metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

(2-Bromo­acet­yl)ferrocene

aHenan University of Traditional Medicine, Zhengzhou 450008, People's Republic of China, bDepartment of Chemistry, University of Malaya, 50603 Kuala Lumpur, Malaysia, and cChemistry Department, Faculty of Science, King Abdulaziz University, PO Box 80203 Jeddah, Saudi Arabia
*Correspondence e-mail: Edward.Tiekink@gmail.com

(Received 23 November 2011; accepted 24 November 2011; online 30 November 2011)

In the title mol­ecule, [Fe(C5H5)(C7H6BrO)], the C atoms of the substituted ring have disparate Fe—C bond lengths compared with the unsubstituted ring. In the bromo­acetyl residue, the Br and O atoms are co-planar [the O—C—C—Br torsion angle is 5.7 (4)°] and are syn to each other. Helical supra­molecular chains along the b axis are formed in the crystal structure mediated by C—H⋯O contacts; the carbonyl-O atom is bifurcated. The chains are linked into layers by C—H⋯π(unsubstituted ring) inter­actions that stack along the a-axis direction.

Related literature

For background to the potential applications of ferrocenyl derivatives in medicine and as biosensors, see: Arezki et al. (2011[Arezki, A., Chabot, G. G., Quentin, L., Scherman, D., Jaouena, G. & Brulé, E. (2011). Med. Chem. Commun, 2, 190-195.]); Huang et al. (2008[Huang, K., Yang, H., Zhou, Z., Yu, M., Li, F., Gao, X., Yi, T. & Huang, C. (2008). Org. Lett. 10, 2557-2560.]); Yang et al. (2007[Yang, H., Zhou, Z., Huang, K., Yu, M., Li, F., Yi, T. & Huang, C. (2007). Org. Lett. 9, 4729-4732.]).

[Scheme 1]

Experimental

Crystal data
  • [Fe(C5H5)(C7H6BrO)]

  • Mr = 306.97

  • Monoclinic, P 21 /c

  • a = 7.7095 (3) Å

  • b = 9.6609 (4) Å

  • c = 14.7464 (7) Å

  • β = 98.061 (4)°

  • V = 1087.47 (8) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 5.03 mm−1

  • T = 100 K

  • 0.30 × 0.10 × 0.03 mm

Data collection
  • Agilent SuperNova Dual diffractometer with Atlas detector

  • Absorption correction: multi-scan (CrysAlis PRO; Agilent, 2010[Agilent (2010). CrysAlis PRO. Agilent Technologies, Yarnton, England.]) Tmin = 0.314, Tmax = 0.864

  • 7692 measured reflections

  • 2497 independent reflections

  • 2004 reflections with I > 2σ(I)

  • Rint = 0.045

Refinement
  • R[F2 > 2σ(F2)] = 0.035

  • wR(F2) = 0.079

  • S = 1.02

  • 2497 reflections

  • 136 parameters

  • H-atom parameters constrained

  • Δρmax = 0.73 e Å−3

  • Δρmin = −0.58 e Å−3

Table 1
Selected bond lengths (Å)

Fe1—C1 2.053 (3)
Fe1—C2 2.051 (3)
Fe1—C3 2.042 (3)
Fe1—C4 2.040 (3)
Fe1—C5 2.040 (3)
Fe1—C6 2.037 (3)
Fe1—C7 2.060 (3)
Fe1—C8 2.059 (3)
Fe1—C9 2.043 (3)
Fe1—C10 2.027 (3)

Table 2
Hydrogen-bond geometry (Å, °)

Cg1 is the centroid of the C1–C5 ring.

D—H⋯A D—H H⋯A DA D—H⋯A
C1—H1⋯O1i 1.00 2.49 3.327 (4) 140
C12—H12a⋯O1i 0.99 2.35 3.291 (4) 158
C12—H12b⋯Cg1ii 0.99 2.64 3.445 (3) 139
Symmetry codes: (i) [-x+1, y+{\script{1\over 2}}, -z+{\script{3\over 2}}]; (ii) [x, -y+{\script{1\over 2}}, z-{\script{1\over 2}}].

Data collection: CrysAlis PRO (Agilent, 2010[Agilent (2010). CrysAlis PRO. Agilent Technologies, Yarnton, England.]); cell refinement: CrysAlis PRO; data reduction: CrysAlis PRO; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: X-SEED (Barbour, 2001[Barbour, L. J. (2001). J. Supramol. Chem. 1, 189-191.]) and DIAMOND (Brandenburg, 2006[Brandenburg, K. (2006). DIAMOND. Crystal Impact GbR, Bonn, Germany.]); software used to prepare material for publication: PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]) and publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Supporting information


Comment top

Ferrocenyl derivatives continue to attract attention owing to their applications as biosensors and drugs (Arezki et al., 2011; Huang et al., 2008; Yang et al., 2007). The title compound, (I), is a synthetic precursor for such molecules.

The molecular structure of (I), Fig. 1, features substituted and unsubstituted cyclopentadienyl rings which form a dihedral angle of 1.14 (18)° indicating an almost parallel relationship; the rings are almost eclipsed when viewed down the ring centroid···Fe···ring centroid axis. The Fe—C bond distances formed by the C atoms in the unsubstituted ring are equal within experimental error, i.e. 2.040 (3) to 2.053 (3) Å, but a disparity is evident in the Fe—C bond distances formed by the substituted ring, range of Fe—C is 2.027 (3) Å, for the C atom carrying the substituent, to 2.060 (3) Å; Table 1. The average Fe—C bond distances are experimentally equivalent as is reflected in the Fe···ring centroid distances of 1.6480 (14), for the C1-ring, compared to 1.6447 (14) Å for the C6-ring; the ring centroid···Fe···ring centroid angle is 179.68 (7)°. In the bromoacetyl residue, the Br and O atoms are co-planar [the O1—C11—C12—Br1 torsion angle is 5.7 (4)°] and are syn to each other.

Supramolecular helical chains along the b axis and mediated by C—H···O contacts involving the bifurcated carbonyl-O atom feature in the crystal packing, Fig. 2. These are connected into layers in the bc plane by C—H···π contacts, Fig. 3. The layers are undulating and stack along the a axis, Fig. 4.

Related literature top

For background to the potential applications of ferrocenyl derivatives in medicine and as biosensors, see: Arezki et al. (2011); Huang et al. (2008); Yang et al. (2007).

Experimental top

A flask was charged with ferrocene (281 mg, 1.51 mmol) and 2-bromoacetyl bromide (305 mg, 1.51 mmol) in dichloromethane (30 ml); the flask was chilled in an ice-bath. To the solution was added anhydrous aluminium chloride (221 mg, 1.66 mmol) under a nitrogen atmosphere. The reaction mixture, which turned deep-violet, was stirred for an hour. Water was added and the organic phase was extracted with dichloromethane (3 × 15 ml). The organic layer was dried over anhydrous sodium sulfate. The solvent was removed and the product purified by flash column chromatography (ethyl acetate/hexane, 1:9) to give the product as a brown solid; crystals were grown from its solution in dichloromethane.

Refinement top

Carbon-bound H-atoms were placed in calculated positions [C—H 0.99 to 1.00 Å, Uiso(H) 1.2Ueq(C)] and were included in the refinement in the riding model approximation.

Structure description top

Ferrocenyl derivatives continue to attract attention owing to their applications as biosensors and drugs (Arezki et al., 2011; Huang et al., 2008; Yang et al., 2007). The title compound, (I), is a synthetic precursor for such molecules.

The molecular structure of (I), Fig. 1, features substituted and unsubstituted cyclopentadienyl rings which form a dihedral angle of 1.14 (18)° indicating an almost parallel relationship; the rings are almost eclipsed when viewed down the ring centroid···Fe···ring centroid axis. The Fe—C bond distances formed by the C atoms in the unsubstituted ring are equal within experimental error, i.e. 2.040 (3) to 2.053 (3) Å, but a disparity is evident in the Fe—C bond distances formed by the substituted ring, range of Fe—C is 2.027 (3) Å, for the C atom carrying the substituent, to 2.060 (3) Å; Table 1. The average Fe—C bond distances are experimentally equivalent as is reflected in the Fe···ring centroid distances of 1.6480 (14), for the C1-ring, compared to 1.6447 (14) Å for the C6-ring; the ring centroid···Fe···ring centroid angle is 179.68 (7)°. In the bromoacetyl residue, the Br and O atoms are co-planar [the O1—C11—C12—Br1 torsion angle is 5.7 (4)°] and are syn to each other.

Supramolecular helical chains along the b axis and mediated by C—H···O contacts involving the bifurcated carbonyl-O atom feature in the crystal packing, Fig. 2. These are connected into layers in the bc plane by C—H···π contacts, Fig. 3. The layers are undulating and stack along the a axis, Fig. 4.

For background to the potential applications of ferrocenyl derivatives in medicine and as biosensors, see: Arezki et al. (2011); Huang et al. (2008); Yang et al. (2007).

Computing details top

Data collection: CrysAlis PRO (Agilent, 2010); cell refinement: CrysAlis PRO (Agilent, 2010); data reduction: CrysAlis PRO (Agilent, 2010); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: X-SEED (Barbour, 2001) and DIAMOND (Brandenburg, 2006); software used to prepare material for publication: PLATON (Spek, 2009) and publCIF (Westrip, 2010).

Figures top
[Figure 1] Fig. 1. Molecular structure of (I) showing atom-labelling scheme and displacement ellipsoids at the 70% probability level.
[Figure 2] Fig. 2. Supramolecular helical chain along the b axis in (I). The C—H···O contacts are shown as orange dashed lines.
[Figure 3] Fig. 3. Supramolecular layer in the bc plane in (I). The C—H···O and C—H···π contacts are shown as orange and purple dashed lines, respectively.
[Figure 4] Fig. 4. Stacking of layers along the a axis in (I). The C—H···O and C—H···π contacts are shown as orange and purple dashed lines, respectively.
(2-Bromoacetyl)ferrocene top
Crystal data top
[Fe(C5H5)(C7H6BrO)]F(000) = 608
Mr = 306.97Dx = 1.875 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 2673 reflections
a = 7.7095 (3) Åθ = 2.5–27.5°
b = 9.6609 (4) ŵ = 5.03 mm1
c = 14.7464 (7) ÅT = 100 K
β = 98.061 (4)°Plate, brown
V = 1087.47 (8) Å30.30 × 0.10 × 0.03 mm
Z = 4
Data collection top
Agilent SuperNova Dual
diffractometer with Atlas detector
2497 independent reflections
Radiation source: SuperNova (Mo) X-ray Source2004 reflections with I > 2σ(I)
Mirror monochromatorRint = 0.045
Detector resolution: 10.4041 pixels mm-1θmax = 27.6°, θmin = 2.5°
ω scanh = 710
Absorption correction: multi-scan
(CrysAlis PRO; Agilent, 2010)
k = 1212
Tmin = 0.314, Tmax = 0.864l = 1919
7692 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.035Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.079H-atom parameters constrained
S = 1.02 w = 1/[σ2(Fo2) + (0.0276P)2 + 0.4313P]
where P = (Fo2 + 2Fc2)/3
2497 reflections(Δ/σ)max = 0.001
136 parametersΔρmax = 0.73 e Å3
0 restraintsΔρmin = 0.58 e Å3
Crystal data top
[Fe(C5H5)(C7H6BrO)]V = 1087.47 (8) Å3
Mr = 306.97Z = 4
Monoclinic, P21/cMo Kα radiation
a = 7.7095 (3) ŵ = 5.03 mm1
b = 9.6609 (4) ÅT = 100 K
c = 14.7464 (7) Å0.30 × 0.10 × 0.03 mm
β = 98.061 (4)°
Data collection top
Agilent SuperNova Dual
diffractometer with Atlas detector
2497 independent reflections
Absorption correction: multi-scan
(CrysAlis PRO; Agilent, 2010)
2004 reflections with I > 2σ(I)
Tmin = 0.314, Tmax = 0.864Rint = 0.045
7692 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0350 restraints
wR(F2) = 0.079H-atom parameters constrained
S = 1.02Δρmax = 0.73 e Å3
2497 reflectionsΔρmin = 0.58 e Å3
136 parameters
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Br10.73500 (4)0.70286 (3)0.88244 (3)0.02647 (12)
Fe10.18625 (5)0.71721 (4)0.60388 (3)0.01114 (12)
O10.4210 (3)0.5296 (2)0.80778 (15)0.0200 (5)
C10.3624 (4)0.8207 (3)0.5363 (2)0.0201 (7)
H10.41990.91110.55480.024*
C20.2000 (4)0.8024 (3)0.4777 (2)0.0186 (7)
H20.12350.87810.44830.022*
C30.1643 (4)0.6583 (3)0.4698 (2)0.0160 (6)
H30.05910.61490.43330.019*
C40.3048 (4)0.5867 (3)0.5228 (2)0.0174 (7)
H40.31610.48400.53010.021*
C50.4263 (4)0.6876 (3)0.5640 (2)0.0218 (7)
H50.53750.66780.60550.026*
C60.1556 (4)0.8318 (3)0.7165 (2)0.0154 (6)
H60.21730.92020.73590.019*
C70.0085 (4)0.8188 (3)0.6598 (2)0.0191 (7)
H70.08070.89710.63070.023*
C80.0498 (4)0.6754 (3)0.6484 (2)0.0181 (7)
H80.15600.63620.61030.022*
C90.0873 (4)0.5979 (3)0.6989 (2)0.0155 (6)
H90.09380.49470.70340.019*
C100.2161 (4)0.6937 (3)0.7418 (2)0.0140 (6)
C110.3856 (4)0.6510 (3)0.7928 (2)0.0145 (6)
C120.5074 (4)0.7682 (3)0.8252 (2)0.0161 (7)
H12B0.45380.82520.86970.019*
H12A0.52320.82780.77230.019*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Br10.01576 (18)0.0226 (2)0.0391 (2)0.00046 (12)0.00282 (16)0.00281 (15)
Fe10.0115 (2)0.0123 (2)0.0098 (2)0.00045 (16)0.00201 (18)0.00059 (17)
O10.0241 (12)0.0117 (12)0.0221 (13)0.0019 (9)0.0036 (10)0.0007 (9)
C10.0239 (17)0.0225 (17)0.0161 (16)0.0087 (14)0.0102 (15)0.0031 (14)
C20.0256 (18)0.0183 (17)0.0128 (16)0.0034 (13)0.0063 (14)0.0024 (13)
C30.0206 (16)0.0173 (16)0.0098 (15)0.0000 (13)0.0005 (13)0.0041 (13)
C40.0176 (15)0.0181 (16)0.0170 (16)0.0055 (12)0.0040 (14)0.0004 (13)
C50.0124 (15)0.036 (2)0.0177 (17)0.0007 (14)0.0029 (14)0.0019 (15)
C60.0184 (16)0.0116 (15)0.0165 (16)0.0019 (12)0.0034 (14)0.0038 (13)
C70.0183 (16)0.0231 (17)0.0163 (16)0.0099 (13)0.0036 (14)0.0005 (14)
C80.0130 (15)0.0247 (17)0.0178 (17)0.0023 (13)0.0066 (14)0.0057 (14)
C90.0175 (15)0.0178 (16)0.0122 (15)0.0033 (12)0.0056 (13)0.0008 (13)
C100.0173 (15)0.0170 (16)0.0080 (14)0.0014 (12)0.0031 (13)0.0001 (12)
C110.0208 (16)0.0155 (16)0.0071 (14)0.0013 (13)0.0019 (13)0.0016 (12)
C120.0138 (15)0.0175 (16)0.0160 (16)0.0025 (12)0.0020 (13)0.0000 (13)
Geometric parameters (Å, º) top
Br1—C121.943 (3)C3—H31.0000
Fe1—C12.053 (3)C4—C51.428 (4)
Fe1—C22.051 (3)C4—H41.0000
Fe1—C32.042 (3)C5—H51.0000
Fe1—C42.040 (3)C6—C71.421 (5)
Fe1—C52.040 (3)C6—C101.445 (4)
Fe1—C62.037 (3)C6—H61.0000
Fe1—C72.060 (3)C7—C81.426 (4)
Fe1—C82.059 (3)C7—H71.0000
Fe1—C92.043 (3)C8—C91.418 (4)
Fe1—C102.027 (3)C8—H81.0000
O1—C111.217 (3)C9—C101.438 (4)
C1—C51.416 (4)C9—H91.0000
C1—C21.429 (5)C10—C111.473 (4)
C1—H11.0000C11—C121.506 (4)
C2—C31.421 (4)C12—H12B0.9900
C2—H21.0000C12—H12A0.9900
C3—C41.423 (4)
C10—Fe1—C641.65 (12)C4—C3—C2107.9 (3)
C10—Fe1—C4121.43 (12)C4—C3—Fe169.53 (17)
C6—Fe1—C4157.89 (13)C2—C3—Fe170.02 (17)
C10—Fe1—C5107.09 (13)C4—C3—H3126.1
C6—Fe1—C5121.68 (13)C2—C3—H3126.1
C4—Fe1—C540.97 (12)Fe1—C3—H3126.1
C10—Fe1—C3157.32 (12)C3—C4—C5107.8 (3)
C6—Fe1—C3159.69 (12)C3—C4—Fe169.65 (16)
C4—Fe1—C340.82 (12)C5—C4—Fe169.50 (17)
C5—Fe1—C368.70 (13)C3—C4—H4126.1
C10—Fe1—C941.37 (12)C5—C4—H4126.1
C6—Fe1—C969.52 (12)Fe1—C4—H4126.1
C4—Fe1—C9107.11 (12)C1—C5—C4108.4 (3)
C5—Fe1—C9124.08 (13)C1—C5—Fe170.27 (18)
C3—Fe1—C9121.24 (12)C4—C5—Fe169.53 (17)
C10—Fe1—C2160.42 (12)C1—C5—H5125.8
C6—Fe1—C2123.26 (12)C4—C5—H5125.8
C4—Fe1—C268.40 (12)Fe1—C5—H5125.8
C5—Fe1—C268.27 (13)C7—C6—C10107.4 (3)
C3—Fe1—C240.63 (11)C7—C6—Fe170.56 (18)
C9—Fe1—C2156.99 (13)C10—C6—Fe168.79 (16)
C10—Fe1—C1123.48 (13)C7—C6—H6126.3
C6—Fe1—C1106.94 (13)C10—C6—H6126.3
C4—Fe1—C168.62 (13)Fe1—C6—H6126.3
C5—Fe1—C140.49 (13)C6—C7—C8108.7 (3)
C3—Fe1—C168.68 (13)C6—C7—Fe168.85 (17)
C9—Fe1—C1160.67 (13)C8—C7—Fe169.73 (16)
C2—Fe1—C140.75 (13)C6—C7—H7125.6
C10—Fe1—C768.82 (12)C8—C7—H7125.6
C6—Fe1—C740.58 (13)Fe1—C7—H7125.6
C4—Fe1—C7160.14 (13)C9—C8—C7108.2 (3)
C5—Fe1—C7157.53 (13)C9—C8—Fe169.15 (16)
C3—Fe1—C7123.65 (13)C7—C8—Fe169.75 (17)
C9—Fe1—C768.35 (12)C9—C8—H8125.9
C2—Fe1—C7107.77 (13)C7—C8—H8125.9
C1—Fe1—C7122.06 (13)Fe1—C8—H8125.9
C10—Fe1—C868.87 (13)C8—C9—C10108.0 (3)
C6—Fe1—C868.78 (12)C8—C9—Fe170.40 (17)
C4—Fe1—C8123.64 (12)C10—C9—Fe168.70 (16)
C5—Fe1—C8160.53 (13)C8—C9—H9126.0
C3—Fe1—C8107.26 (13)C10—C9—H9126.0
C9—Fe1—C840.45 (12)Fe1—C9—H9126.0
C2—Fe1—C8121.89 (14)C9—C10—C6107.6 (3)
C1—Fe1—C8157.56 (13)C9—C10—C11123.6 (3)
C7—Fe1—C840.52 (12)C6—C10—C11128.4 (3)
C5—C1—C2107.6 (3)C9—C10—Fe169.93 (17)
C5—C1—Fe169.25 (17)C6—C10—Fe169.57 (17)
C2—C1—Fe169.53 (17)C11—C10—Fe1120.8 (2)
C5—C1—H1126.2O1—C11—C10121.5 (3)
C2—C1—H1126.2O1—C11—C12123.6 (3)
Fe1—C1—H1126.2C10—C11—C12114.9 (3)
C3—C2—C1108.3 (3)C11—C12—Br1112.2 (2)
C3—C2—Fe169.35 (17)C11—C12—H12B109.2
C1—C2—Fe169.72 (18)Br1—C12—H12B109.2
C3—C2—H2125.8C11—C12—H12A109.2
C1—C2—H2125.8Br1—C12—H12A109.2
Fe1—C2—H2125.8H12B—C12—H12A107.9
C10—Fe1—C1—C576.6 (2)C9—Fe1—C6—C1038.23 (17)
C6—Fe1—C1—C5119.3 (2)C2—Fe1—C6—C10163.33 (18)
C4—Fe1—C1—C537.78 (19)C1—Fe1—C6—C10121.69 (19)
C3—Fe1—C1—C581.8 (2)C7—Fe1—C6—C10118.5 (3)
C9—Fe1—C1—C542.9 (5)C8—Fe1—C6—C1081.65 (19)
C2—Fe1—C1—C5119.1 (3)C10—C6—C7—C80.7 (3)
C7—Fe1—C1—C5161.02 (19)Fe1—C6—C7—C858.4 (2)
C8—Fe1—C1—C5165.4 (3)C10—C6—C7—Fe159.2 (2)
C10—Fe1—C1—C2164.34 (17)C10—Fe1—C7—C638.79 (18)
C6—Fe1—C1—C2121.66 (19)C4—Fe1—C7—C6163.8 (3)
C4—Fe1—C1—C281.30 (19)C5—Fe1—C7—C644.8 (4)
C5—Fe1—C1—C2119.1 (3)C3—Fe1—C7—C6162.66 (18)
C3—Fe1—C1—C237.33 (17)C9—Fe1—C7—C683.4 (2)
C9—Fe1—C1—C2162.0 (3)C2—Fe1—C7—C6120.74 (19)
C7—Fe1—C1—C279.9 (2)C1—Fe1—C7—C678.3 (2)
C8—Fe1—C1—C246.3 (4)C8—Fe1—C7—C6120.6 (3)
C5—C1—C2—C30.2 (4)C10—Fe1—C7—C881.9 (2)
Fe1—C1—C2—C358.8 (2)C6—Fe1—C7—C8120.6 (3)
C5—C1—C2—Fe159.0 (2)C4—Fe1—C7—C843.1 (5)
C10—Fe1—C2—C3162.0 (3)C5—Fe1—C7—C8165.4 (3)
C6—Fe1—C2—C3163.31 (17)C3—Fe1—C7—C876.7 (2)
C4—Fe1—C2—C337.94 (18)C9—Fe1—C7—C837.27 (19)
C5—Fe1—C2—C382.18 (19)C2—Fe1—C7—C8118.6 (2)
C9—Fe1—C2—C345.0 (4)C1—Fe1—C7—C8161.04 (19)
C1—Fe1—C2—C3119.8 (3)C6—C7—C8—C90.7 (3)
C7—Fe1—C2—C3121.34 (19)Fe1—C7—C8—C958.6 (2)
C8—Fe1—C2—C379.1 (2)C6—C7—C8—Fe157.9 (2)
C10—Fe1—C2—C142.2 (4)C10—Fe1—C8—C938.11 (18)
C6—Fe1—C2—C176.9 (2)C6—Fe1—C8—C982.9 (2)
C4—Fe1—C2—C181.9 (2)C4—Fe1—C8—C976.4 (2)
C5—Fe1—C2—C137.65 (18)C5—Fe1—C8—C943.4 (5)
C3—Fe1—C2—C1119.8 (3)C3—Fe1—C8—C9118.20 (19)
C9—Fe1—C2—C1164.8 (3)C2—Fe1—C8—C9160.24 (18)
C7—Fe1—C2—C1118.8 (2)C1—Fe1—C8—C9166.0 (3)
C8—Fe1—C2—C1161.02 (18)C7—Fe1—C8—C9119.8 (3)
C1—C2—C3—C40.4 (3)C10—Fe1—C8—C781.7 (2)
Fe1—C2—C3—C459.4 (2)C6—Fe1—C8—C736.90 (19)
C1—C2—C3—Fe159.0 (2)C4—Fe1—C8—C7163.81 (19)
C10—Fe1—C3—C445.4 (4)C5—Fe1—C8—C7163.2 (4)
C6—Fe1—C3—C4162.8 (3)C3—Fe1—C8—C7121.98 (19)
C5—Fe1—C3—C437.96 (18)C9—Fe1—C8—C7119.8 (3)
C9—Fe1—C3—C479.9 (2)C2—Fe1—C8—C779.9 (2)
C2—Fe1—C3—C4119.0 (3)C1—Fe1—C8—C746.2 (4)
C1—Fe1—C3—C481.6 (2)C7—C8—C9—C100.4 (3)
C7—Fe1—C3—C4163.30 (18)Fe1—C8—C9—C1058.58 (19)
C8—Fe1—C3—C4121.84 (18)C7—C8—C9—Fe159.0 (2)
C10—Fe1—C3—C2164.4 (3)C10—Fe1—C9—C8119.4 (3)
C6—Fe1—C3—C243.8 (4)C6—Fe1—C9—C880.94 (19)
C4—Fe1—C3—C2119.0 (3)C4—Fe1—C9—C8122.16 (19)
C5—Fe1—C3—C281.0 (2)C5—Fe1—C9—C8163.95 (19)
C9—Fe1—C3—C2161.13 (19)C3—Fe1—C9—C879.8 (2)
C1—Fe1—C3—C237.43 (19)C2—Fe1—C9—C847.3 (4)
C7—Fe1—C3—C277.7 (2)C1—Fe1—C9—C8163.8 (3)
C8—Fe1—C3—C2119.16 (19)C7—Fe1—C9—C837.33 (18)
C2—C3—C4—C50.5 (3)C6—Fe1—C9—C1038.48 (17)
Fe1—C3—C4—C559.3 (2)C4—Fe1—C9—C10118.42 (18)
C2—C3—C4—Fe159.7 (2)C5—Fe1—C9—C1076.6 (2)
C10—Fe1—C4—C3161.21 (17)C3—Fe1—C9—C10160.74 (17)
C6—Fe1—C4—C3164.1 (3)C2—Fe1—C9—C10166.7 (3)
C5—Fe1—C4—C3119.1 (3)C1—Fe1—C9—C1044.4 (4)
C9—Fe1—C4—C3118.28 (18)C7—Fe1—C9—C1082.09 (19)
C2—Fe1—C4—C337.77 (18)C8—Fe1—C9—C10119.4 (3)
C1—Fe1—C4—C381.7 (2)C8—C9—C10—C60.0 (3)
C7—Fe1—C4—C344.8 (4)Fe1—C9—C10—C659.60 (19)
C8—Fe1—C4—C377.0 (2)C8—C9—C10—C11174.0 (3)
C10—Fe1—C4—C579.7 (2)Fe1—C9—C10—C11114.3 (3)
C6—Fe1—C4—C545.1 (4)C8—C9—C10—Fe159.6 (2)
C3—Fe1—C4—C5119.1 (3)C7—C6—C10—C90.5 (3)
C9—Fe1—C4—C5122.7 (2)Fe1—C6—C10—C959.82 (19)
C2—Fe1—C4—C581.3 (2)C7—C6—C10—C11174.0 (3)
C1—Fe1—C4—C537.35 (19)Fe1—C6—C10—C11113.7 (3)
C7—Fe1—C4—C5163.8 (3)C7—C6—C10—Fe160.3 (2)
C8—Fe1—C4—C5163.94 (19)C6—Fe1—C10—C9118.7 (2)
C2—C1—C5—C40.1 (3)C4—Fe1—C10—C980.1 (2)
Fe1—C1—C5—C459.2 (2)C5—Fe1—C10—C9122.53 (18)
C2—C1—C5—Fe159.2 (2)C3—Fe1—C10—C947.0 (4)
C3—C4—C5—C10.3 (3)C2—Fe1—C10—C9164.4 (3)
Fe1—C4—C5—C159.7 (2)C1—Fe1—C10—C9163.89 (18)
C3—C4—C5—Fe159.4 (2)C7—Fe1—C10—C980.88 (19)
C10—Fe1—C5—C1121.9 (2)C8—Fe1—C10—C937.29 (17)
C6—Fe1—C5—C178.7 (2)C4—Fe1—C10—C6161.21 (18)
C4—Fe1—C5—C1119.5 (3)C5—Fe1—C10—C6118.76 (19)
C3—Fe1—C5—C181.7 (2)C3—Fe1—C10—C6165.7 (3)
C9—Fe1—C5—C1164.20 (19)C9—Fe1—C10—C6118.7 (2)
C2—Fe1—C5—C137.88 (19)C2—Fe1—C10—C645.7 (4)
C7—Fe1—C5—C146.2 (4)C1—Fe1—C10—C677.4 (2)
C8—Fe1—C5—C1163.2 (4)C7—Fe1—C10—C637.82 (18)
C10—Fe1—C5—C4118.55 (19)C8—Fe1—C10—C681.41 (19)
C6—Fe1—C5—C4161.75 (18)C6—Fe1—C10—C11123.4 (3)
C3—Fe1—C5—C437.82 (18)C4—Fe1—C10—C1137.8 (3)
C9—Fe1—C5—C476.3 (2)C5—Fe1—C10—C114.6 (3)
C2—Fe1—C5—C481.6 (2)C3—Fe1—C10—C1170.9 (4)
C1—Fe1—C5—C4119.5 (3)C9—Fe1—C10—C11117.9 (3)
C7—Fe1—C5—C4165.7 (3)C2—Fe1—C10—C1177.7 (4)
C8—Fe1—C5—C443.7 (5)C1—Fe1—C10—C1146.0 (3)
C10—Fe1—C6—C7118.5 (3)C7—Fe1—C10—C11161.2 (3)
C4—Fe1—C6—C7165.4 (3)C8—Fe1—C10—C11155.2 (3)
C5—Fe1—C6—C7161.56 (19)C9—C10—C11—O15.8 (4)
C3—Fe1—C6—C745.6 (4)C6—C10—C11—O1178.4 (3)
C9—Fe1—C6—C780.3 (2)Fe1—C10—C11—O191.0 (3)
C2—Fe1—C6—C778.2 (2)C9—C10—C11—C12174.9 (3)
C1—Fe1—C6—C7119.8 (2)C6—C10—C11—C122.3 (4)
C8—Fe1—C6—C736.84 (18)Fe1—C10—C11—C1289.7 (3)
C4—Fe1—C6—C1046.9 (4)O1—C11—C12—Br15.7 (4)
C5—Fe1—C6—C1080.0 (2)C10—C11—C12—Br1175.0 (2)
C3—Fe1—C6—C10164.1 (3)
Hydrogen-bond geometry (Å, º) top
Cg1 is the centroid of the C1–C5 ring.
D—H···AD—HH···AD···AD—H···A
C1—H1···O1i1.002.493.327 (4)140
C12—H12a···O1i0.992.353.291 (4)158
C12—H12b···Cg1ii0.992.643.445 (3)139
Symmetry codes: (i) x+1, y+1/2, z+3/2; (ii) x, y+1/2, z1/2.

Experimental details

Crystal data
Chemical formula[Fe(C5H5)(C7H6BrO)]
Mr306.97
Crystal system, space groupMonoclinic, P21/c
Temperature (K)100
a, b, c (Å)7.7095 (3), 9.6609 (4), 14.7464 (7)
β (°) 98.061 (4)
V3)1087.47 (8)
Z4
Radiation typeMo Kα
µ (mm1)5.03
Crystal size (mm)0.30 × 0.10 × 0.03
Data collection
DiffractometerAgilent SuperNova Dual
diffractometer with Atlas detector
Absorption correctionMulti-scan
(CrysAlis PRO; Agilent, 2010)
Tmin, Tmax0.314, 0.864
No. of measured, independent and
observed [I > 2σ(I)] reflections
7692, 2497, 2004
Rint0.045
(sin θ/λ)max1)0.651
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.035, 0.079, 1.02
No. of reflections2497
No. of parameters136
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.73, 0.58

Computer programs: CrysAlis PRO (Agilent, 2010), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), X-SEED (Barbour, 2001) and DIAMOND (Brandenburg, 2006), PLATON (Spek, 2009) and publCIF (Westrip, 2010).

Selected bond lengths (Å) top
Fe1—C12.053 (3)Fe1—C62.037 (3)
Fe1—C22.051 (3)Fe1—C72.060 (3)
Fe1—C32.042 (3)Fe1—C82.059 (3)
Fe1—C42.040 (3)Fe1—C92.043 (3)
Fe1—C52.040 (3)Fe1—C102.027 (3)
Hydrogen-bond geometry (Å, º) top
Cg1 is the centroid of the C1–C5 ring.
D—H···AD—HH···AD···AD—H···A
C1—H1···O1i1.002.493.327 (4)140
C12—H12a···O1i0.992.353.291 (4)158
C12—H12b···Cg1ii0.992.643.445 (3)139
Symmetry codes: (i) x+1, y+1/2, z+3/2; (ii) x, y+1/2, z1/2.
 

Acknowledgements

We thank Henan University of Traditional Medicine and the University of Malaya for supporting this study.

References

First citationAgilent (2010). CrysAlis PRO. Agilent Technologies, Yarnton, England.  Google Scholar
First citationArezki, A., Chabot, G. G., Quentin, L., Scherman, D., Jaouena, G. & Brulé, E. (2011). Med. Chem. Commun, 2, 190–195.  Web of Science CrossRef CAS Google Scholar
First citationBarbour, L. J. (2001). J. Supramol. Chem. 1, 189–191.  CrossRef CAS Google Scholar
First citationBrandenburg, K. (2006). DIAMOND. Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationHuang, K., Yang, H., Zhou, Z., Yu, M., Li, F., Gao, X., Yi, T. & Huang, C. (2008). Org. Lett. 10, 2557–2560.  Web of Science CrossRef PubMed CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationYang, H., Zhou, Z., Huang, K., Yu, M., Li, F., Yi, T. & Huang, C. (2007). Org. Lett. 9, 4729–4732.  Web of Science CrossRef PubMed CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds