. (2011a,b,c); Kumar et al. (2010). For hydrogen-bond motifs, see: Bernstein et al. (1995). For ring conformations, see: Cremer & Pople (1975). For bond-length data, see: Allen et al. (1987).

Experimental top

A mixture of (Z)2-(4-bromobenzylidene)-2,3-dihydro-1H-indene-1-one (0.298gm, 0.001 mol), ninhydrin (0.178gm, 0.001 mol) and thiazolidine-4-carboxylic acid (0.266gm, 0.002 mol) (1:1:2) were dissolved in methanol (10 ml) and refluxed for 4 h. After completion of the reaction as evident from TLC, the mixture was poured into crushed ice. The precipitated solid was filtered, washed and recrystallised from petroleum ether–ethyl acetate mixture (1:1) to afford the title compound as yellow crystals. M.p. : 487 K.

Refinement top

All H atoms were positioned geometrically and refined using a riding model with C–H = 0.93-0.98 Å and Uiso(H) = 1.2 Ueq(C).

Structure description top

As part of our ongoing search for novel heterocyclic compounds with antitubercular activity (Wei et al., 2011a, 2011b, 2011c), our group has synthesized the title compound as described below.

The molecular structure is shown in Fig. 1. The thiazolidine (S1/N1/C26-C28), pyrrolidine (N1/C9/C10/C19/C26) and two five-membered carbocyclic (C1/C2/C7-C9 and C10-C12/C17/C18) rings are in envelope conformations, puckering parameters (Cremer & Pople, 1975) Q = 0.373 (3) Å and φ = 31.3 (5)° with atom C27 at the flap; Q = 0.456 (3) Å and φ = 243.8 (4)° with atom C10 at the flap; Q = 0.229 (4) Å and φ = 330.0 (9)° with atom C9 at the flap; and Q = 0.168 (3) Å and φ = 171.2 (12)° with atom C10 at the flap, respectively. Bond lengths (Allen et al., 1987) and angles are within normal ranges and are comparable to related structures (Kumar et al., 2010; Wei et al., 2011a,b,c). The bromo-bound phenyl (C20-C25) ring forms dihedral angles of 61.97 (18) and 88.30 (17)° with the other two phenyl (C2-C7 and C12-C17) rings, respectively. The two phenyl rings form a dihedral angle of 30.3 (2)°. The molecular structure is stabilized by an intramolecular C18–H18B···O1 hydrogen bond (Table 1), which generates an S(6) ring motif (Fig. 1, Bernstein et al., 1995).

In the crystal (Fig. 2), molecules are linked into inversion dimers by pairs of intermolecular C22–H22A···O2 hydrogen bonds (Table 1).

For related structures and background references, see: Wei et al. (2011a,b,c); Kumar et al. (2010). For hydrogen-bond motifs, see: Bernstein et al. (1995). For ring conformations, see: Cremer & Pople (1975). For bond-length data, see: Allen et al. (1987).

Computing details top

Data collection: APEX2 (Bruker, 2009); cell refinement: SAINT (Bruker, 2009); data reduction: SAINT (Bruker, 2009); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound showing 30% probability displacement ellipsoids for non-H atoms. Intramolecular hydrogen bond is shown as dashed line.
[Figure 2] Fig. 2. The crystal structure of the title compound, viewed along the a axis. H atoms not involved in hydrogen bonds (dashed lines) have been omitted for clarity.
7'-(4-Bromophenyl)-5',6',7',7a'-tetrahydrodispiro[indan-2,5'- pyrrolo[1,2-c][1,3]thiazole-6',2''-indan]-1,3,1''-trione top
Crystal data top
C28H20BrNO3SZ = 2
Mr = 530.42F(000) = 540
Triclinic, P1Dx = 1.485 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 10.2871 (11) ÅCell parameters from 5183 reflections
b = 11.1375 (12) Åθ = 2.7–25.1°
c = 11.5877 (13) ŵ = 1.85 mm1
α = 115.511 (2)°T = 296 K
β = 90.075 (2)°Plate, yellow
γ = 97.347 (2)°0.31 × 0.13 × 0.05 mm
V = 1186.0 (2) Å3
Data collection top
Bruker SMART APEXII DUO CCD area-detector
diffractometer
5422 independent reflections
Radiation source: fine-focus sealed tube3789 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.028
φ and ω scansθmax = 27.5°, θmin = 2.0°
Absorption correction: multi-scan
(SADABS; Bruker, 2009)
h = 1313
Tmin = 0.599, Tmax = 0.915k = 1414
17888 measured reflectionsl = 1515
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.044Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.136H-atom parameters constrained
S = 1.04 w = 1/[σ2(Fo2) + (0.069P)2 + 0.5361P]
where P = (Fo2 + 2Fc2)/3
5422 reflections(Δ/σ)max = 0.001
307 parametersΔρmax = 0.76 e Å3
0 restraintsΔρmin = 0.55 e Å3
Crystal data top
C28H20BrNO3Sγ = 97.347 (2)°
Mr = 530.42V = 1186.0 (2) Å3
Triclinic, P1Z = 2
a = 10.2871 (11) ÅMo Kα radiation
b = 11.1375 (12) ŵ = 1.85 mm1
c = 11.5877 (13) ÅT = 296 K
α = 115.511 (2)°0.31 × 0.13 × 0.05 mm
β = 90.075 (2)°
Data collection top
Bruker SMART APEXII DUO CCD area-detector
diffractometer
5422 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2009)
3789 reflections with I > 2σ(I)
Tmin = 0.599, Tmax = 0.915Rint = 0.028
17888 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0440 restraints
wR(F2) = 0.136H-atom parameters constrained
S = 1.04Δρmax = 0.76 e Å3
5422 reflectionsΔρmin = 0.55 e Å3
307 parameters
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Br10.23515 (4)0.46981 (4)1.06048 (4)0.06794 (16)
S10.16572 (9)0.80844 (13)0.47197 (11)0.0762 (3)
O10.3178 (2)0.7025 (2)0.4532 (2)0.0603 (6)
O20.0988 (2)1.0386 (2)0.7289 (2)0.0534 (5)
O30.2534 (2)0.9395 (2)0.9235 (2)0.0541 (6)
N10.0550 (2)0.7507 (2)0.5431 (2)0.0386 (5)
C10.3018 (3)0.7992 (3)0.5499 (3)0.0433 (6)
C20.3960 (3)0.9234 (3)0.6201 (3)0.0448 (7)
C30.5303 (3)0.9444 (4)0.6109 (4)0.0635 (9)
H3A0.57420.87550.55620.076*
C40.5965 (4)1.0703 (5)0.6853 (5)0.0809 (13)
H4A0.68711.08660.68290.097*
C50.5297 (4)1.1739 (5)0.7641 (5)0.0828 (13)
H5A0.57661.25880.81180.099*
C60.3960 (4)1.1540 (4)0.7733 (3)0.0614 (9)
H6A0.35191.22370.82640.074*
C70.3297 (3)1.0265 (3)0.7008 (3)0.0446 (7)
C80.1887 (3)0.9741 (3)0.6930 (3)0.0394 (6)
C90.1741 (2)0.8187 (3)0.6216 (3)0.0353 (6)
C100.1681 (2)0.7534 (3)0.7189 (2)0.0341 (5)
C110.2667 (3)0.8332 (3)0.8357 (3)0.0384 (6)
C120.3772 (3)0.7561 (3)0.8172 (3)0.0398 (6)
C130.4989 (3)0.7948 (4)0.8868 (3)0.0552 (8)
H13A0.51800.87770.95760.066*
C140.5894 (3)0.7062 (4)0.8473 (4)0.0717 (11)
H14A0.67170.72970.89060.086*
C150.5583 (3)0.5823 (4)0.7433 (4)0.0686 (10)
H15A0.62030.52350.71870.082*
C160.4386 (3)0.5428 (3)0.6747 (3)0.0529 (8)
H16A0.41950.45890.60520.064*
C170.3475 (3)0.6321 (3)0.7127 (3)0.0375 (6)
C180.2104 (3)0.6122 (3)0.6556 (3)0.0386 (6)
H18A0.15250.54880.67560.046*
H18B0.20990.57950.56330.046*
C190.0224 (2)0.7599 (3)0.7500 (3)0.0358 (6)
H19A0.01520.85460.80370.043*
C200.0338 (2)0.6824 (3)0.8229 (3)0.0356 (6)
C210.0347 (3)0.7498 (3)0.9562 (3)0.0442 (7)
H21A0.00240.83960.99820.053*
C220.0899 (3)0.6850 (3)1.0270 (3)0.0487 (7)
H22A0.08810.73011.11580.058*
C230.1472 (3)0.5537 (3)0.9644 (3)0.0429 (6)
C240.1460 (3)0.4830 (3)0.8343 (3)0.0409 (6)
H24A0.18270.39300.79360.049*
C250.0886 (3)0.5483 (3)0.7640 (3)0.0381 (6)
H25A0.08710.50090.67560.046*
C260.0479 (3)0.7231 (3)0.6201 (3)0.0414 (6)
H26A0.08290.62720.58000.050*
C270.1579 (3)0.8053 (4)0.6265 (4)0.0647 (10)
H27A0.13780.89570.69470.078*
H27B0.24060.76330.64140.078*
C280.0078 (3)0.8013 (3)0.4550 (3)0.0470 (7)
H28A0.02330.74200.36750.056*
H28B0.05440.89020.47550.056*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Br10.0633 (3)0.0906 (3)0.0682 (3)0.00456 (19)0.01299 (18)0.0533 (2)
S10.0400 (5)0.1299 (9)0.0944 (7)0.0093 (5)0.0060 (4)0.0830 (7)
O10.0624 (15)0.0585 (14)0.0492 (13)0.0145 (11)0.0144 (11)0.0115 (12)
O20.0492 (13)0.0408 (11)0.0637 (14)0.0105 (10)0.0092 (10)0.0156 (10)
O30.0513 (13)0.0450 (12)0.0475 (12)0.0035 (10)0.0079 (10)0.0036 (10)
N10.0365 (12)0.0402 (12)0.0399 (12)0.0020 (10)0.0049 (9)0.0192 (10)
C10.0411 (16)0.0490 (17)0.0414 (16)0.0090 (13)0.0064 (12)0.0204 (14)
C20.0369 (15)0.0549 (18)0.0472 (16)0.0011 (13)0.0006 (12)0.0278 (14)
C30.0393 (18)0.090 (3)0.072 (2)0.0106 (18)0.0107 (16)0.045 (2)
C40.040 (2)0.116 (4)0.096 (3)0.018 (2)0.011 (2)0.063 (3)
C50.066 (3)0.079 (3)0.089 (3)0.035 (2)0.017 (2)0.035 (2)
C60.061 (2)0.0531 (19)0.058 (2)0.0120 (16)0.0053 (16)0.0178 (16)
C70.0436 (16)0.0438 (16)0.0460 (16)0.0044 (13)0.0024 (13)0.0222 (14)
C80.0393 (15)0.0374 (14)0.0387 (14)0.0034 (12)0.0023 (12)0.0146 (12)
C90.0320 (13)0.0341 (13)0.0376 (14)0.0034 (10)0.0018 (11)0.0139 (11)
C100.0291 (13)0.0329 (13)0.0367 (14)0.0004 (10)0.0031 (10)0.0128 (11)
C110.0377 (15)0.0356 (14)0.0361 (14)0.0047 (11)0.0079 (11)0.0130 (12)
C120.0316 (14)0.0457 (16)0.0398 (15)0.0003 (11)0.0017 (11)0.0180 (13)
C130.0404 (17)0.062 (2)0.0557 (19)0.0019 (15)0.0151 (14)0.0210 (16)
C140.0359 (18)0.098 (3)0.084 (3)0.0115 (18)0.0127 (17)0.041 (2)
C150.0449 (19)0.082 (3)0.080 (3)0.0274 (18)0.0018 (18)0.031 (2)
C160.0449 (17)0.0545 (19)0.0543 (19)0.0165 (14)0.0028 (14)0.0164 (15)
C170.0292 (13)0.0425 (15)0.0416 (15)0.0038 (11)0.0000 (11)0.0193 (12)
C180.0345 (14)0.0357 (14)0.0415 (15)0.0006 (11)0.0058 (11)0.0143 (12)
C190.0306 (13)0.0335 (13)0.0403 (14)0.0015 (10)0.0013 (11)0.0142 (12)
C200.0267 (13)0.0398 (14)0.0413 (15)0.0041 (10)0.0007 (10)0.0187 (12)
C210.0433 (16)0.0401 (15)0.0409 (16)0.0037 (12)0.0005 (12)0.0104 (13)
C220.0507 (18)0.0543 (18)0.0356 (15)0.0088 (14)0.0025 (13)0.0140 (14)
C230.0340 (14)0.0562 (18)0.0476 (16)0.0092 (13)0.0067 (12)0.0303 (14)
C240.0369 (15)0.0392 (15)0.0448 (16)0.0013 (12)0.0003 (12)0.0178 (13)
C250.0342 (14)0.0402 (15)0.0361 (14)0.0030 (11)0.0004 (11)0.0136 (12)
C260.0363 (15)0.0441 (15)0.0459 (16)0.0039 (12)0.0080 (12)0.0242 (13)
C270.0330 (16)0.107 (3)0.082 (3)0.0131 (17)0.0047 (15)0.066 (2)
C280.0449 (16)0.0556 (18)0.0474 (17)0.0091 (14)0.0008 (13)0.0284 (15)
Geometric parameters (Å, º) top
Br1—C231.901 (3)C13—C141.377 (5)
S1—C281.805 (3)C13—H13A0.9300
S1—C271.808 (4)C14—C151.383 (6)
O1—C11.204 (4)C14—H14A0.9300
O2—C81.208 (3)C15—C161.378 (5)
O3—C111.209 (3)C15—H15A0.9300
N1—C91.439 (3)C16—C171.387 (4)
N1—C281.469 (4)C16—H16A0.9300
N1—C261.473 (4)C17—C181.505 (4)
C1—C21.483 (4)C18—H18A0.9700
C1—C91.543 (4)C18—H18B0.9700
C2—C31.383 (4)C19—C201.514 (4)
C2—C71.391 (4)C19—C261.531 (4)
C3—C41.374 (6)C19—H19A0.9800
C3—H3A0.9300C20—C251.386 (4)
C4—C51.390 (7)C20—C211.397 (4)
C4—H4A0.9300C21—C221.387 (4)
C5—C61.377 (6)C21—H21A0.9300
C5—H5A0.9300C22—C231.370 (4)
C6—C71.383 (4)C22—H22A0.9300
C6—H6A0.9300C23—C241.368 (4)
C7—C81.480 (4)C24—C251.395 (4)
C8—C91.551 (4)C24—H24A0.9300
C9—C101.580 (4)C25—H25A0.9300
C10—C111.543 (4)C26—C271.526 (4)
C10—C181.544 (4)C26—H26A0.9800
C10—C191.546 (4)C27—H27A0.9700
C11—C121.471 (4)C27—H27B0.9700
C12—C171.385 (4)C28—H28A0.9700
C12—C131.402 (4)C28—H28B0.9700
C28—S1—C2792.49 (14)C15—C16—C17117.9 (3)
C9—N1—C28119.0 (2)C15—C16—H16A121.1
C9—N1—C26110.4 (2)C17—C16—H16A121.1
C28—N1—C26113.6 (2)C12—C17—C16120.3 (3)
O1—C1—C2127.6 (3)C12—C17—C18111.6 (2)
O1—C1—C9125.5 (3)C16—C17—C18128.1 (3)
C2—C1—C9106.8 (2)C17—C18—C10104.2 (2)
C3—C2—C7121.3 (3)C17—C18—H18A110.9
C3—C2—C1128.7 (3)C10—C18—H18A110.9
C7—C2—C1110.0 (2)C17—C18—H18B110.9
C4—C3—C2117.7 (4)C10—C18—H18B110.9
C4—C3—H3A121.1H18A—C18—H18B108.9
C2—C3—H3A121.1C20—C19—C26116.1 (2)
C3—C4—C5120.9 (3)C20—C19—C10116.8 (2)
C3—C4—H4A119.6C26—C19—C10103.4 (2)
C5—C4—H4A119.6C20—C19—H19A106.6
C6—C5—C4121.7 (4)C26—C19—H19A106.6
C6—C5—H5A119.1C10—C19—H19A106.6
C4—C5—H5A119.1C25—C20—C21117.8 (3)
C5—C6—C7117.4 (4)C25—C20—C19123.4 (2)
C5—C6—H6A121.3C21—C20—C19118.8 (2)
C7—C6—H6A121.3C22—C21—C20121.1 (3)
C6—C7—C2120.9 (3)C22—C21—H21A119.5
C6—C7—C8129.8 (3)C20—C21—H21A119.5
C2—C7—C8109.3 (2)C23—C22—C21119.2 (3)
O2—C8—C7127.3 (3)C23—C22—H22A120.4
O2—C8—C9125.0 (2)C21—C22—H22A120.4
C7—C8—C9107.6 (2)C24—C23—C22121.7 (3)
N1—C9—C1115.4 (2)C24—C23—Br1119.3 (2)
N1—C9—C8117.0 (2)C22—C23—Br1119.0 (2)
C1—C9—C8101.0 (2)C23—C24—C25118.8 (3)
N1—C9—C10101.06 (19)C23—C24—H24A120.6
C1—C9—C10111.5 (2)C25—C24—H24A120.6
C8—C9—C10111.2 (2)C20—C25—C24121.5 (3)
C11—C10—C18104.5 (2)C20—C25—H25A119.3
C11—C10—C19114.4 (2)C24—C25—H25A119.3
C18—C10—C19116.7 (2)N1—C26—C27108.7 (2)
C11—C10—C9111.9 (2)N1—C26—C19104.9 (2)
C18—C10—C9110.4 (2)C27—C26—C19114.3 (3)
C19—C10—C999.1 (2)N1—C26—H26A109.6
O3—C11—C12128.0 (2)C27—C26—H26A109.6
O3—C11—C10125.1 (3)C19—C26—H26A109.6
C12—C11—C10107.0 (2)C26—C27—S1104.9 (2)
C17—C12—C13121.3 (3)C26—C27—H27A110.8
C17—C12—C11109.8 (2)S1—C27—H27A110.8
C13—C12—C11128.8 (3)C26—C27—H27B110.8
C14—C13—C12118.0 (3)S1—C27—H27B110.8
C14—C13—H13A121.0H27A—C27—H27B108.9
C12—C13—H13A121.0N1—C28—S1108.2 (2)
C13—C14—C15120.1 (3)N1—C28—H28A110.1
C13—C14—H14A119.9S1—C28—H28A110.1
C15—C14—H14A119.9N1—C28—H28B110.1
C16—C15—C14122.4 (3)S1—C28—H28B110.1
C16—C15—H15A118.8H28A—C28—H28B108.4
C14—C15—H15A118.8
O1—C1—C2—C317.4 (5)C10—C11—C12—C178.1 (3)
C9—C1—C2—C3164.9 (3)O3—C11—C12—C139.1 (5)
O1—C1—C2—C7161.0 (3)C10—C11—C12—C13170.2 (3)
C9—C1—C2—C716.6 (3)C17—C12—C13—C140.8 (5)
C7—C2—C3—C40.7 (5)C11—C12—C13—C14177.2 (3)
C1—C2—C3—C4179.0 (3)C12—C13—C14—C151.3 (6)
C2—C3—C4—C51.9 (6)C13—C14—C15—C160.8 (7)
C3—C4—C5—C61.7 (7)C14—C15—C16—C170.2 (6)
C4—C5—C6—C70.1 (6)C13—C12—C17—C160.2 (4)
C5—C6—C7—C21.1 (5)C11—C12—C17—C16178.5 (3)
C5—C6—C7—C8178.3 (3)C13—C12—C17—C18178.6 (3)
C3—C2—C7—C60.8 (5)C11—C12—C17—C183.0 (3)
C1—C2—C7—C6177.8 (3)C15—C16—C17—C120.7 (5)
C3—C2—C7—C8178.7 (3)C15—C16—C17—C18178.8 (3)
C1—C2—C7—C82.7 (3)C12—C17—C18—C1012.7 (3)
C6—C7—C8—O216.4 (5)C16—C17—C18—C10169.0 (3)
C2—C7—C8—O2164.2 (3)C11—C10—C18—C1716.5 (3)
C6—C7—C8—C9167.2 (3)C19—C10—C18—C17143.9 (2)
C2—C7—C8—C912.2 (3)C9—C10—C18—C17104.0 (2)
C28—N1—C9—C171.8 (3)C11—C10—C19—C2072.1 (3)
C26—N1—C9—C1154.2 (2)C18—C10—C19—C2050.3 (3)
C28—N1—C9—C846.8 (3)C9—C10—C19—C20168.7 (2)
C26—N1—C9—C887.2 (3)C11—C10—C19—C26159.1 (2)
C28—N1—C9—C10167.7 (2)C18—C10—C19—C2678.6 (3)
C26—N1—C9—C1033.7 (3)C9—C10—C19—C2639.9 (2)
O1—C1—C9—N128.3 (4)C26—C19—C20—C2535.0 (4)
C2—C1—C9—N1149.5 (2)C10—C19—C20—C2587.5 (3)
O1—C1—C9—C8155.4 (3)C26—C19—C20—C21142.9 (3)
C2—C1—C9—C822.3 (3)C10—C19—C20—C2194.7 (3)
O1—C1—C9—C1086.3 (3)C25—C20—C21—C220.7 (4)
C2—C1—C9—C1096.0 (3)C19—C20—C21—C22177.3 (3)
O2—C8—C9—N129.4 (4)C20—C21—C22—C231.6 (5)
C7—C8—C9—N1147.0 (2)C21—C22—C23—C243.1 (5)
O2—C8—C9—C1155.6 (3)C21—C22—C23—Br1175.0 (2)
C7—C8—C9—C120.9 (3)C22—C23—C24—C252.2 (4)
O2—C8—C9—C1085.9 (3)Br1—C23—C24—C25175.9 (2)
C7—C8—C9—C1097.6 (3)C21—C20—C25—C241.6 (4)
N1—C9—C10—C11165.7 (2)C19—C20—C25—C24176.3 (2)
C1—C9—C10—C1171.2 (3)C23—C24—C25—C200.2 (4)
C8—C9—C10—C1140.8 (3)C9—N1—C26—C27114.1 (3)
N1—C9—C10—C1878.4 (2)C28—N1—C26—C2722.5 (3)
C1—C9—C10—C1844.8 (3)C9—N1—C26—C198.5 (3)
C8—C9—C10—C18156.8 (2)C28—N1—C26—C19145.1 (2)
N1—C9—C10—C1944.6 (2)C20—C19—C26—N1150.6 (2)
C1—C9—C10—C19167.8 (2)C10—C19—C26—N121.3 (3)
C8—C9—C10—C1980.2 (2)C20—C19—C26—C2790.6 (3)
C18—C10—C11—O3165.4 (3)C10—C19—C26—C27140.1 (2)
C19—C10—C11—O336.6 (4)N1—C26—C27—S135.1 (3)
C9—C10—C11—O375.1 (3)C19—C26—C27—S1151.8 (2)
C18—C10—C11—C1215.4 (3)C28—S1—C27—C2631.1 (3)
C19—C10—C11—C12144.1 (2)C9—N1—C28—S1133.7 (2)
C9—C10—C11—C12104.2 (2)C26—N1—C28—S11.1 (3)
O3—C11—C12—C17172.7 (3)C27—S1—C28—N119.3 (2)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C18—H18B···O10.972.423.080 (4)125
C22—H22A···O2i0.932.443.172 (4)135
Symmetry code: (i) x, y+2, z+2.

Experimental details

Crystal data
Chemical formulaC28H20BrNO3S
Mr530.42
Crystal system, space groupTriclinic, P1
Temperature (K)296
a, b, c (Å)10.2871 (11), 11.1375 (12), 11.5877 (13)
α, β, γ (°)115.511 (2), 90.075 (2), 97.347 (2)
V3)1186.0 (2)
Z2
Radiation typeMo Kα
µ (mm1)1.85
Crystal size (mm)0.31 × 0.13 × 0.05
Data collection
DiffractometerBruker SMART APEXII DUO CCD area-detector
Absorption correctionMulti-scan
(SADABS; Bruker, 2009)
Tmin, Tmax0.599, 0.915
No. of measured, independent and
observed [I > 2σ(I)] reflections
17888, 5422, 3789
Rint0.028
(sin θ/λ)max1)0.650
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.044, 0.136, 1.04
No. of reflections5422
No. of parameters307
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.76, 0.55

Computer programs: APEX2 (Bruker, 2009), SAINT (Bruker, 2009), SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C18—H18B···O10.97002.42003.080 (4)125.00
C22—H22A···O2i0.93002.44003.172 (4)135.00
Symmetry code: (i) x, y+2, z+2.
 

Footnotes

Thomson Reuters ResearcherID: A-5525-2009.

§Thomson Reuters ResearcherID: A-3561-2009.

Acknowledgements

The authors wish to express their thanks to Pharmacogenetic and Novel Therapeutic Research, Institute for Research in Mol­ecular Medicine, Universiti Sains Malysia (USM), Penang; this work was funded through Research Grant No. RUC (1001/PSK/8620012). HKF and CKQ also thank USM for the Research University Grant (No. 1001/PFIZIK/811160).

References

First citationAllen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.  CSD CrossRef Web of Science Google Scholar
First citationBernstein, J., Davis, R. E., Shimoni, L. & Chamg, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573.  CrossRef CAS Web of Science Google Scholar
First citationBruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationCremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354–1358.  CrossRef CAS Web of Science Google Scholar
First citationKumar, R. S., Osman, H., Ali, M. A., Quah, C. K. & Fun, H.-K. (2010). Acta Cryst. E66, o1540–o1541.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWei, A. C., Ali, M. A., Choon, T. S., Quah, C. K. & Fun, H.-K. (2011a). Acta Cryst. E67, o2383.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationWei, A. C., Ali, M. A., Ismail, R., Quah, C. K. & Fun, H.-K. (2011b). Acta Cryst. E67, o2381–o2382.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationWei, A. C., Ali, M. A., Yoon, Y. K., Quah, C. K. & Fun, H.-K. (2011c). Acta Cryst. E67, o2404.  Web of Science CSD CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds