organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

N-Benzyl-P-(2-ethyl­phen­yl)-P-phenyl­phosphinic amide

aResearch Centre for Synthesis and Catalysis, Department of Chemistry, University of Johannesburg, PO Box 524 Auckland Park, Johannesburg 2006, South Africa, and bSchool of Chemistry, University of KwaZulu-Natal, Westville Campus, Private Bag X54001, Durban 4000, South Africa
*Correspondence e-mail: hhkinfe@uj.ac.za, owaga@ukzn.ac.za

(Received 10 November 2011; accepted 17 November 2011; online 23 November 2011)

In the crystal structure of the title compound, C21H22NOP, the amine H atom is involved in N—H⋯O hydrogen-bonding inter­actions, resulting in chains along the c axis. The crystal lattice is consolidated by weak inter­molecular C—H⋯π inter­actions.

Related literature

For the uses of phosphinamides, see: Wuts & Greene (2006[Wuts, P. G. M. & Greene, T. W. (2006). Greene's Protective Groups in Organic Synthesis, 4th ed., pp. 844-847. Wiley: New Jersey.]); Burgos et al. (2008[Burgos, P. O., Fernández, I., Iglesias, M. J., Garciá-Granda, S. & López-Ortiz, F. (2008). Org. Lett. 10, 537-540.]); Popovici et al. (2010[Popovici, C., Ona-Burgos, P., Fernández, I., Roces, L., Gracía-Granda, S., Iglesias, M. J. & Ortiz, F. L. (2010). Org. Lett. 12, 428-431.]). For related compounds, see: Priya et al. (2005[Priya, S., Balakrishna, M. S. & Mobin, S. M. (2005). Polyhedron, 24, 1645-1650.]); Fei et al. (2004[Fei, Z., Scopelliti, R. & Dyson, P. J. (2004). Eur. J. Inorg. Chem. pp. 530-537.]); Gaw et al. (1999[Gaw, K. G., Slawin, A. M. Z. & Smith, M. B. (1999). Organometallics, 18, 3255-3257.]).

[Scheme 1]

Experimental

Crystal data
  • C21H22NOP

  • Mr = 335.37

  • Monoclinic, P 21 /c

  • a = 12.9259 (3) Å

  • b = 15.7098 (3) Å

  • c = 9.1007 (2) Å

  • β = 107.578 (1)°

  • V = 1761.73 (7) Å3

  • Z = 4

  • Cu Kα radiation

  • μ = 1.42 mm−1

  • T = 100 K

  • 0.48 × 0.08 × 0.02 mm

Data collection
  • Bruker X8 APEXII 4K KappaCCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2008[Bruker (2008). APEX2, SAINT-Plus, SADABS and XPREP. Bruker AXS Inc, Madison, Wisconsin, USA]) Tmin = 0.549, Tmax = 0.972

  • 13806 measured reflections

  • 2946 independent reflections

  • 2772 reflections with I > 2σ(I)

  • Rint = 0.034

Refinement
  • R[F2 > 2σ(F2)] = 0.044

  • wR(F2) = 0.118

  • S = 1.05

  • 2946 reflections

  • 218 parameters

  • H-atom parameters constrained

  • Δρmax = 0.57 e Å−3

  • Δρmin = −0.57 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

Cg2 and Cg3 are the centroids of the C8–C13 and C14–C19 rings, respectively.

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1⋯O1i 0.88 2.09 2.742 (2) 131
C18—H18⋯Cg2ii 0.95 2.98 3.756 (2) 139
C21—H21CCg3ii 0.98 2.83 3.636 (3) 140
Symmetry codes: (i) [x, -y+{\script{1\over 2}}, z+{\script{1\over 2}}]; (ii) -x+1, -y, -z+1.

Data collection: APEX2 (Bruker, 2008[Bruker (2008). APEX2, SAINT-Plus, SADABS and XPREP. Bruker AXS Inc, Madison, Wisconsin, USA]); cell refinement: SAINT-Plus (Bruker, 2008[Bruker (2008). APEX2, SAINT-Plus, SADABS and XPREP. Bruker AXS Inc, Madison, Wisconsin, USA]); data reduction: SAINT-Plus and XPREP (Bruker, 2008[Bruker (2008). APEX2, SAINT-Plus, SADABS and XPREP. Bruker AXS Inc, Madison, Wisconsin, USA]); program(s) used to solve structure: SIR97 (Altomare et al., 1999[Altomare, A., Burla, M. C., Camalli, M., Cascarano, G. L., Giacovazzo, C., Guagliardi, A., Moliterni, A. G. G., Polidori, G. & Spagna, R. (1999). J. Appl. Cryst. 32, 115-119.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]); software used to prepare material for publication: WinGX (Farrugia, 1999[Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.]).

Supporting information


Comment top

Phosphinamides are important functional groups in organic synthesis. They have been employed as amine protecting groups and as substrates for imine activation (Wuts et al., 2006). Besides functioning as protective groups, phosphinamides are also used as catalysts for enantioselective reduction of ketones as building blocks for the synthesis of peptidomimetics via phosphinamide-directed benzylic lithiation (Burgos et al., 2008) and also as chiral ligands (Popovici et al., 2010). Herein, we have synthesized a racemic mixture of a chiral phosphinamide and report its crystal structure.

The asymmetric unit of (I), (Fig. 1) contains one molecule. The phosphorus is in a tetrahedral environment as in other phosphine oxides. The P==O, P–N and P–C bond distances are comparable to similar compounds in literature (Priya et al., 2005; Fei et al., 2004; Gaw et al., 1999). In the crystal of (I), O atom is involved in N–H···O==P hydrogen bonding interaction (Table 1), thus resulting in chains that run in the crystallographic c direction. The crystal lattice is consolidated by a pair of weak C–H···π intermolecular interactions [C18···Cg = 3.756 (2) Å, <C18–H18···Cg = 139 ° C21···Cg = 3.636 (3) Å, <C21–H21c···Cg = 140 °] (Fig. 2).

Related literature top

For the uses of phosphinamides, see: Wuts et al., (2006); Burgos et al., 2008; Popovici et al. (2010). For related compounds, see: (Priya et al., 2005; Fei et al. (2004); Gaw et al., 1999).

Experimental top

To a solution of 1-bromo-2-ethylbenzene (1 ml, 7.3 mmol) in dry THF (10 ml) were added Mg (263 mg, 11 mmol) and a catalytic amount of iodine crystals. The resulting mixture was refluxed overnight under nitrogen atmosphere. The resulting Grignard reagent was added drop wise to a solution of PhPCl2 (1.2 ml, 8.31 mmol) in THF (10 ml) at -70 °C and stirred for 3 h followed by addition of benzylamine (1.8 ml, 16.62 mmol). After stirring the reaction mixture for 4 h at -70 °C under nitrogen atmosphere, 30% aq hydrogen peroxide (5 ml) was added at 0 °C and stirred at this temperature for an additional 1 hr. The reaction mixture was then allowed to warm up to room temperature, ethylacetate (20 ml) was added and the resulting solution was washed with water (3 x 20 ml). The ethylacetate layer was dried over Na2SO4, filtered, and evaporated. The residue product was purified by crystallization from a 1:2 mixture of DCM and hexane to afford the title compound in 55% yield as white crystals; mp 104–107 °C;

1H NMR (CDCl3, 400 MHz): δ 7.90–7.71 (m, 3H), 7.49–7.13 (m, 11H), 4.92–4.70 (m, NH peak), 4.22 (d, J = 8.0 Hz, 2H), 3.06 (q, J = 7.4 and 15.0 Hz, 2H), 1.10 (t, J = 7.6 Hz, 3H); 13C NMR (CDCl3, 75 MHz): δ 149.2, 149.0, 139.7, 139.6, 133.1, 132.9, 132.2, 133.0, 131.8, 131.7, 130.2, 130.0, 128.7, 128.6, 128.4, 127.8, 127.3, 125.4, 125.3, 44.8, 27.1, 15.5; 31P NMR (CDCl3, 400 MHz): δ 27.03.

Refinement top

Carbon-bound H-atoms were placed in calculated positions [C—H = 0.98 Å for Me H atoms, 0.99 Å for Methylene H atoms and 0.95 Å for aromatic H atoms; Uiso(H) = 1.2Ueq(C) (1.5 for Me groups)] and were included in the refinement in the riding model approximation. The nitrogen proton was located in a difference map and constgrained with N—H = 0.88 Å (Uiso(H) = 1.2Ueq(N).

Structure description top

Phosphinamides are important functional groups in organic synthesis. They have been employed as amine protecting groups and as substrates for imine activation (Wuts et al., 2006). Besides functioning as protective groups, phosphinamides are also used as catalysts for enantioselective reduction of ketones as building blocks for the synthesis of peptidomimetics via phosphinamide-directed benzylic lithiation (Burgos et al., 2008) and also as chiral ligands (Popovici et al., 2010). Herein, we have synthesized a racemic mixture of a chiral phosphinamide and report its crystal structure.

The asymmetric unit of (I), (Fig. 1) contains one molecule. The phosphorus is in a tetrahedral environment as in other phosphine oxides. The P==O, P–N and P–C bond distances are comparable to similar compounds in literature (Priya et al., 2005; Fei et al., 2004; Gaw et al., 1999). In the crystal of (I), O atom is involved in N–H···O==P hydrogen bonding interaction (Table 1), thus resulting in chains that run in the crystallographic c direction. The crystal lattice is consolidated by a pair of weak C–H···π intermolecular interactions [C18···Cg = 3.756 (2) Å, <C18–H18···Cg = 139 ° C21···Cg = 3.636 (3) Å, <C21–H21c···Cg = 140 °] (Fig. 2).

For the uses of phosphinamides, see: Wuts et al., (2006); Burgos et al., 2008; Popovici et al. (2010). For related compounds, see: (Priya et al., 2005; Fei et al. (2004); Gaw et al., 1999).

Computing details top

Data collection: APEX2 (Bruker, 2008); cell refinement: SAINT-Plus (Bruker, 2008); data reduction: SAINT-Plus and XPREP (Bruker, 2008); program(s) used to solve structure: SIR97 (Altomare et al., 1999); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997); software used to prepare material for publication: WinGX (Farrugia, 1999).

Figures top
[Figure 1] Fig. 1. The asymmetric unit of the title compound with displacement ellipsoids drawn at the 50% probability level.
[Figure 2] Fig. 2. Packing diagram of the crystal of (I) showing chains of N—H···O intermolecular interactions as viewed down the crystallographic c direction.
N-Benzyl-P-(2-ethylphenyl)-P-phenylphosphinic amide top
Crystal data top
C21H22NOPF(000) = 712
Mr = 335.37Dx = 1.264 Mg m3
Monoclinic, P21/cCu Kα radiation, λ = 1.54178 Å
Hall symbol: -P 2ybcCell parameters from 14165 reflections
a = 12.9259 (3) Åθ = 3.6–66.2°
b = 15.7098 (3) ŵ = 1.42 mm1
c = 9.1007 (2) ÅT = 100 K
β = 107.578 (1)°Needle, colourless
V = 1761.73 (7) Å30.48 × 0.08 × 0.02 mm
Z = 4
Data collection top
Bruker X8 APEXII 4K KappaCCD
diffractometer
2772 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.034
φ and ω scansθmax = 66.2°, θmin = 3.6°
Absorption correction: multi-scan
(SADABS; Bruker, 2008)
h = 1514
Tmin = 0.549, Tmax = 0.972k = 1818
13806 measured reflectionsl = 910
2946 independent reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.044Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.118H-atom parameters constrained
S = 1.05 w = 1/[σ2(Fo2) + (0.0573P)2 + 1.6926P]
where P = (Fo2 + 2Fc2)/3
2946 reflections(Δ/σ)max = 0.001
218 parametersΔρmax = 0.57 e Å3
0 restraintsΔρmin = 0.57 e Å3
Crystal data top
C21H22NOPV = 1761.73 (7) Å3
Mr = 335.37Z = 4
Monoclinic, P21/cCu Kα radiation
a = 12.9259 (3) ŵ = 1.42 mm1
b = 15.7098 (3) ÅT = 100 K
c = 9.1007 (2) Å0.48 × 0.08 × 0.02 mm
β = 107.578 (1)°
Data collection top
Bruker X8 APEXII 4K KappaCCD
diffractometer
2946 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2008)
2772 reflections with I > 2σ(I)
Tmin = 0.549, Tmax = 0.972Rint = 0.034
13806 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0440 restraints
wR(F2) = 0.118H-atom parameters constrained
S = 1.05Δρmax = 0.57 e Å3
2946 reflectionsΔρmin = 0.57 e Å3
218 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

>>> The Following Model ALERTS were generated - (Acta-Mode) <<< Format: alert-number_ALERT_alert-type_alert-level text 414_ALERT_2_C Short Intra D—H..H—X H1.. H6.. 1.98 A ng. 414_ALERT_2_C Short Intra D—H..H—X H1.. H20A.. 1.96 A ng. 911_ALERT_3_C Missing # FCF Refl Between THmin & STh/L= 0.594 147 793_ALERT_4_G The Model has Chirality at P1 (Verify) ···. R 802_ALERT_4_G CIF Input Record(s) with more than 80 Characters ! 909_ALERT_3_G Percentage of Observed Data at Theta(Max) still 89 Perc. Noted:

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.98660 (15)0.18270 (12)0.8933 (2)0.0197 (4)
C21.09281 (16)0.21294 (13)0.9436 (2)0.0250 (4)
H21.11520.25560.88570.03*
C31.16615 (17)0.18153 (14)1.0770 (2)0.0286 (5)
H31.23840.20261.10980.034*
C41.13436 (16)0.11951 (13)1.1627 (2)0.0258 (5)
H41.18470.09761.25380.031*
C51.02898 (16)0.08980 (13)1.1148 (2)0.0245 (4)
H51.00650.04771.17360.029*
C60.95550 (15)0.12126 (12)0.9808 (2)0.0222 (4)
H60.88310.10040.94890.027*
C70.91011 (15)0.21860 (13)0.7457 (2)0.0236 (4)
H7A0.90990.28150.75310.028*
H7B0.93730.20330.65850.028*
C80.75770 (15)0.10376 (13)0.4367 (2)0.0215 (4)
C90.82914 (15)0.04046 (13)0.5135 (2)0.0248 (4)
H90.85650.04130.62280.03*
C100.86062 (17)0.02365 (14)0.4320 (3)0.0325 (5)
H100.90950.06650.48520.039*
C110.82036 (19)0.02514 (16)0.2719 (3)0.0382 (6)
H110.84130.06920.21530.046*
C120.7494 (2)0.03806 (16)0.1952 (3)0.0383 (6)
H120.72250.03720.08580.046*
C130.71770 (17)0.10198 (14)0.2759 (2)0.0295 (5)
H130.66880.14470.22230.035*
C140.58144 (16)0.17310 (13)0.5493 (2)0.0237 (4)
C150.50497 (17)0.23235 (14)0.4639 (2)0.0291 (5)
H150.5280.27670.410.035*
C160.39696 (17)0.22687 (15)0.4572 (3)0.0338 (5)
H160.3460.26750.40040.041*
C170.36414 (17)0.16148 (15)0.5343 (3)0.0313 (5)
H170.28990.15690.52960.038*
C180.43787 (16)0.10283 (14)0.6179 (2)0.0278 (5)
H180.41330.05840.66990.033*
C190.54819 (16)0.10689 (13)0.6284 (2)0.0247 (4)
C200.62697 (16)0.04282 (14)0.7234 (2)0.0288 (5)
H20A0.68010.07350.80830.035*
H20B0.66750.01750.65780.035*
C210.57827 (18)0.02982 (15)0.7939 (3)0.0341 (5)
H21A0.53950.00610.86190.051*
H21B0.63660.06730.85330.051*
H21C0.52760.06250.71130.051*
N10.79874 (12)0.18732 (10)0.71386 (18)0.0206 (4)
H10.7760.16670.78860.025*
O10.71769 (11)0.27168 (9)0.45065 (15)0.0254 (3)
P10.71741 (4)0.19123 (3)0.53744 (5)0.01919 (17)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0195 (9)0.0215 (9)0.0192 (10)0.0013 (7)0.0074 (8)0.0021 (7)
C20.0216 (10)0.0272 (10)0.0265 (10)0.0034 (8)0.0078 (8)0.0019 (8)
C30.0194 (10)0.0337 (11)0.0295 (11)0.0023 (8)0.0024 (8)0.0006 (9)
C40.0238 (10)0.0275 (10)0.0227 (10)0.0055 (8)0.0022 (8)0.0010 (8)
C50.0272 (10)0.0225 (10)0.0244 (10)0.0022 (8)0.0085 (8)0.0032 (8)
C60.0201 (9)0.0229 (10)0.0233 (10)0.0007 (8)0.0060 (8)0.0000 (8)
C70.0185 (9)0.0301 (10)0.0221 (10)0.0039 (8)0.0062 (8)0.0042 (8)
C80.0194 (9)0.0270 (10)0.0203 (9)0.0050 (8)0.0093 (7)0.0004 (8)
C90.0204 (10)0.0307 (11)0.0256 (10)0.0017 (8)0.0102 (8)0.0004 (8)
C100.0240 (11)0.0325 (12)0.0458 (13)0.0015 (9)0.0177 (10)0.0032 (10)
C110.0390 (13)0.0396 (13)0.0462 (14)0.0108 (10)0.0282 (11)0.0169 (11)
C120.0442 (13)0.0490 (14)0.0256 (11)0.0133 (11)0.0164 (10)0.0079 (10)
C130.0327 (11)0.0356 (12)0.0211 (10)0.0059 (9)0.0094 (9)0.0003 (9)
C140.0206 (10)0.0307 (11)0.0202 (10)0.0018 (8)0.0070 (8)0.0044 (8)
C150.0276 (11)0.0306 (11)0.0296 (11)0.0007 (9)0.0097 (9)0.0033 (9)
C160.0239 (11)0.0370 (12)0.0372 (12)0.0061 (9)0.0043 (9)0.0032 (10)
C170.0210 (10)0.0375 (12)0.0354 (12)0.0020 (9)0.0086 (9)0.0041 (10)
C180.0224 (10)0.0323 (11)0.0305 (11)0.0058 (9)0.0106 (8)0.0067 (9)
C190.0231 (10)0.0285 (11)0.0222 (10)0.0022 (8)0.0064 (8)0.0047 (8)
C200.0239 (10)0.0356 (12)0.0278 (11)0.0026 (9)0.0091 (8)0.0006 (9)
C210.0308 (11)0.0370 (12)0.0338 (12)0.0036 (9)0.0086 (9)0.0053 (10)
N10.0180 (8)0.0269 (9)0.0180 (8)0.0029 (6)0.0069 (7)0.0036 (6)
O10.0255 (7)0.0291 (8)0.0218 (7)0.0018 (6)0.0075 (6)0.0047 (6)
P10.0162 (3)0.0251 (3)0.0166 (3)0.00091 (18)0.00544 (19)0.00211 (18)
Geometric parameters (Å, º) top
C1—C61.386 (3)C12—C131.378 (3)
C1—C21.393 (3)C12—H120.95
C1—C71.516 (3)C13—H130.95
C2—C31.386 (3)C14—C191.404 (3)
C2—H20.95C14—C151.409 (3)
C3—C41.386 (3)C14—P11.816 (2)
C3—H30.95C15—C161.382 (3)
C4—C51.380 (3)C15—H150.95
C4—H40.95C16—C171.381 (3)
C5—C61.391 (3)C16—H160.95
C5—H50.95C17—C181.378 (3)
C6—H60.95C17—H170.95
C7—N11.465 (2)C18—C191.402 (3)
C7—H7A0.99C18—H180.95
C7—H7B0.99C19—C201.505 (3)
C8—C91.393 (3)C20—C211.534 (3)
C8—C131.398 (3)C20—H20A0.99
C8—P11.813 (2)C20—H20B0.99
C9—C101.383 (3)C21—H21A0.98
C9—H90.95C21—H21B0.98
C10—C111.392 (3)C21—H21C0.98
C10—H100.95N1—P11.6332 (16)
C11—C121.388 (4)N1—H10.88
C11—H110.95O1—P11.4910 (14)
C6—C1—C2118.48 (18)C8—C13—H13120.1
C6—C1—C7122.93 (17)C19—C14—C15120.01 (18)
C2—C1—C7118.59 (17)C19—C14—P1126.76 (16)
C3—C2—C1120.79 (19)C15—C14—P1113.20 (15)
C3—C2—H2119.6C16—C15—C14121.0 (2)
C1—C2—H2119.6C16—C15—H15119.5
C4—C3—C2120.18 (19)C14—C15—H15119.5
C4—C3—H3119.9C17—C16—C15119.0 (2)
C2—C3—H3119.9C17—C16—H16120.5
C5—C4—C3119.48 (18)C15—C16—H16120.5
C5—C4—H4120.3C18—C17—C16120.71 (19)
C3—C4—H4120.3C18—C17—H17119.6
C4—C5—C6120.29 (19)C16—C17—H17119.6
C4—C5—H5119.9C17—C18—C19121.8 (2)
C6—C5—H5119.9C17—C18—H18119.1
C1—C6—C5120.77 (18)C19—C18—H18119.1
C1—C6—H6119.6C18—C19—C14117.48 (19)
C5—C6—H6119.6C18—C19—C20120.43 (19)
N1—C7—C1112.92 (16)C14—C19—C20122.08 (18)
N1—C7—H7A109C19—C20—C21116.47 (17)
C1—C7—H7A109C19—C20—H20A108.2
N1—C7—H7B109C21—C20—H20A108.2
C1—C7—H7B109C19—C20—H20B108.2
H7A—C7—H7B107.8C21—C20—H20B108.2
C9—C8—C13119.37 (19)H20A—C20—H20B107.3
C9—C8—P1122.39 (15)C20—C21—H21A109.5
C13—C8—P1118.21 (16)C20—C21—H21B109.5
C10—C9—C8120.60 (19)H21A—C21—H21B109.5
C10—C9—H9119.7C20—C21—H21C109.5
C8—C9—H9119.7H21A—C21—H21C109.5
C9—C10—C11119.8 (2)H21B—C21—H21C109.5
C9—C10—H10120.1C7—N1—P1118.96 (13)
C11—C10—H10120.1C7—N1—H1120.5
C12—C11—C10119.7 (2)P1—N1—H1120.5
C12—C11—H11120.1O1—P1—N1116.67 (8)
C10—C11—H11120.1O1—P1—C8109.12 (8)
C13—C12—C11120.7 (2)N1—P1—C8105.70 (9)
C13—C12—H12119.6O1—P1—C14108.77 (9)
C11—C12—H12119.6N1—P1—C14106.44 (9)
C12—C13—C8119.8 (2)C8—P1—C14110.01 (9)
C12—C13—H13120.1
C6—C1—C2—C30.8 (3)C17—C18—C19—C20178.74 (19)
C7—C1—C2—C3179.37 (19)C15—C14—C19—C180.1 (3)
C1—C2—C3—C40.2 (3)P1—C14—C19—C18177.67 (15)
C2—C3—C4—C50.5 (3)C15—C14—C19—C20178.96 (19)
C3—C4—C5—C60.6 (3)P1—C14—C19—C203.2 (3)
C2—C1—C6—C50.7 (3)C18—C19—C20—C215.3 (3)
C7—C1—C6—C5179.48 (19)C14—C19—C20—C21175.67 (19)
C4—C5—C6—C10.0 (3)C1—C7—N1—P1158.63 (13)
C6—C1—C7—N15.2 (3)C7—N1—P1—O144.63 (17)
C2—C1—C7—N1174.62 (17)C7—N1—P1—C876.83 (16)
C13—C8—C9—C100.1 (3)C7—N1—P1—C14166.21 (15)
P1—C8—C9—C10177.86 (15)C9—C8—P1—O1137.49 (16)
C8—C9—C10—C110.2 (3)C13—C8—P1—O140.47 (17)
C9—C10—C11—C120.4 (3)C9—C8—P1—N111.27 (18)
C10—C11—C12—C130.5 (3)C13—C8—P1—N1166.69 (15)
C11—C12—C13—C80.4 (3)C9—C8—P1—C14103.26 (17)
C9—C8—C13—C120.2 (3)C13—C8—P1—C1478.79 (17)
P1—C8—C13—C12177.84 (16)C19—C14—P1—O1176.35 (17)
C19—C14—C15—C160.5 (3)C15—C14—P1—O15.72 (18)
P1—C14—C15—C16178.53 (17)C19—C14—P1—N149.9 (2)
C14—C15—C16—C170.8 (3)C15—C14—P1—N1132.20 (15)
C15—C16—C17—C180.6 (3)C19—C14—P1—C864.2 (2)
C16—C17—C18—C190.0 (3)C15—C14—P1—C8113.75 (16)
C17—C18—C19—C140.4 (3)
Hydrogen-bond geometry (Å, º) top
Cg2 and Cg3 are the centroids of the C8–C13 and C14–C19 rings, respectively.
D—H···AD—HH···AD···AD—H···A
N1—H1···O1i0.882.092.742 (2)131
C18—H18···Cg2ii0.952.983.756 (2)139
C21—H21C···Cg3ii0.982.833.636 (3)140
Symmetry codes: (i) x, y+1/2, z+1/2; (ii) x+1, y, z+1.

Experimental details

Crystal data
Chemical formulaC21H22NOP
Mr335.37
Crystal system, space groupMonoclinic, P21/c
Temperature (K)100
a, b, c (Å)12.9259 (3), 15.7098 (3), 9.1007 (2)
β (°) 107.578 (1)
V3)1761.73 (7)
Z4
Radiation typeCu Kα
µ (mm1)1.42
Crystal size (mm)0.48 × 0.08 × 0.02
Data collection
DiffractometerBruker X8 APEXII 4K KappaCCD
Absorption correctionMulti-scan
(SADABS; Bruker, 2008)
Tmin, Tmax0.549, 0.972
No. of measured, independent and
observed [I > 2σ(I)] reflections
13806, 2946, 2772
Rint0.034
(sin θ/λ)max1)0.594
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.044, 0.118, 1.05
No. of reflections2946
No. of parameters218
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.57, 0.57

Computer programs: APEX2 (Bruker, 2008), SAINT-Plus (Bruker, 2008), SAINT-Plus and XPREP (Bruker, 2008), SIR97 (Altomare et al., 1999), SHELXL97 (Sheldrick, 2008), ORTEP-3 (Farrugia, 1997), WinGX (Farrugia, 1999).

Hydrogen-bond geometry (Å, º) top
Cg2 and Cg3 are the centroids of the C8–C13 and C14–C19 rings, respectively.
D—H···AD—HH···AD···AD—H···A
N1—H1···O1i0.882.092.742 (2)131
C18—H18···Cg2ii0.952.983.756 (2)139
C21—H21C···Cg3ii0.982.833.636 (3)140
Symmetry codes: (i) x, y+1/2, z+1/2; (ii) x+1, y, z+1.
 

Acknowledgements

We thank NRF, THRIP and University of Johannesburg for financial support.

References

First citationAltomare, A., Burla, M. C., Camalli, M., Cascarano, G. L., Giacovazzo, C., Guagliardi, A., Moliterni, A. G. G., Polidori, G. & Spagna, R. (1999). J. Appl. Cryst. 32, 115–119.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationBruker (2008). APEX2, SAINT-Plus, SADABS and XPREP. Bruker AXS Inc, Madison, Wisconsin, USA  Google Scholar
First citationBurgos, P. O., Fernández, I., Iglesias, M. J., Garciá-Granda, S. & López-Ortiz, F. (2008). Org. Lett. 10, 537–540.  Web of Science PubMed CAS Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationFarrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838.  CrossRef CAS IUCr Journals Google Scholar
First citationFei, Z., Scopelliti, R. & Dyson, P. J. (2004). Eur. J. Inorg. Chem. pp. 530–537.  Web of Science CSD CrossRef Google Scholar
First citationGaw, K. G., Slawin, A. M. Z. & Smith, M. B. (1999). Organometallics, 18, 3255–3257.  Web of Science CSD CrossRef CAS Google Scholar
First citationPopovici, C., Ona-Burgos, P., Fernández, I., Roces, L., Gracía-Granda, S., Iglesias, M. J. & Ortiz, F. L. (2010). Org. Lett. 12, 428–431.  Web of Science CSD CrossRef CAS PubMed Google Scholar
First citationPriya, S., Balakrishna, M. S. & Mobin, S. M. (2005). Polyhedron, 24, 1645–1650.  Web of Science CSD CrossRef Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWuts, P. G. M. & Greene, T. W. (2006). Greene's Protective Groups in Organic Synthesis, 4th ed., pp. 844–847. Wiley: New Jersey.  Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds