metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

catena-Poly[[[bis­­(methanol-κO)lead(II)]-μ-N′-[1-(pyridin-2-yl-κN)ethyl­­idene]isonicotinohydrazidato-κ3N′,O:N1] perchlorate]

aDepartment of Chemistry, Faculty of Science, Tabriz Branch, Islamic Azad University, PO Box 1655, Tabriz, Iran, bDepartment of Chemistry, University of Malaya, 50603 Kuala Lumpur, Malaysia, and cDepartment of Inorganic Chemistry, Faculty of Chemistry, University of Tabriz, PO Box 5166616471, Tabriz, Iran
*Correspondence e-mail: edward.tiekink@gmail.com

(Received 4 November 2011; accepted 5 November 2011; online 9 November 2011)

The PbII atom in the polymeric title compound, {[Pb(C13H11N4O)(CH3OH)2]ClO4}n, is coordinated by an N′-[1-(pyridin-2-yl-κN)ethyl­idene]isonicotinohydrazidate ligand via O,N,N′-donors and simultaneously bridged by a neighbouring ligand via the isonicotinoyl N atom; two additional sites are occupied by methanol O atoms. The resultant supra­molecular chain is a zigzag along the c axis. The PbII atom is seven-coordinated within an N3O3 donor set and a lone pair of electrons, which defines a Ψ-pentagonal–bipyramidal coordination geometry with the pyridine N and lone pair in axial positions. The supra­molecular chains are linked into the two-dimensional array via inter­molecular Pb⋯N [3.020 (4) Å] inter­actions. Layers stack along the a axis, being connected by O—H⋯O hydrogen bonds formed between the coordinated methanol mol­ecules and perchlorate anions.

Related literature

For the structures of metal complexes containing the N′-[1-(2-pyrid­yl)ethyl­idene]isonicotinohydrazide ligand, see: Maurya et al. (2002[Maurya, M. R., Khurana, S., Zhang, W. & Rehder, D. J. (2002). J. Chem. Soc. Dalton Trans. pp. 3015-3023.]); Abboud et al. (2007[Abboud, K. A., Palenik, R. C., Palenik, G. J. & Wood, R. M. (2007). Inorg. Chim. Acta, 360, 3642-3646.]); Zhang & Liu (2009[Zhang, Y.-Y. & Liu, S.-X. (2009). Acta Cryst. C65, m269-m272.]); Hao et al. (2010[Hao, Z.-Y., Liu, Q.-W., Xu, J., Jia, L. & Li, S.-B. (2010). Chem. Pharm. Bull. 58, 1306-1312.]); Shahverdizadeh et al. (2011[Shahverdizadeh, G. H., Tiekink, E. R. T. & Mirtamizdoust, B. (2011). Acta Cryst. E67, m1727-m1728.]). For specialized crystallization techniques, see: Harrowfield et al. (1996[Harrowfield, J. M., Miyamae, H., Skelton, B. W., Soudi, A. A. & White, A. H. (1996). Aust. J. Chem. 49, 1165-1169.]).

[Scheme 1]

Experimental

Crystal data
  • [Pb(C13H11N4O)(CH4O)2]ClO4

  • Mr = 609.98

  • Monoclinic, P 21 /c

  • a = 11.2122 (14) Å

  • b = 13.4644 (17) Å

  • c = 14.1451 (18) Å

  • β = 111.906 (2)°

  • V = 1981.2 (4) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 8.70 mm−1

  • T = 173 K

  • 0.46 × 0.43 × 0.37 mm

Data collection
  • Bruker SMART CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996[Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.]) Tmin = 0.108, Tmax = 0.141

  • 10367 measured reflections

  • 3492 independent reflections

  • 2641 reflections with I > 2σ(I)

  • Rint = 0.027

Refinement
  • R[F2 > 2σ(F2)] = 0.024

  • wR(F2) = 0.066

  • S = 1.05

  • 3492 reflections

  • 255 parameters

  • H-atom parameters constrained

  • Δρmax = 0.97 e Å−3

  • Δρmin = −0.98 e Å−3

Table 1
Selected bond lengths (Å)

Pb—O1 2.415 (3)
Pb—O2 2.733 (4)
Pb—O3 2.891 (4)
Pb—N1 2.669 (4)
Pb—N2 2.493 (4)
Pb—N4i 2.477 (4)
Symmetry code: (i) [x, -y+{\script{1\over 2}}, z-{\script{1\over 2}}].

Table 2
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O2—H2o⋯O4 0.84 2.16 2.909 (7) 149
O3—H3o⋯O5ii 0.84 2.11 2.930 (7) 166
Symmetry code: (ii) [-x, y+{\script{1\over 2}}, -z+{\script{1\over 2}}].

Data collection: SMART (Bruker, 2007[Bruker (2007). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2007[Bruker (2007). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]) and DIAMOND (Brandenburg, 2006[Brandenburg, K. (2006). DIAMOND. Crystal Impact GbR, Bonn, Germany.]); software used to prepare material for publication: publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Supporting information


Comment top

Structural studies of coordination complexes containing the N'-[1-(2-pyridyl)ethylidene]isonicotinohydrazide ligand are rare (Maurya et al., 2002; Abboud et al., 2007; Zhang & Liu, 2009; Hao et al., 2010). In each of these, the ligand coordinates in a tridentate mode with the terminal 4-pyridyl-N atom being non-coordinating. In a recently reported PbII structure, all four donor atoms were involved in coordination leading to a zigzag chain (Shahverdizadeh et al., 2011). A similar mode of coordination was found in the title lead(II) complex, (I), with complete details described herein.

The crystallographic asymmetric unit of (I), Fig. 1, comprises a PbII atom, an N'-1-(2-pyridyl)ethylidene]isonicotinohydrazide anion, a perchlorate anion, and two methanol molecules. The N'-[1-(2-pyridyl)ethylidene]isonicotinohydrazide ligand coordinates a lead atom in a tridentate mode, via the N1, N2 and O1 atoms, and simultaneously bridges a symmetry related lead atom via the 4-pyridyl-N4 atom., Table 1. Both methanol molecules are connected to the PbII atom. The resulting N3O3 donor set, along with a stereochemically active lone pair of electrons, define a pentagonal bipyramidal geometry with the pyridyl-N4 atom lone pair of electrons occupying axial positions. The µ2-bridging mode of the tetradentate N'-[1-(2-pyridyl)ethylidene]isonicotinohydrazide ligand leads to a zigzag chain (glide symmetry) along the c axis, Fig. 2.

In the crystal packing, centrosymmetrically related supramolecular chains are linked into a two-dimensional array by Pb···N interactions [Pb···N3i = 3.020 (4) Å for i: 1 - x, 1 - y, 1 - z]. The layers thus formed in the bc plane are connected into a three-dimensional architecture via O—H···O hydrogen bonds involving the coordinated methanol molecules and the perchlorate anions, Fig. 4 and Table 2.

Related literature top

For the structures of metal complexes containing the N'-[1-(2-pyridyl)ethylidene]isonicotinohydrazide ligand, see: Maurya et al. (2002); Abboud et al. (2007); Zhang & Liu (2009); Hao et al. (2010); Shahverdizadeh et al. (2011). For specialized crystallization techniques, see: Harrowfield et al. (1996).

Experimental top

A solution of methyl 2-pyridyl ketone (15 mmol) in MeOH (25 ml) was added drop-wise to a solution of 4-pyridinecarboxylic acid hydrazide (15 mmol) in MeOH (15 ml). The mixture was refluxed for 6 h. The white precipitate was removed by filtration and recrystallized from MeOH solution. Then the compound (1 mmol) was placed in one arm of a branched tube (Harrowfield et al., 1996) and a mixture of lead(II) acetate (1 mmol) and sodium perchlorate (1 mmol) in the other. Methanol was then added to fill both arms, the tube sealed and the ligand-containing arm immersed in a bath at 333 K, while the other was left at ambient temperature. After 2 weeks, crystals had deposited in the arm held at ambient temperature. They were filtered off, washed with acetone and ether, and air dried. Yield: 66%; M.pt.: 516 K.

Refinement top

The O– and C-bound H-atoms were placed in calculated positions [O—H = 0.84 Å; C—H = 0.95–0.98 Å, Uiso(H) = 1.2–1.5Ueq(parent atom)] and were included in the refinement in the riding model approximation. The atoms comprising the coordinated methanol molecules (and anion) exhibit greater thermal motion than the other atoms in the structure. No evidence for resolvable disorder was found, however.

Structure description top

Structural studies of coordination complexes containing the N'-[1-(2-pyridyl)ethylidene]isonicotinohydrazide ligand are rare (Maurya et al., 2002; Abboud et al., 2007; Zhang & Liu, 2009; Hao et al., 2010). In each of these, the ligand coordinates in a tridentate mode with the terminal 4-pyridyl-N atom being non-coordinating. In a recently reported PbII structure, all four donor atoms were involved in coordination leading to a zigzag chain (Shahverdizadeh et al., 2011). A similar mode of coordination was found in the title lead(II) complex, (I), with complete details described herein.

The crystallographic asymmetric unit of (I), Fig. 1, comprises a PbII atom, an N'-1-(2-pyridyl)ethylidene]isonicotinohydrazide anion, a perchlorate anion, and two methanol molecules. The N'-[1-(2-pyridyl)ethylidene]isonicotinohydrazide ligand coordinates a lead atom in a tridentate mode, via the N1, N2 and O1 atoms, and simultaneously bridges a symmetry related lead atom via the 4-pyridyl-N4 atom., Table 1. Both methanol molecules are connected to the PbII atom. The resulting N3O3 donor set, along with a stereochemically active lone pair of electrons, define a pentagonal bipyramidal geometry with the pyridyl-N4 atom lone pair of electrons occupying axial positions. The µ2-bridging mode of the tetradentate N'-[1-(2-pyridyl)ethylidene]isonicotinohydrazide ligand leads to a zigzag chain (glide symmetry) along the c axis, Fig. 2.

In the crystal packing, centrosymmetrically related supramolecular chains are linked into a two-dimensional array by Pb···N interactions [Pb···N3i = 3.020 (4) Å for i: 1 - x, 1 - y, 1 - z]. The layers thus formed in the bc plane are connected into a three-dimensional architecture via O—H···O hydrogen bonds involving the coordinated methanol molecules and the perchlorate anions, Fig. 4 and Table 2.

For the structures of metal complexes containing the N'-[1-(2-pyridyl)ethylidene]isonicotinohydrazide ligand, see: Maurya et al. (2002); Abboud et al. (2007); Zhang & Liu (2009); Hao et al. (2010); Shahverdizadeh et al. (2011). For specialized crystallization techniques, see: Harrowfield et al. (1996).

Computing details top

Data collection: SMART (Bruker, 2007); cell refinement: SAINT (Bruker, 2007); data reduction: SAINT (Bruker, 2007); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997) and DIAMOND (Brandenburg, 2006); software used to prepare material for publication: publCIF (Westrip, 2010).

Figures top
[Figure 1] Fig. 1. The asymmetric unit of (I) showing the atom-labelling scheme and displacement ellipsoids at the 50% probability level. The molecular structure has been expanded to indicate the µ2-bridging mode of the tetradentate ligand. Symmetry operations i: x, 0.5 - y, -1/2 + z; ii: x, 1/2 + y, 0.5 - z.
[Figure 2] Fig. 2. A view of the supramolecular zigzag chain along the c axis in (I).
[Figure 3] Fig. 3. A view of the two-dimensional array in the bc plane in (I). The weaker Pb···N interactions (see text) are shown as blue dashed lines.
[Figure 4] Fig. 4. A view in projection down the c axis of the crystal packing in (I). The weaker Pb···N interactions (see text) are shown as blue dashed lines, and the O—H···O hydrogen bonds are shown as orange dashed lines.
catena-Poly[[[bis(methanol-κO)lead(II)]-µ- N'-[1-(pyridin-2-yl-κN)ethylidene]isonicotinohydrazidato- κ3N',O:N1] perchlorate] top
Crystal data top
[Pb(C13H11N4O)(CH4O)2]ClO4F(000) = 1168
Mr = 609.98Dx = 2.045 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 4546 reflections
a = 11.2122 (14) Åθ = 2.2–25.0°
b = 13.4644 (17) ŵ = 8.70 mm1
c = 14.1451 (18) ÅT = 173 K
β = 111.906 (2)°Prism, yellow
V = 1981.2 (4) Å30.46 × 0.43 × 0.37 mm
Z = 4
Data collection top
Bruker SMART CCD area-detector
diffractometer
3492 independent reflections
Radiation source: fine-focus sealed tube2641 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.027
φ and ω scansθmax = 25.0°, θmin = 2.0°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 138
Tmin = 0.108, Tmax = 0.141k = 1615
10367 measured reflectionsl = 1216
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.024Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.066H-atom parameters constrained
S = 1.05 w = 1/[σ2(Fo2) + (0.0282P)2 + 6.1832P]
where P = (Fo2 + 2Fc2)/3
3492 reflections(Δ/σ)max = 0.001
255 parametersΔρmax = 0.97 e Å3
0 restraintsΔρmin = 0.98 e Å3
Crystal data top
[Pb(C13H11N4O)(CH4O)2]ClO4V = 1981.2 (4) Å3
Mr = 609.98Z = 4
Monoclinic, P21/cMo Kα radiation
a = 11.2122 (14) ŵ = 8.70 mm1
b = 13.4644 (17) ÅT = 173 K
c = 14.1451 (18) Å0.46 × 0.43 × 0.37 mm
β = 111.906 (2)°
Data collection top
Bruker SMART CCD area-detector
diffractometer
3492 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
2641 reflections with I > 2σ(I)
Tmin = 0.108, Tmax = 0.141Rint = 0.027
10367 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0240 restraints
wR(F2) = 0.066H-atom parameters constrained
S = 1.05Δρmax = 0.97 e Å3
3492 reflectionsΔρmin = 0.98 e Å3
255 parameters
Special details top

Geometry. All s.u.'s (except the s.u. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell s.u.'s are taken into account individually in the estimation of s.u.'s in distances, angles and torsion angles; correlations between s.u.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell s.u.'s is used for estimating s.u.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Pb0.379666 (16)0.502370 (14)0.303341 (13)0.01308 (8)
Cl10.07646 (14)0.25586 (11)0.34029 (12)0.0297 (3)
O10.3551 (3)0.3685 (3)0.4082 (3)0.0160 (8)
O20.1391 (4)0.4209 (3)0.2361 (3)0.0304 (10)
H2O0.13670.36780.26660.037*
O30.2933 (5)0.5804 (4)0.0983 (3)0.0449 (12)
H3O0.23990.62620.09160.054*
O40.0480 (5)0.2805 (5)0.3505 (4)0.080 (2)
O50.0732 (6)0.2110 (5)0.4315 (4)0.081 (2)
O60.1531 (6)0.3419 (5)0.3194 (5)0.088 (2)
O70.1306 (6)0.1904 (5)0.2568 (4)0.076 (2)
N10.6011 (4)0.5630 (3)0.2931 (3)0.0171 (10)
N20.5835 (4)0.4394 (3)0.4342 (3)0.0138 (9)
N30.5741 (4)0.3751 (3)0.5074 (3)0.0138 (9)
N40.4129 (4)0.1305 (3)0.6945 (3)0.0168 (10)
C10.7110 (5)0.5362 (4)0.3701 (4)0.0136 (11)
C20.8302 (5)0.5696 (4)0.3747 (5)0.0255 (13)
H20.90620.54980.42930.031*
C30.8377 (6)0.6317 (5)0.2996 (5)0.0313 (15)
H30.91880.65410.30110.038*
C40.7259 (6)0.6607 (4)0.2223 (5)0.0285 (14)
H40.72820.70470.17050.034*
C50.6108 (5)0.6249 (4)0.2216 (4)0.0205 (12)
H50.53400.64480.16790.025*
C60.6980 (5)0.4684 (4)0.4476 (4)0.0147 (11)
C70.8175 (5)0.4367 (4)0.5349 (4)0.0195 (12)
H7A0.79340.39630.58260.029*
H7B0.86460.49560.57010.029*
H7C0.87220.39750.50870.029*
C80.4546 (5)0.3432 (4)0.4834 (4)0.0125 (11)
C90.4411 (5)0.2683 (4)0.5577 (4)0.0120 (10)
C100.3203 (5)0.2332 (4)0.5473 (4)0.0163 (11)
H100.24570.25610.49320.020*
C110.3101 (5)0.1652 (4)0.6160 (4)0.0182 (12)
H110.22710.14140.60800.022*
C120.5287 (5)0.1646 (4)0.7041 (4)0.0174 (12)
H120.60190.14100.75900.021*
C130.5467 (5)0.2326 (4)0.6377 (4)0.0148 (11)
H130.63070.25460.64680.018*
C150.0171 (6)0.4465 (6)0.1622 (6)0.0463 (19)
H15A0.04620.39620.16170.069*
H15B0.02280.44970.09480.069*
H15C0.00940.51140.17910.069*
C160.3117 (8)0.5665 (8)0.0072 (6)0.065 (3)
H16A0.39630.53650.02130.098*
H16B0.30710.63070.02650.098*
H16C0.24470.52240.03730.098*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Pb0.01177 (12)0.01436 (11)0.01108 (11)0.00120 (9)0.00192 (8)0.00026 (9)
Cl10.0206 (7)0.0349 (8)0.0335 (8)0.0006 (7)0.0101 (6)0.0074 (7)
O10.013 (2)0.020 (2)0.0106 (18)0.0043 (15)0.0003 (15)0.0014 (15)
O20.018 (2)0.037 (2)0.028 (2)0.0036 (18)0.0004 (18)0.002 (2)
O30.046 (3)0.057 (3)0.035 (3)0.024 (2)0.018 (2)0.015 (2)
O40.028 (3)0.143 (6)0.057 (4)0.022 (3)0.003 (3)0.039 (4)
O50.099 (5)0.097 (5)0.048 (4)0.042 (4)0.031 (3)0.000 (3)
O60.078 (5)0.084 (5)0.098 (5)0.040 (4)0.027 (4)0.015 (4)
O70.078 (4)0.075 (4)0.050 (4)0.013 (3)0.006 (3)0.032 (3)
N10.013 (2)0.021 (2)0.017 (2)0.0003 (19)0.0044 (19)0.0029 (19)
N20.018 (2)0.011 (2)0.013 (2)0.0007 (18)0.0071 (18)0.0020 (17)
N30.010 (2)0.019 (2)0.011 (2)0.0015 (18)0.0024 (18)0.0029 (18)
N40.017 (2)0.017 (2)0.015 (2)0.0003 (19)0.0042 (19)0.0030 (18)
C10.018 (3)0.009 (2)0.017 (3)0.000 (2)0.010 (2)0.003 (2)
C20.014 (3)0.027 (3)0.033 (3)0.004 (2)0.006 (3)0.010 (3)
C30.021 (3)0.033 (4)0.043 (4)0.000 (3)0.015 (3)0.017 (3)
C40.036 (4)0.023 (3)0.030 (4)0.000 (3)0.016 (3)0.010 (3)
C50.023 (3)0.020 (3)0.017 (3)0.000 (2)0.005 (2)0.005 (2)
C60.013 (3)0.013 (2)0.017 (3)0.002 (2)0.004 (2)0.001 (2)
C70.012 (3)0.026 (3)0.019 (3)0.003 (2)0.003 (2)0.006 (2)
C80.013 (3)0.012 (3)0.012 (3)0.000 (2)0.003 (2)0.003 (2)
C90.015 (3)0.012 (2)0.010 (2)0.002 (2)0.005 (2)0.003 (2)
C100.013 (3)0.020 (3)0.011 (3)0.002 (2)0.000 (2)0.000 (2)
C110.013 (3)0.020 (3)0.020 (3)0.005 (2)0.004 (2)0.000 (2)
C120.016 (3)0.021 (3)0.014 (3)0.000 (2)0.003 (2)0.000 (2)
C130.013 (3)0.014 (3)0.017 (3)0.000 (2)0.005 (2)0.001 (2)
C150.024 (4)0.056 (5)0.044 (4)0.006 (3)0.004 (3)0.005 (4)
C160.043 (5)0.116 (8)0.031 (4)0.004 (5)0.007 (4)0.005 (5)
Geometric parameters (Å, º) top
Pb—O12.415 (3)C2—H20.9500
Pb—O22.733 (4)C3—C41.378 (8)
Pb—O32.891 (4)C3—H30.9500
Pb—N12.669 (4)C4—C51.374 (8)
Pb—N22.493 (4)C4—H40.9500
Pb—N4i2.477 (4)C5—H50.9500
Cl1—O41.389 (5)C6—C71.505 (7)
Cl1—O61.406 (6)C7—H7A0.9800
Cl1—O51.412 (6)C7—H7B0.9800
Cl1—O71.417 (5)C7—H7C0.9800
O1—C81.268 (6)C8—C91.505 (7)
O2—C151.420 (7)C9—C131.384 (7)
O2—H2O0.8400C9—C101.389 (7)
O3—C161.392 (9)C10—C111.371 (7)
O3—H3O0.8400C10—H100.9500
N1—C51.345 (7)C11—H110.9500
N1—C11.354 (7)C12—C131.379 (7)
N2—C61.286 (7)C12—H120.9500
N2—N31.384 (6)C13—H130.9500
N3—C81.325 (7)C15—H15A0.9800
N4—C121.335 (7)C15—H15B0.9800
N4—C111.351 (7)C15—H15C0.9800
N4—Pbii2.477 (4)C16—H16A0.9800
C1—C21.389 (7)C16—H16B0.9800
C1—C61.475 (8)C16—H16C0.9800
C2—C31.379 (8)
O1—Pb—N4i85.45 (13)C2—C3—H3120.5
O1—Pb—N264.74 (12)C5—C4—C3118.7 (5)
N4i—Pb—N284.66 (14)C5—C4—H4120.7
O1—Pb—N1125.71 (12)C3—C4—H4120.7
N4i—Pb—N180.14 (14)N1—C5—C4123.4 (5)
N2—Pb—N161.99 (13)N1—C5—H5118.3
O1—Pb—O265.79 (12)C4—C5—H5118.3
N4i—Pb—O281.46 (14)N2—C6—C1116.6 (5)
N2—Pb—O2129.38 (13)N2—C6—C7124.6 (5)
N1—Pb—O2157.14 (13)C1—C6—C7118.8 (5)
O1—Pb—O3144.62 (13)C6—C7—H7A109.5
N4i—Pb—O373.20 (14)C6—C7—H7B109.5
N2—Pb—O3137.72 (13)H7A—C7—H7B109.5
N1—Pb—O378.73 (13)C6—C7—H7C109.5
O2—Pb—O383.06 (14)H7A—C7—H7C109.5
O4—Cl1—O6109.6 (5)H7B—C7—H7C109.5
O4—Cl1—O5108.9 (4)O1—C8—N3128.2 (5)
O6—Cl1—O5110.5 (4)O1—C8—C9118.6 (5)
O4—Cl1—O7109.7 (4)N3—C8—C9113.2 (4)
O6—Cl1—O7107.4 (4)C13—C9—C10118.1 (5)
O5—Cl1—O7110.6 (4)C13—C9—C8121.7 (5)
C8—O1—Pb116.7 (3)C10—C9—C8120.2 (5)
C15—O2—Pb135.5 (4)C11—C10—C9119.2 (5)
C15—O2—H2O112.3C11—C10—H10120.4
Pb—O2—H2O112.3C9—C10—H10120.4
C16—O3—Pb140.3 (5)N4—C11—C10122.8 (5)
C16—O3—H3O109.8N4—C11—H11118.6
Pb—O3—H3O109.8C10—C11—H11118.6
C5—N1—C1117.8 (5)N4—C12—C13122.9 (5)
C5—N1—Pb124.6 (3)N4—C12—H12118.6
C1—N1—Pb117.4 (3)C13—C12—H12118.6
C6—N2—N3115.5 (4)C12—C13—C9119.3 (5)
C6—N2—Pb126.5 (3)C12—C13—H13120.3
N3—N2—Pb117.6 (3)C9—C13—H13120.3
C8—N3—N2111.3 (4)O2—C15—H15A109.5
C12—N4—C11117.6 (4)O2—C15—H15B109.5
C12—N4—Pbii123.4 (3)H15A—C15—H15B109.5
C11—N4—Pbii118.7 (3)O2—C15—H15C109.5
N1—C1—C2121.5 (5)H15A—C15—H15C109.5
N1—C1—C6116.8 (5)H15B—C15—H15C109.5
C2—C1—C6121.7 (5)O3—C16—H16A109.5
C3—C2—C1119.6 (5)O3—C16—H16B109.5
C3—C2—H2120.2H16A—C16—H16B109.5
C1—C2—H2120.2O3—C16—H16C109.5
C4—C3—C2119.0 (6)H16A—C16—H16C109.5
C4—C3—H3120.5H16B—C16—H16C109.5
N4i—Pb—O1—C894.7 (4)C5—N1—C1—C21.2 (8)
N2—Pb—O1—C88.5 (3)Pb—N1—C1—C2175.8 (4)
N1—Pb—O1—C820.3 (4)C5—N1—C1—C6180.0 (5)
O2—Pb—O1—C8177.4 (4)Pb—N1—C1—C65.4 (6)
O3—Pb—O1—C8147.0 (3)N1—C1—C2—C30.2 (9)
O1—Pb—O2—C15168.6 (6)C6—C1—C2—C3178.9 (5)
N4i—Pb—O2—C15102.5 (6)C1—C2—C3—C41.2 (9)
N2—Pb—O2—C15178.4 (5)C2—C3—C4—C51.4 (10)
N1—Pb—O2—C1565.8 (7)C1—N1—C5—C40.9 (8)
O3—Pb—O2—C1528.6 (6)Pb—N1—C5—C4175.1 (4)
O1—Pb—O3—C1679.2 (8)C3—C4—C5—N10.4 (9)
N4i—Pb—O3—C1623.8 (8)N3—N2—C6—C1179.5 (4)
N2—Pb—O3—C1637.7 (9)Pb—N2—C6—C18.2 (6)
N1—Pb—O3—C1659.1 (8)N3—N2—C6—C70.4 (7)
O2—Pb—O3—C16107.0 (8)Pb—N2—C6—C7172.8 (4)
O1—Pb—N1—C5167.4 (4)N1—C1—C6—N21.1 (7)
N4i—Pb—N1—C590.3 (4)C2—C1—C6—N2177.7 (5)
N2—Pb—N1—C5179.5 (5)N1—C1—C6—C7179.8 (5)
O2—Pb—N1—C553.5 (6)C2—C1—C6—C71.4 (8)
O3—Pb—N1—C515.6 (4)Pb—O1—C8—N36.4 (7)
O1—Pb—N1—C118.5 (4)Pb—O1—C8—C9173.2 (3)
N4i—Pb—N1—C195.5 (4)N2—N3—C8—O13.9 (7)
N2—Pb—N1—C16.3 (3)N2—N3—C8—C9176.6 (4)
O2—Pb—N1—C1132.3 (4)O1—C8—C9—C13175.8 (5)
O3—Pb—N1—C1170.2 (4)N3—C8—C9—C134.6 (7)
O1—Pb—N2—C6177.0 (5)O1—C8—C9—C104.4 (7)
N4i—Pb—N2—C689.5 (4)N3—C8—C9—C10175.2 (5)
N1—Pb—N2—C67.8 (4)C13—C9—C10—C110.0 (7)
O2—Pb—N2—C6163.8 (4)C8—C9—C10—C11179.8 (5)
O3—Pb—N2—C631.8 (5)C12—N4—C11—C100.3 (8)
O1—Pb—N2—N310.8 (3)Pbii—N4—C11—C10175.1 (4)
N4i—Pb—N2—N398.3 (3)C9—C10—C11—N40.4 (8)
N1—Pb—N2—N3180.0 (4)C11—N4—C12—C130.1 (8)
O2—Pb—N2—N324.0 (4)Pbii—N4—C12—C13174.4 (4)
O3—Pb—N2—N3156.0 (3)N4—C12—C13—C90.4 (8)
C6—N2—N3—C8175.1 (4)C10—C9—C13—C120.4 (7)
Pb—N2—N3—C811.8 (5)C8—C9—C13—C12179.4 (5)
Symmetry codes: (i) x, y+1/2, z1/2; (ii) x, y+1/2, z+1/2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O2—H2o···O40.842.162.909 (7)149
O3—H3o···O5iii0.842.112.930 (7)166
Symmetry code: (iii) x, y+1/2, z+1/2.

Experimental details

Crystal data
Chemical formula[Pb(C13H11N4O)(CH4O)2]ClO4
Mr609.98
Crystal system, space groupMonoclinic, P21/c
Temperature (K)173
a, b, c (Å)11.2122 (14), 13.4644 (17), 14.1451 (18)
β (°) 111.906 (2)
V3)1981.2 (4)
Z4
Radiation typeMo Kα
µ (mm1)8.70
Crystal size (mm)0.46 × 0.43 × 0.37
Data collection
DiffractometerBruker SMART CCD area-detector
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.108, 0.141
No. of measured, independent and
observed [I > 2σ(I)] reflections
10367, 3492, 2641
Rint0.027
(sin θ/λ)max1)0.596
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.024, 0.066, 1.05
No. of reflections3492
No. of parameters255
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.97, 0.98

Computer programs: SMART (Bruker, 2007), SAINT (Bruker, 2007), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 (Farrugia, 1997) and DIAMOND (Brandenburg, 2006), publCIF (Westrip, 2010).

Selected bond lengths (Å) top
Pb—O12.415 (3)Pb—N12.669 (4)
Pb—O22.733 (4)Pb—N22.493 (4)
Pb—O32.891 (4)Pb—N4i2.477 (4)
Symmetry code: (i) x, y+1/2, z1/2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O2—H2o···O40.842.162.909 (7)149
O3—H3o···O5ii0.842.112.930 (7)166
Symmetry code: (ii) x, y+1/2, z+1/2.
 

Footnotes

Additional correspondence author, e-mail: shahverdizadeh@iaut.ac.ir.

Acknowledgements

The authors thank the Islamic Azad University for support.

References

First citationAbboud, K. A., Palenik, R. C., Palenik, G. J. & Wood, R. M. (2007). Inorg. Chim. Acta, 360, 3642–3646.  Web of Science CSD CrossRef CAS Google Scholar
First citationBrandenburg, K. (2006). DIAMOND. Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationBruker (2007). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationHao, Z.-Y., Liu, Q.-W., Xu, J., Jia, L. & Li, S.-B. (2010). Chem. Pharm. Bull. 58, 1306–1312.  CSD CrossRef CAS PubMed Google Scholar
First citationHarrowfield, J. M., Miyamae, H., Skelton, B. W., Soudi, A. A. & White, A. H. (1996). Aust. J. Chem. 49, 1165–1169.  CSD CrossRef Web of Science Google Scholar
First citationMaurya, M. R., Khurana, S., Zhang, W. & Rehder, D. J. (2002). J. Chem. Soc. Dalton Trans. pp. 3015–3023.  Web of Science CSD CrossRef Google Scholar
First citationShahverdizadeh, G. H., Tiekink, E. R. T. & Mirtamizdoust, B. (2011). Acta Cryst. E67, m1727–m1728.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationZhang, Y.-Y. & Liu, S.-X. (2009). Acta Cryst. C65, m269–m272.  Web of Science CSD CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds