organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

(1R,3S)-N-Benzhydryl-2-benzyl-6,7-dimeth­­oxy-1-phenyl-1,2,3,4-tetra­hydro­iso­quinoline-3-carbo­thio­amide

aSchool of Pharmacy and Pharmacology, University of KwaZulu-Natal, Durban 4000, South Africa, and bSchool of Chemistry, University of KwaZulu-Natal, Durban 4000, South Africa
*Correspondence e-mail: maguireg@ukzn.ac.za

(Received 4 November 2011; accepted 18 November 2011; online 25 November 2011)

The title compound, C38H36N2O2S, has a heterocyclic ring that assumes a half-chair conformation. The phenyl rings of neighbouring mol­ecules align forming alternating chains parallel to [100] within the crystal packing. The absolute stereochemistry of the crystal was confirmed to be R,S at the 1- and 3-positions, respectively, by proton NMR spectroscopy. A single intra­molecular N—H⋯N hydrogen bond is observed.

Related literature

For background to chiral organocatalysts bearing a tetra­hydro­isoquinoline framework and for related structures, see: Naicker et al. (2010[Naicker, T., Petzold, K., Singh, T., Arvidsson, P. I., Kruger, H. G., Maguire, G. E. M. & Govender, T. (2010). Tetrahedron Asymmetry, 21, 2859-2867.], 2011a[Naicker, T., Arvidsson, P. I., Kruger, H. G., Maguire, G. E. M. & Govender, T. (2011a). Eur. J. Org. Chem. doi:10.1002/ejoc.201100923.],b[Naicker, T., Govender, T., Kruger, H. G. & Maguire, G. E. M. (2011b). Acta Cryst. E67, o1403.]).

[Scheme 1]

Experimental

Crystal data
  • C38H36N2O2S

  • Mr = 584.75

  • Orthorhombic, P 21 21 21

  • a = 9.0463 (1) Å

  • b = 17.6687 (2) Å

  • c = 19.6178 (2) Å

  • V = 3135.64 (6) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.14 mm−1

  • T = 173 K

  • 0.34 × 0.32 × 0.30 mm

Data collection
  • Nonius KappaCCD diffractometer

  • 7464 measured reflections

  • 7464 independent reflections

  • 6545 reflections with I > 2σ(I)

  • Rint = 0.013

Refinement
  • R[F2 > 2σ(F2)] = 0.033

  • wR(F2) = 0.090

  • S = 1.06

  • 7464 reflections

  • 394 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.19 e Å−3

  • Δρmin = −0.25 e Å−3

  • Absolute structure: Flack (1983[Flack, H. D. (1983). Acta Cryst. A39, 876-881.]), 3271 Friedel pairs

  • Flack parameter: −0.07 (5)

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N2—H1N⋯N1 0.903 (17) 2.139 (16) 2.6548 (15) 115.4 (12)

Data collection: COLLECT (Nonius, 2000[Nonius (2000). COLLECT Nonius BV, Delft, The Netherlands.]); cell refinement: DENZO-SMN (Otwinowski & Minor, 1997[Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307-326. New York: Academic Press.]); data reduction: DENZO-SMN; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: OLEX2 (Dolomov et al., 2009)[Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339-341.]; software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

Chiral organocatalysts bearing a tetrahydroisoquinoline (TIQ) framework have proven to be very successful by our research group (Naicker et al., 2010 and 2011a). The title compound (Fig. 1) is a precursor in the synthesis of these novel chiral organocatalysts. The crystal structure contains a thioamide moiety at the C10 position making it the first example in this class to be reported.

The absolute stereochemistry of the molecule was confirmed to be R,S at C1 and C9 positions respectively by proton NMR spectroscopy.

The N-containing six membered ring assumes a half chair conformation [Q=0.5212 (12) Å, θ= 50.52 (14)° and φ=325.8 (18)°] similar to an analogous structure which has a methyl ester at the C10 position (Naicker et al., 2011b). This heterocyclic ring shape affects the position of the thioamide moiety relative to the phenyl ring at the C1 position. The torsion angle for C1—N1—C9—C10 is -157.6 (1)°. Also, in the analogous structure the torsion angle between C8—N1—C9—C10 is 44.1 (2)° while in the title structure this angle is -18.3 (2)°. This is probably due to the CS bond which adopts a more planar orientation relative to the TIQ backbone as compared to the CO bond orientation previously reported in this family of molecules (Naicker et al., 2011b). In addition, the N-benzyl and phenyl ring at C1 exist in a trans orientation along the N1—C9 bond with a dihedral angle of -153.3 (1)°.

The title compound contains four phenyl rings however, no intermolecular C—H···π or π···π interactions are evident. A single intramolecular hydrogen bond between atoms N2—H1N···N1 can be observed. The molecules within the crystal structure line up such that the phenyl rings face each other, this forms alternating chains parallel to the [100] plane (Fig. 2).

Related literature top

For background to chiral organocatalysts bearing a tetrahydroisoquinoline framework and for related structures, see: Naicker et al. (2010, 2011a,b).

Experimental top

To a solution of (1R,3S)-N-benzhydryl-2-benzyl-6,7-dimethoxy-1-phenyl-1,2,3,4-tetrahydroisoquinoline-3-carboxamide (0.1 g, 0.02 mmol) in dry THF (20 ml), Lawssons reagent (0.06 g, 0.15 mmol) was added. The mixture was allowed to stir at 50 °C for 16 h under a nitrogen atmosphere. Thereafter the solvent was evaporated in vacuo and the residue purified using silica column chromatography (hexane: ethyl acetate, 50:50, Rf = 0.8) to yield the pure product (0.1 g, 90%) as a yellow solid. M.p. = 458 K

Recrystallization from ethyl acetate at room temperature afforded crystals suitable for X-ray analysis.

Refinement top

All non-hydrogen atoms were refined anisotropically. All hydrogen atoms could be found in the difference electron density maps. H1N was thus positioned and refined freely with independent isotropic temperature factors. The other hydrogen atoms were placed with idealized positions and refined as riding on their parents atoms with Uiso = 1.2 or 1.5 x Ueq (C).

Structure description top

Chiral organocatalysts bearing a tetrahydroisoquinoline (TIQ) framework have proven to be very successful by our research group (Naicker et al., 2010 and 2011a). The title compound (Fig. 1) is a precursor in the synthesis of these novel chiral organocatalysts. The crystal structure contains a thioamide moiety at the C10 position making it the first example in this class to be reported.

The absolute stereochemistry of the molecule was confirmed to be R,S at C1 and C9 positions respectively by proton NMR spectroscopy.

The N-containing six membered ring assumes a half chair conformation [Q=0.5212 (12) Å, θ= 50.52 (14)° and φ=325.8 (18)°] similar to an analogous structure which has a methyl ester at the C10 position (Naicker et al., 2011b). This heterocyclic ring shape affects the position of the thioamide moiety relative to the phenyl ring at the C1 position. The torsion angle for C1—N1—C9—C10 is -157.6 (1)°. Also, in the analogous structure the torsion angle between C8—N1—C9—C10 is 44.1 (2)° while in the title structure this angle is -18.3 (2)°. This is probably due to the CS bond which adopts a more planar orientation relative to the TIQ backbone as compared to the CO bond orientation previously reported in this family of molecules (Naicker et al., 2011b). In addition, the N-benzyl and phenyl ring at C1 exist in a trans orientation along the N1—C9 bond with a dihedral angle of -153.3 (1)°.

The title compound contains four phenyl rings however, no intermolecular C—H···π or π···π interactions are evident. A single intramolecular hydrogen bond between atoms N2—H1N···N1 can be observed. The molecules within the crystal structure line up such that the phenyl rings face each other, this forms alternating chains parallel to the [100] plane (Fig. 2).

For background to chiral organocatalysts bearing a tetrahydroisoquinoline framework and for related structures, see: Naicker et al. (2010, 2011a,b).

Computing details top

Data collection: COLLECT (Nonius, 2000); cell refinement: DENZO-SMN (Otwinowski & Minor, 1997); data reduction: DENZO-SMN (Otwinowski & Minor, 1997); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: OLEX2 (Dolomov et al., 2009); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound with the atom numbering scheme. Displacement ellipsoids are drawn at the 40% probability level. Hydrogen atoms have been omitted for clarity.
[Figure 2] Fig. 2. A partial projection of the title compound, viewed along the [100] plane.
(1R,3S)-N-Benzhydryl-2-benzyl-6,7-dimethoxy-1-phenyl- 1,2,3,4-tetrahydroisoquinoline-3-carbothioamide top
Crystal data top
C38H36N2O2SDx = 1.239 Mg m3
Mr = 584.75Melting point: 458 K
Orthorhombic, P212121Mo Kα radiation, λ = 0.71073 Å
Hall symbol: P 2ac 2abCell parameters from 7464 reflections
a = 9.0463 (1) Åθ = 2.4–27.9°
b = 17.6687 (2) ŵ = 0.14 mm1
c = 19.6178 (2) ÅT = 173 K
V = 3135.64 (6) Å3Block, colourless
Z = 40.34 × 0.32 × 0.30 mm
F(000) = 1240
Data collection top
Nonius KappaCCD
diffractometer
6545 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.013
Graphite monochromatorθmax = 27.9°, θmin = 2.4°
1.2° φ scans and ω scansh = 1111
7464 measured reflectionsk = 2323
7464 independent reflectionsl = 2525
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.033H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.090 w = 1/[σ2(Fo2) + (0.0573P)2 + 0.1291P]
where P = (Fo2 + 2Fc2)/3
S = 1.06(Δ/σ)max < 0.001
7464 reflectionsΔρmax = 0.19 e Å3
394 parametersΔρmin = 0.25 e Å3
0 restraintsAbsolute structure: Flack (1983), 3271 Friedel pairs
Primary atom site location: structure-invariant direct methodsAbsolute structure parameter: 0.07 (5)
Crystal data top
C38H36N2O2SV = 3135.64 (6) Å3
Mr = 584.75Z = 4
Orthorhombic, P212121Mo Kα radiation
a = 9.0463 (1) ŵ = 0.14 mm1
b = 17.6687 (2) ÅT = 173 K
c = 19.6178 (2) Å0.34 × 0.32 × 0.30 mm
Data collection top
Nonius KappaCCD
diffractometer
6545 reflections with I > 2σ(I)
7464 measured reflectionsRint = 0.013
7464 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.033H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.090Δρmax = 0.19 e Å3
S = 1.06Δρmin = 0.25 e Å3
7464 reflectionsAbsolute structure: Flack (1983), 3271 Friedel pairs
394 parametersAbsolute structure parameter: 0.07 (5)
0 restraints
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
S10.56498 (4)0.31046 (3)0.215098 (18)0.04475 (11)
O11.39454 (9)0.35968 (6)0.01266 (5)0.0361 (2)
O21.15098 (11)0.39105 (6)0.07511 (5)0.0412 (3)
N10.98038 (11)0.23680 (6)0.21258 (5)0.0254 (2)
H1N0.8629 (19)0.2485 (9)0.3066 (8)0.038 (4)*
N20.76795 (13)0.26373 (7)0.30274 (5)0.0300 (2)
C11.12804 (13)0.26381 (7)0.19152 (6)0.0258 (2)
H11.19540.21890.19090.031*
C21.12788 (13)0.29751 (7)0.11981 (6)0.0252 (2)
C31.26341 (13)0.31006 (7)0.08659 (6)0.0258 (2)
H31.35300.29630.10870.031*
C41.26841 (14)0.34205 (7)0.02236 (6)0.0277 (3)
C51.13534 (14)0.36025 (8)0.01141 (6)0.0295 (3)
C61.00254 (14)0.34772 (7)0.02100 (6)0.0296 (3)
H60.91300.36050.00150.036*
C70.99719 (13)0.31627 (7)0.08690 (6)0.0263 (2)
C80.84760 (13)0.30508 (8)0.12010 (6)0.0281 (3)
H8A0.79880.25950.10120.034*
H8B0.78360.34940.11110.034*
C90.87122 (13)0.29575 (7)0.19647 (6)0.0254 (3)
H90.91740.34430.21180.030*
C100.73303 (14)0.28667 (7)0.24034 (6)0.0273 (3)
C110.66652 (15)0.25452 (8)0.36016 (6)0.0307 (3)
H110.56590.27050.34470.037*
C120.66026 (16)0.17078 (8)0.37684 (7)0.0365 (3)
C130.57712 (19)0.12406 (10)0.33433 (10)0.0513 (4)
H130.51870.14570.29910.062*
C140.5791 (2)0.04658 (12)0.34297 (13)0.0717 (6)
H140.52220.01510.31380.086*
C150.6627 (3)0.01513 (11)0.39351 (13)0.0783 (7)
H150.66390.03830.39910.094*
C160.7452 (3)0.05997 (12)0.43635 (10)0.0724 (7)
H160.80250.03750.47150.087*
C170.7449 (2)0.13879 (10)0.42834 (8)0.0519 (4)
H170.80200.16990.45780.062*
C180.71133 (15)0.30534 (8)0.41918 (7)0.0355 (3)
C190.62417 (18)0.30449 (10)0.47767 (7)0.0461 (4)
H190.53980.27250.47970.055*
C200.6594 (2)0.34981 (12)0.53304 (9)0.0596 (5)
H200.59890.34900.57260.071*
C210.7820 (2)0.39607 (13)0.53074 (10)0.0679 (6)
H210.80590.42700.56880.081*
C220.8697 (2)0.39761 (14)0.47359 (11)0.0721 (6)
H220.95410.42960.47200.087*
C230.8343 (2)0.35184 (11)0.41767 (9)0.0533 (4)
H230.89530.35270.37830.064*
C241.18222 (13)0.31673 (8)0.24787 (6)0.0274 (3)
C251.21466 (16)0.28510 (9)0.31128 (7)0.0377 (3)
H251.20900.23180.31710.045*
C261.25474 (18)0.32987 (11)0.36556 (7)0.0494 (4)
H261.27700.30730.40830.059*
C271.2627 (2)0.40751 (11)0.35813 (8)0.0525 (4)
H271.28960.43840.39570.063*
C281.23137 (18)0.43995 (10)0.29567 (8)0.0461 (4)
H281.23700.49330.29020.055*
C291.19146 (15)0.39432 (8)0.24068 (7)0.0347 (3)
H291.17040.41690.19780.042*
C300.94220 (15)0.16198 (7)0.18354 (6)0.0311 (3)
H30A0.96190.16210.13390.037*
H30B0.83560.15190.19050.037*
C311.03199 (15)0.10040 (7)0.21717 (7)0.0313 (3)
C321.00795 (17)0.08224 (8)0.28514 (7)0.0369 (3)
H320.93280.10780.30990.044*
C331.09188 (18)0.02740 (9)0.31743 (9)0.0449 (4)
H331.07390.01540.36390.054*
C341.20184 (17)0.00989 (8)0.28199 (10)0.0483 (4)
H341.26120.04660.30440.058*
C351.22548 (19)0.00598 (9)0.21423 (10)0.0535 (4)
H351.29990.02030.18960.064*
C361.13978 (18)0.06090 (9)0.18180 (9)0.0442 (4)
H361.15560.07130.13490.053*
C371.53137 (14)0.34969 (9)0.02154 (7)0.0368 (3)
H37A1.53150.37940.06370.055*
H37B1.61220.36670.00800.055*
H37C1.54490.29600.03250.055*
C381.01921 (18)0.40522 (12)0.11254 (8)0.0523 (4)
H38A0.96250.35820.11680.078*
H38B1.04460.42400.15800.078*
H38C0.95970.44320.08860.078*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S10.02261 (15)0.0813 (3)0.03029 (17)0.00153 (17)0.00103 (14)0.01267 (18)
O10.0218 (4)0.0640 (6)0.0226 (4)0.0016 (4)0.0025 (3)0.0056 (5)
O20.0294 (5)0.0712 (7)0.0230 (5)0.0013 (5)0.0009 (4)0.0162 (5)
N10.0222 (5)0.0317 (5)0.0222 (5)0.0003 (4)0.0004 (4)0.0019 (4)
N20.0229 (5)0.0445 (6)0.0227 (5)0.0020 (5)0.0021 (4)0.0030 (4)
C10.0216 (6)0.0343 (6)0.0215 (6)0.0009 (5)0.0017 (5)0.0020 (5)
C20.0250 (6)0.0323 (6)0.0183 (5)0.0005 (5)0.0010 (5)0.0018 (5)
C30.0208 (5)0.0355 (6)0.0212 (5)0.0016 (5)0.0012 (5)0.0014 (5)
C40.0243 (6)0.0380 (6)0.0208 (6)0.0013 (5)0.0024 (5)0.0020 (5)
C50.0281 (6)0.0423 (7)0.0180 (5)0.0022 (5)0.0009 (5)0.0035 (5)
C60.0243 (6)0.0422 (7)0.0224 (6)0.0009 (5)0.0038 (5)0.0040 (5)
C70.0231 (6)0.0353 (6)0.0204 (5)0.0001 (5)0.0004 (5)0.0007 (5)
C80.0219 (6)0.0407 (7)0.0216 (6)0.0018 (5)0.0007 (5)0.0039 (5)
C90.0200 (5)0.0355 (6)0.0207 (6)0.0001 (5)0.0004 (4)0.0021 (5)
C100.0238 (6)0.0351 (6)0.0230 (6)0.0022 (5)0.0002 (5)0.0013 (5)
C110.0255 (6)0.0458 (8)0.0206 (6)0.0015 (6)0.0038 (5)0.0012 (5)
C120.0341 (7)0.0478 (8)0.0275 (6)0.0034 (6)0.0126 (6)0.0038 (6)
C130.0409 (9)0.0509 (9)0.0622 (11)0.0062 (7)0.0103 (8)0.0039 (8)
C140.0596 (12)0.0533 (11)0.1023 (18)0.0122 (9)0.0277 (13)0.0074 (12)
C150.1006 (17)0.0443 (10)0.0899 (16)0.0067 (11)0.0567 (15)0.0114 (11)
C160.1033 (17)0.0658 (12)0.0480 (10)0.0370 (13)0.0324 (12)0.0247 (10)
C170.0691 (11)0.0576 (9)0.0289 (7)0.0223 (9)0.0124 (7)0.0087 (7)
C180.0349 (7)0.0471 (8)0.0244 (6)0.0062 (6)0.0002 (5)0.0011 (6)
C190.0486 (9)0.0604 (9)0.0294 (7)0.0029 (8)0.0071 (7)0.0055 (7)
C200.0639 (11)0.0822 (13)0.0326 (8)0.0110 (10)0.0034 (8)0.0154 (8)
C210.0647 (12)0.0924 (14)0.0466 (10)0.0085 (11)0.0098 (9)0.0324 (10)
C220.0525 (11)0.0978 (15)0.0660 (13)0.0125 (10)0.0053 (10)0.0334 (12)
C230.0420 (9)0.0742 (11)0.0438 (9)0.0045 (8)0.0056 (7)0.0170 (8)
C240.0192 (5)0.0433 (7)0.0198 (6)0.0003 (5)0.0000 (4)0.0005 (5)
C250.0329 (7)0.0549 (8)0.0254 (6)0.0070 (6)0.0057 (6)0.0076 (6)
C260.0445 (9)0.0813 (12)0.0225 (6)0.0125 (8)0.0070 (6)0.0035 (7)
C270.0495 (9)0.0759 (12)0.0322 (8)0.0116 (9)0.0053 (7)0.0157 (8)
C280.0455 (8)0.0502 (8)0.0427 (9)0.0019 (7)0.0066 (7)0.0112 (7)
C290.0319 (7)0.0438 (7)0.0284 (7)0.0000 (6)0.0050 (5)0.0002 (6)
C300.0314 (6)0.0367 (7)0.0252 (6)0.0026 (5)0.0017 (5)0.0004 (5)
C310.0324 (7)0.0307 (6)0.0307 (6)0.0050 (5)0.0009 (5)0.0019 (5)
C320.0453 (8)0.0353 (7)0.0300 (7)0.0008 (6)0.0027 (6)0.0012 (6)
C330.0562 (10)0.0364 (7)0.0421 (8)0.0038 (7)0.0116 (8)0.0052 (6)
C340.0419 (8)0.0338 (7)0.0693 (11)0.0036 (6)0.0122 (8)0.0103 (7)
C350.0433 (9)0.0411 (8)0.0762 (12)0.0069 (7)0.0152 (9)0.0040 (8)
C360.0484 (9)0.0402 (7)0.0439 (8)0.0014 (7)0.0117 (7)0.0035 (7)
C370.0231 (6)0.0587 (9)0.0285 (6)0.0000 (6)0.0012 (5)0.0009 (6)
C380.0369 (8)0.0890 (12)0.0310 (7)0.0062 (8)0.0069 (6)0.0259 (8)
Geometric parameters (Å, º) top
S1—C101.6532 (13)C18—C231.383 (2)
O1—C41.3679 (15)C18—C191.392 (2)
O1—C371.4190 (15)C19—C201.387 (2)
O2—C51.3704 (15)C19—H190.9500
O2—C381.4223 (17)C20—C211.379 (3)
N1—C91.4696 (16)C20—H200.9500
N1—C11.4773 (15)C21—C221.374 (3)
N1—C301.4804 (16)C21—H210.9500
N2—C101.3276 (16)C22—C231.400 (3)
N2—C111.4621 (16)C22—H220.9500
N2—H1N0.903 (17)C23—H230.9500
C1—C21.5277 (16)C24—C291.381 (2)
C1—C241.5286 (17)C24—C251.3950 (18)
C1—H11.0000C25—C261.375 (2)
C2—C71.3872 (16)C25—H250.9500
C2—C31.4061 (17)C26—C271.381 (3)
C3—C41.3817 (17)C26—H260.9500
C3—H30.9500C27—C281.382 (2)
C4—C51.4111 (18)C27—H270.9500
C5—C61.3771 (18)C28—C291.394 (2)
C6—C71.4080 (17)C28—H280.9500
C6—H60.9500C29—H290.9500
C7—C81.5148 (17)C30—C311.5096 (19)
C8—C91.5223 (16)C30—H30A0.9900
C8—H8A0.9900C30—H30B0.9900
C8—H8B0.9900C31—C361.385 (2)
C9—C101.5262 (17)C31—C321.389 (2)
C9—H91.0000C32—C331.384 (2)
C11—C121.516 (2)C32—H320.9500
C11—C181.5202 (19)C33—C341.381 (2)
C11—H111.0000C33—H330.9500
C12—C171.388 (2)C34—C351.375 (3)
C12—C131.394 (2)C34—H340.9500
C13—C141.379 (3)C35—C361.396 (2)
C13—H130.9500C35—H350.9500
C14—C151.365 (4)C36—H360.9500
C14—H140.9500C37—H37A0.9800
C15—C161.375 (4)C37—H37B0.9800
C15—H150.9500C37—H37C0.9800
C16—C171.401 (3)C38—H38A0.9800
C16—H160.9500C38—H38B0.9800
C17—H170.9500C38—H38C0.9800
C4—O1—C37117.50 (10)C23—C18—C11123.29 (13)
C5—O2—C38117.01 (11)C19—C18—C11118.05 (13)
C9—N1—C1108.58 (9)C20—C19—C18120.62 (16)
C9—N1—C30113.17 (10)C20—C19—H19119.7
C1—N1—C30113.06 (10)C18—C19—H19119.7
C10—N2—C11126.52 (11)C21—C20—C19120.09 (17)
C10—N2—H1N113.2 (10)C21—C20—H20120.0
C11—N2—H1N120.0 (10)C19—C20—H20120.0
N1—C1—C2112.49 (9)C22—C21—C20120.22 (16)
N1—C1—C24106.58 (10)C22—C21—H21119.9
C2—C1—C24115.33 (10)C20—C21—H21119.9
N1—C1—H1107.4C21—C22—C23119.72 (19)
C2—C1—H1107.4C21—C22—H22120.1
C24—C1—H1107.4C23—C22—H22120.1
C7—C2—C3119.32 (10)C18—C23—C22120.69 (16)
C7—C2—C1121.50 (10)C18—C23—H23119.7
C3—C2—C1119.17 (11)C22—C23—H23119.7
C4—C3—C2121.04 (11)C29—C24—C25118.44 (12)
C4—C3—H3119.5C29—C24—C1123.56 (11)
C2—C3—H3119.5C25—C24—C1117.86 (12)
O1—C4—C3125.35 (11)C26—C25—C24121.03 (15)
O1—C4—C5115.08 (10)C26—C25—H25119.5
C3—C4—C5119.57 (11)C24—C25—H25119.5
O2—C5—C6125.09 (12)C25—C26—C27120.22 (15)
O2—C5—C4115.50 (11)C25—C26—H26119.9
C6—C5—C4119.40 (11)C27—C26—H26119.9
C5—C6—C7121.15 (11)C26—C27—C28119.65 (14)
C5—C6—H6119.4C26—C27—H27120.2
C7—C6—H6119.4C28—C27—H27120.2
C2—C7—C6119.50 (11)C27—C28—C29119.95 (16)
C2—C7—C8122.00 (10)C27—C28—H28120.0
C6—C7—C8118.49 (11)C29—C28—H28120.0
C7—C8—C9108.18 (10)C24—C29—C28120.71 (13)
C7—C8—H8A110.1C24—C29—H29119.6
C9—C8—H8A110.1C28—C29—H29119.6
C7—C8—H8B110.1N1—C30—C31110.48 (10)
C9—C8—H8B110.1N1—C30—H30A109.6
H8A—C8—H8B108.4C31—C30—H30A109.6
N1—C9—C8112.50 (10)N1—C30—H30B109.6
N1—C9—C10110.78 (10)C31—C30—H30B109.6
C8—C9—C10116.83 (10)H30A—C30—H30B108.1
N1—C9—H9105.2C36—C31—C32118.35 (13)
C8—C9—H9105.2C36—C31—C30121.53 (13)
C10—C9—H9105.2C32—C31—C30120.13 (12)
N2—C10—C9110.92 (10)C33—C32—C31121.00 (14)
N2—C10—S1124.93 (10)C33—C32—H32119.5
C9—C10—S1123.89 (9)C31—C32—H32119.5
N2—C11—C12107.35 (11)C34—C33—C32119.92 (16)
N2—C11—C18110.72 (11)C34—C33—H33120.0
C12—C11—C18114.96 (11)C32—C33—H33120.0
N2—C11—H11107.9C35—C34—C33120.09 (15)
C12—C11—H11107.9C35—C34—H34120.0
C18—C11—H11107.9C33—C34—H34120.0
C17—C12—C13119.47 (15)C34—C35—C36119.74 (16)
C17—C12—C11122.26 (14)C34—C35—H35120.1
C13—C12—C11117.97 (14)C36—C35—H35120.1
C14—C13—C12120.5 (2)C31—C36—C35120.86 (15)
C14—C13—H13119.8C31—C36—H36119.6
C12—C13—H13119.8C35—C36—H36119.6
C15—C14—C13120.0 (2)O1—C37—H37A109.5
C15—C14—H14120.0O1—C37—H37B109.5
C13—C14—H14120.0H37A—C37—H37B109.5
C14—C15—C16120.67 (18)O1—C37—H37C109.5
C14—C15—H15119.7H37A—C37—H37C109.5
C16—C15—H15119.7H37B—C37—H37C109.5
C15—C16—C17120.2 (2)O2—C38—H38A109.5
C15—C16—H16119.9O2—C38—H38B109.5
C17—C16—H16119.9H38A—C38—H38B109.5
C12—C17—C16119.16 (19)O2—C38—H38C109.5
C12—C17—H17120.4H38A—C38—H38C109.5
C16—C17—H17120.4H38B—C38—H38C109.5
C23—C18—C19118.66 (14)
C9—N1—C1—C247.06 (13)N2—C11—C12—C1376.53 (16)
C30—N1—C1—C279.40 (12)C18—C11—C12—C13159.81 (13)
C9—N1—C1—C2480.27 (11)C17—C12—C13—C140.3 (2)
C30—N1—C1—C24153.27 (10)C11—C12—C13—C14173.60 (15)
N1—C1—C2—C714.37 (17)C12—C13—C14—C150.1 (3)
C24—C1—C2—C7108.15 (14)C13—C14—C15—C160.2 (3)
N1—C1—C2—C3165.91 (11)C14—C15—C16—C170.4 (3)
C24—C1—C2—C371.57 (14)C13—C12—C17—C160.1 (2)
C7—C2—C3—C41.25 (18)C11—C12—C17—C16173.46 (15)
C1—C2—C3—C4178.48 (11)C15—C16—C17—C120.2 (3)
C37—O1—C4—C35.03 (19)N2—C11—C18—C231.5 (2)
C37—O1—C4—C5173.83 (13)C12—C11—C18—C23120.33 (16)
C2—C3—C4—O1176.79 (12)N2—C11—C18—C19178.80 (13)
C2—C3—C4—C52.03 (19)C12—C11—C18—C1959.35 (18)
C38—O2—C5—C65.5 (2)C23—C18—C19—C200.5 (2)
C38—O2—C5—C4175.76 (14)C11—C18—C19—C20179.80 (15)
O1—C4—C5—O21.68 (17)C18—C19—C20—C210.3 (3)
C3—C4—C5—O2179.38 (11)C19—C20—C21—C220.1 (3)
O1—C4—C5—C6177.17 (12)C20—C21—C22—C230.1 (3)
C3—C4—C5—C61.76 (19)C19—C18—C23—C220.5 (3)
O2—C5—C6—C7179.48 (13)C11—C18—C23—C22179.80 (17)
C4—C5—C6—C70.7 (2)C21—C22—C23—C180.3 (3)
C3—C2—C7—C60.20 (18)N1—C1—C24—C29107.96 (13)
C1—C2—C7—C6179.52 (11)C2—C1—C24—C2917.67 (17)
C3—C2—C7—C8179.26 (12)N1—C1—C24—C2567.68 (14)
C1—C2—C7—C80.47 (19)C2—C1—C24—C25166.70 (11)
C5—C6—C7—C20.0 (2)C29—C24—C25—C260.1 (2)
C5—C6—C7—C8179.06 (12)C1—C24—C25—C26175.77 (13)
C2—C7—C8—C917.38 (17)C24—C25—C26—C270.4 (2)
C6—C7—C8—C9161.69 (11)C25—C26—C27—C280.5 (3)
C1—N1—C9—C869.61 (13)C26—C27—C28—C290.2 (3)
C30—N1—C9—C856.79 (13)C25—C24—C29—C280.4 (2)
C1—N1—C9—C10157.57 (10)C1—C24—C29—C28175.21 (13)
C30—N1—C9—C1076.03 (12)C27—C28—C29—C240.3 (2)
C7—C8—C9—N152.47 (14)C9—N1—C30—C31164.19 (10)
C7—C8—C9—C10177.76 (10)C1—N1—C30—C3171.84 (13)
C11—N2—C10—C9174.98 (12)N1—C30—C31—C36111.71 (14)
C11—N2—C10—S10.6 (2)N1—C30—C31—C3268.10 (15)
N1—C9—C10—N236.60 (14)C36—C31—C32—C331.6 (2)
C8—C9—C10—N2167.18 (11)C30—C31—C32—C33178.21 (13)
N1—C9—C10—S1148.92 (10)C31—C32—C33—C340.3 (2)
C8—C9—C10—S118.34 (16)C32—C33—C34—C351.7 (2)
C10—N2—C11—C12113.87 (15)C33—C34—C35—C361.2 (3)
C10—N2—C11—C18119.91 (14)C32—C31—C36—C352.1 (2)
N2—C11—C12—C1797.16 (15)C30—C31—C36—C35177.71 (14)
C18—C11—C12—C1726.50 (19)C34—C35—C36—C310.7 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H1N···N10.903 (17)2.139 (16)2.6548 (15)115.4 (12)

Experimental details

Crystal data
Chemical formulaC38H36N2O2S
Mr584.75
Crystal system, space groupOrthorhombic, P212121
Temperature (K)173
a, b, c (Å)9.0463 (1), 17.6687 (2), 19.6178 (2)
V3)3135.64 (6)
Z4
Radiation typeMo Kα
µ (mm1)0.14
Crystal size (mm)0.34 × 0.32 × 0.30
Data collection
DiffractometerNonius KappaCCD
Absorption correction
No. of measured, independent and
observed [I > 2σ(I)] reflections
7464, 7464, 6545
Rint0.013
(sin θ/λ)max1)0.659
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.033, 0.090, 1.06
No. of reflections7464
No. of parameters394
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.19, 0.25
Absolute structureFlack (1983), 3271 Friedel pairs
Absolute structure parameter0.07 (5)

Computer programs: COLLECT (Nonius, 2000), DENZO-SMN (Otwinowski & Minor, 1997), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), OLEX2 (Dolomov et al., 2009).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H1N···N10.903 (17)2.139 (16)2.6548 (15)115.4 (12)
 

Acknowledgements

The authors wish to thank Dr Hong Su from the Chemistry Department of the University of Cape Town for her assistance with the crystallographic data collection and refinement.

References

First citationDolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationFlack, H. D. (1983). Acta Cryst. A39, 876–881.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationNaicker, T., Arvidsson, P. I., Kruger, H. G., Maguire, G. E. M. & Govender, T. (2011a). Eur. J. Org. Chem. doi:10.1002/ejoc.201100923.  Google Scholar
First citationNaicker, T., Govender, T., Kruger, H. G. & Maguire, G. E. M. (2011b). Acta Cryst. E67, o1403.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationNaicker, T., Petzold, K., Singh, T., Arvidsson, P. I., Kruger, H. G., Maguire, G. E. M. & Govender, T. (2010). Tetrahedron Asymmetry, 21, 2859–2867.  Web of Science CrossRef CAS Google Scholar
First citationNonius (2000). COLLECT Nonius BV, Delft, The Netherlands.  Google Scholar
First citationOtwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307–326. New York: Academic Press.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds