metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Tris(1,10-phenanthroline-κ2N,N′)nickel(II) dinitrate tetra­hydrate

aDepartment of Chemistry, Yazd Branch, Islamic Azad University, Yazd, Iran, and bDepartment of Chemistry, The University of Calgary, 2500 University Drive NW, Calgary, Alberta, Canada T2N 1N4
*Correspondence e-mail: tabatabaee45m@yahoo.com

(Received 13 October 2011; accepted 16 November 2011; online 23 November 2011)

In the title complex, [Ni(C12H8N2)3](NO3)2·4H2O, the NiII ion is octa­hedrally coordinated by three bidentate 1,10-phenanthroline ligands, each forming a five-membered chelate ring. In the crystal, O—H⋯O and C—H⋯O hydrogen bonds are present between the complex cations, nitrate anions and water mol­ecules. O—H⋯O hydrogen bonds between the uncoord­inated water mol­ecules lead to the formation of a four-membered ring water cluster, with a planar configuration. There were an additional five grossly disordered water mol­ecules in the asymmetric unit, which were removed by the subroutine SQUEEZE; these were were excluded in the calculation of the molecular weight, etc. ππ stacking inter­actions between the aromatic rings are also observed [centroid–centroid distances = 3.697 (2), 3.728 (2) and 3.761 (2) Å].

Related literature

For background information on Ni–phenanthroline complexes and related structures, see: Qiua et al. (2011[Qiua, B., Guoa, L., Guoa, C., Guob, Z., Lina, Z. & Chen, G. (2011). Biosens. Bioelectron. 26, 2270-2274.]). For water clusters, see: Rodríguez-Cuamatzi et al. (2004[Rodríguez-Cuamatzi, P., Vargas-Díaz, G. & Höpfl, H. (2004). Angew. Chem. Int. Ed. 43, 3041-3044.]); Sharif et al. (2010[Sharif, M. A., Tabatabaee, M., Adinehloo, M. & Aghabozorg, H. (2010). Acta Cryst. E66, o3232.]). For FTIR spectra of phenanthroline complexes, see: Schilt & Taylor (1959[Schilt, A. A. & Taylor, R. C. (1959). J. Inorg. Nucl. Chem. 9, 211-221.]). For the synthesis of 4-amino-5-methyl-2H-1,2,4-triazole-3(4H)-thione, see: Beyer & Kröger (1960[Beyer, H. & Kröger, C.-F. (1960). Chem. Ber. 637, 135-135.]).

[Scheme 1]

Experimental

Crystal data
  • [Ni(C12H8N2)3](NO3)2·4H2O

  • Mr = 795.41

  • Triclinic, [P \overline 1]

  • a = 13.0463 (6) Å

  • b = 13.1785 (5) Å

  • c = 13.4093 (4) Å

  • α = 82.688 (2)°

  • β = 72.147 (2)°

  • γ = 67.402 (2)°

  • V = 2025.85 (14) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.54 mm−1

  • T = 173 K

  • 0.14 × 0.12 × 0.10 mm

Data collection
  • Nonius KappaCCD diffractometer with APEXII CCD

  • Absorption correction: multi-scan (SORTAV; Blessing, 1997[Blessing, R. H. (1997). J. Appl. Cryst. 30, 421-426.]) Tmin = 0.928, Tmax = 0.948

  • 13391 measured reflections

  • 7100 independent reflections

  • 5845 reflections with I > 2σ(I)

  • Rint = 0.037

Refinement
  • R[F2 > 2σ(F2)] = 0.057

  • wR(F2) = 0.160

  • S = 1.08

  • 7100 reflections

  • 496 parameters

  • H-atom parameters constrained

  • Δρmax = 0.42 e Å−3

  • Δρmin = −0.39 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O7—H72⋯O9i 0.82 1.97 2.768 (5) 164
O8—H81⋯O7i 0.82 1.94 2.749 (5) 172
O8—H82⋯O2ii 0.82 2.04 2.827 (4) 164
O9—H91⋯O4 0.82 2.07 2.845 (6) 155
O9—H92⋯O6i 0.82 2.00 2.817 (6) 175
O10—H101⋯O8 0.82 2.01 2.822 (5) 169
O10—H102⋯O9 0.82 2.20 2.900 (6) 143
C5—H5⋯O5iii 0.95 2.53 3.293 (7) 138
C15—H15⋯O2iv 0.95 2.53 3.265 (5) 134
C25—H25⋯O7v 0.95 2.52 3.300 (5) 140
C32—H32⋯O4 0.95 2.46 3.165 (6) 131
C34—H34⋯O1ii 0.95 2.37 3.180 (5) 143
Symmetry codes: (i) -x, -y+1, -z+1; (ii) -x+1, -y, -z+1; (iii) x, y, z+1; (iv) -x+2, -y, -z+1; (v) -x+1, -y+1, -z+1.

Data collection: COLLECT (Hooft, 1998[Hooft, R. W. W. (1998). COLLECT. Nonius BV, Delft, The Netherlands.]); cell refinement: DENZO (Otwinowski & Minor, 1997[Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307-326. New York: Academic Press.]); data reduction: SCALEPACK; program(s) used to solve structure: SIR92 (Altomare et al., 1994[Altomare, A., Cascarano, G., Giacovazzo, C., Guagliardi, A., Burla, M. C., Polidori, G. & Camalli, M. (1994). J. Appl. Cryst. 27, 435.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]); software used to prepare material for publication: SHELXL97 and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Supporting information


Comment top

Metal complexes with polypyridine-containing ligands are of great interest to researchers, and a number of reports have been devoted to this theme. Among polypyridine-containing ligands, 1,10-phenanthroline (1,10-phen) is a very important pyridine derivative, which has attracted much interest in coordination chemistry. Transition metal complexes coordinated with 1,10-phen show excellent photoelectrical capability. The application of a Ni–phenanthroline complex for detection of nucleic acid has also been reported (Qiua et al., 2011). Extensive investigations of small and medium size water cluster structures (H2O)n (n = 2–100) have been reported in recent years (Rodríguez-Cuamatzi et al., 2004). Among the water clusters, the cyclic (H2O)4 is very interesting as it is a simple two-structure model for liquid water. Recently we have reported a tetrameric water cluster ring in the crystal structure of a new proton transfer system derived from pyridine-2,6-dicarboxylic acid and 2-amino-4-methylpyridine (Sharif et al., 2010). Here, we present the preparation and the crystal structure of the title compound and the formation of a tetrameric water cluster with a planar configuration.

The title compound is built up of a [Ni(1,10-phen)3]2+ complex cation, two NO3- anions and four uncoordinated water molecules (Fig. 1). In the cation, the NiII ion is octahedrally coordinated by three bidentate 1,10-phen ligands, each forming a five-membered chelate ring. The Ni—N bond distances in the cation are in accord with the values reported for complexes which contain the same ligand (Qiua et al., 2011). The bond angles around the NiII ion involving trans pairs of donor atoms are in a range of 169.85 (10)–172.77 (11)°, while for the cis pairs this range is 79.72 (11)–96.51 (11)°. These values indicate a distortion from an ideal octahedral geometry. The crystal packing of the complex is dominated by numerous hydrogen bonds of the types O—H···O and C—H···O (Fig. 2, Table 1). Hydrogen bonding interactions between the uncoordinated water molecules lead to the formation of a four-membered ring water cluster with a planar configuration (Fig. 3). Moreover, two planar water cluster rings are connected via hydrogen bonds between the nitrate anions and water molecules (Fig. 4). There are also some ππ stacking interactions between the aromatic rings, e.g. Cg1···Cg2i = 3.697 (2), Cg3···Cg4ii = 3.729 (2) and Cg5···Cg5iii = 3.761 (2) Å [Cg1, Cg2, Cg3, Cg4 and Cg5 are the centroids of N2/C7–C10/C12 ring, C4–C7/C11/C12 ring, N4/C19–C22/C24 ring, C16–C19/C23/C24 ring and C28–C31/C35/C36 ring. Symmetry codes: (i) 1-x, -y, 2-z; (ii) 2-x, -y, 1-z; (iii) 1-x, 1-y, 1-z].

Related literature top

For background information on Ni–phenanthroline complexes and related structures, see: Qiua et al. (2011); Sharif et al. (2010). For water clusters, see: Rodríguez-Cuamatzi et al. (2004). For FTIR spectra of phenanthroline complexes, see: Schilt & Taylor (1959). For the synthesis of 4-amino-5-methyl-2H-1,2,4-triazole-3(4H)-thione, see: Beyer & Kröger (1960).

Experimental top

All purchased chemicals were of reagent grade and used without further purification. 4-Amino-5-methyl-2H-1,2,4-triazole-3(4H)-thione (AMTT) was prepared according to the literature procedure (Beyer & Kröger, 1960). AMTT (0.260 g, 2 mmol) and NaOH (0.080 g, 2 mmol) were dissolved in 10 ml deionized water containing 1,10-phenanthroline hydrate (0.396 g, 2 mmol). A water solution (20 ml) of Ni(NO3)2.6H2O (0.290 g, 1 mmol) was added to the above solution. The reaction mixture was placed in a Parr-Teflon lined stainless steel vessel. It was sealed and heated at 403 K for 8 h. Then it was gradually cooled to room temperature and kept at 277 K until pink crystals suitable for X-ray diffraction were obtained (yield: 73% based on 1,10-phenanthroline).

Refinement top

The asymmetric unit of the title compound contains nine water molecules, five of which were disordered and were therefore removed by the command SQUEEZE in PLATON (Spek, 2009). They have been excluded in the calculation of molecular weight, crystal density and absorption coefficient. Although the H atoms were located from difference Fourier maps, they were included at geometrically idealized positions with O—H = 0.82 and C—H = 0.95 Å and with Uiso(H) = 1.2Ueq(O,C).

Structure description top

Metal complexes with polypyridine-containing ligands are of great interest to researchers, and a number of reports have been devoted to this theme. Among polypyridine-containing ligands, 1,10-phenanthroline (1,10-phen) is a very important pyridine derivative, which has attracted much interest in coordination chemistry. Transition metal complexes coordinated with 1,10-phen show excellent photoelectrical capability. The application of a Ni–phenanthroline complex for detection of nucleic acid has also been reported (Qiua et al., 2011). Extensive investigations of small and medium size water cluster structures (H2O)n (n = 2–100) have been reported in recent years (Rodríguez-Cuamatzi et al., 2004). Among the water clusters, the cyclic (H2O)4 is very interesting as it is a simple two-structure model for liquid water. Recently we have reported a tetrameric water cluster ring in the crystal structure of a new proton transfer system derived from pyridine-2,6-dicarboxylic acid and 2-amino-4-methylpyridine (Sharif et al., 2010). Here, we present the preparation and the crystal structure of the title compound and the formation of a tetrameric water cluster with a planar configuration.

The title compound is built up of a [Ni(1,10-phen)3]2+ complex cation, two NO3- anions and four uncoordinated water molecules (Fig. 1). In the cation, the NiII ion is octahedrally coordinated by three bidentate 1,10-phen ligands, each forming a five-membered chelate ring. The Ni—N bond distances in the cation are in accord with the values reported for complexes which contain the same ligand (Qiua et al., 2011). The bond angles around the NiII ion involving trans pairs of donor atoms are in a range of 169.85 (10)–172.77 (11)°, while for the cis pairs this range is 79.72 (11)–96.51 (11)°. These values indicate a distortion from an ideal octahedral geometry. The crystal packing of the complex is dominated by numerous hydrogen bonds of the types O—H···O and C—H···O (Fig. 2, Table 1). Hydrogen bonding interactions between the uncoordinated water molecules lead to the formation of a four-membered ring water cluster with a planar configuration (Fig. 3). Moreover, two planar water cluster rings are connected via hydrogen bonds between the nitrate anions and water molecules (Fig. 4). There are also some ππ stacking interactions between the aromatic rings, e.g. Cg1···Cg2i = 3.697 (2), Cg3···Cg4ii = 3.729 (2) and Cg5···Cg5iii = 3.761 (2) Å [Cg1, Cg2, Cg3, Cg4 and Cg5 are the centroids of N2/C7–C10/C12 ring, C4–C7/C11/C12 ring, N4/C19–C22/C24 ring, C16–C19/C23/C24 ring and C28–C31/C35/C36 ring. Symmetry codes: (i) 1-x, -y, 2-z; (ii) 2-x, -y, 1-z; (iii) 1-x, 1-y, 1-z].

For background information on Ni–phenanthroline complexes and related structures, see: Qiua et al. (2011); Sharif et al. (2010). For water clusters, see: Rodríguez-Cuamatzi et al. (2004). For FTIR spectra of phenanthroline complexes, see: Schilt & Taylor (1959). For the synthesis of 4-amino-5-methyl-2H-1,2,4-triazole-3(4H)-thione, see: Beyer & Kröger (1960).

Computing details top

Data collection: COLLECT (Hooft, 1998); cell refinement: DENZO (Otwinowski & Minor, 1997); data reduction: SCALEPACK (Otwinowski & Minor, 1997); program(s) used to solve structure: SIR92 (Altomare et al., 1994); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008) and PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. Molecular structure of the title compound. Displacement ellipsoids are drawn at the 50% probability level.
[Figure 2] Fig. 2. A unit cell packing of the title compound. Hydrogen bonds have been plotted with dashed lines.
[Figure 3] Fig. 3. A four-membered ring water cluster formed by hydrogen bonding interactions (dashed lines).
[Figure 4] Fig. 4. A one-dimensional chain formed by hydrogen bonds (dashed lines) between the water clusters and nitrate anions.
Tris(1,10-phenanthroline-κ2N,N')nickel(II) dinitrate tetrahydrate top
Crystal data top
[Ni(C12H8N2)3](NO3)2·4H2OZ = 2
Mr = 795.41F(000) = 824
Triclinic, P1Dx = 1.304 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 13.0463 (6) ÅCell parameters from 8521 reflections
b = 13.1785 (5) Åθ = 1.0–27.5°
c = 13.4093 (4) ŵ = 0.54 mm1
α = 82.688 (2)°T = 173 K
β = 72.147 (2)°Prism, pink
γ = 67.402 (2)°0.14 × 0.12 × 0.10 mm
V = 2025.85 (14) Å3
Data collection top
Nonius KappaCCD
diffractometer with APEXII CCD
7100 independent reflections
Radiation source: fine-focus sealed tube5845 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.037
ω and φ scansθmax = 25.0°, θmin = 2.8°
Absorption correction: multi-scan
(SORTAV; Blessing, 1997)
h = 1515
Tmin = 0.928, Tmax = 0.948k = 1515
13391 measured reflectionsl = 1515
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.057Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.160H-atom parameters constrained
S = 1.08 w = 1/[σ2(Fo2) + (0.0795P)2 + 1.9793P]
where P = (Fo2 + 2Fc2)/3
7100 reflections(Δ/σ)max = 0.001
496 parametersΔρmax = 0.42 e Å3
0 restraintsΔρmin = 0.39 e Å3
Crystal data top
[Ni(C12H8N2)3](NO3)2·4H2Oγ = 67.402 (2)°
Mr = 795.41V = 2025.85 (14) Å3
Triclinic, P1Z = 2
a = 13.0463 (6) ÅMo Kα radiation
b = 13.1785 (5) ŵ = 0.54 mm1
c = 13.4093 (4) ÅT = 173 K
α = 82.688 (2)°0.14 × 0.12 × 0.10 mm
β = 72.147 (2)°
Data collection top
Nonius KappaCCD
diffractometer with APEXII CCD
7100 independent reflections
Absorption correction: multi-scan
(SORTAV; Blessing, 1997)
5845 reflections with I > 2σ(I)
Tmin = 0.928, Tmax = 0.948Rint = 0.037
13391 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0570 restraints
wR(F2) = 0.160H-atom parameters constrained
S = 1.08Δρmax = 0.42 e Å3
7100 reflectionsΔρmin = 0.39 e Å3
496 parameters
Special details top

Experimental. IR Spectra IR spectra were recorded using FTIR Spectra Bruker Tensor 27 spectrometer (KBr pellets, 4000–400 cm-1). TGA-DTA measurements were performed at heating rate of 10 K min-1 in the temperature range of 298–1273 K, under nitrogen flow of 20 ml min-1 on instrument Perkin Elmer Pyris Diamond Thermogravimetric/Differential Thermal Analyzer. Elemental analyses were performed using a Costech ECS 4010 CHNS analyzer.

The FTIR spectrum of the crystals shows broad strong bands at the region 3000–3500 cm-1. In the spectra of the phenanthroline complexes strong bands are observed in three frequency regions, between 700 - 900 cm-1, 1125 - 1250 cm-1, and 1400 - 1650 cm-1 (Schilt & Taylor 1959). In the title complex, these bonds were observed in the regions 721–869 cm -1, 1138- 1225 cm -1 and 1429–1573 in the IR spectra.

Thermal Analyses The thermogravimetric analysis curve for compound shows that the weight loss from at 635 K corresponds to the loss of H2O (experimental value 18.76% and calculated value 18.29%). The further decomposition began at 801 K and finished at 803 K indicating the complete removal of organic part of the compound (experimental value 93.34% and calculated value 91.5%).

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Ni10.63475 (4)0.15916 (3)0.69156 (3)0.02848 (15)
N10.4993 (3)0.2563 (2)0.8096 (2)0.0325 (6)
N20.5688 (2)0.0406 (2)0.77467 (19)0.0290 (6)
N30.7612 (2)0.1153 (2)0.77055 (19)0.0311 (6)
N40.7707 (2)0.0408 (2)0.5899 (2)0.0324 (6)
N50.6785 (2)0.2890 (2)0.6102 (2)0.0301 (6)
N60.5324 (2)0.2015 (2)0.5887 (2)0.0312 (6)
C10.4656 (4)0.3632 (3)0.8248 (3)0.0434 (9)
H10.51120.40220.78160.052*
C20.3655 (4)0.4211 (3)0.9020 (3)0.0510 (10)
H20.34320.49800.90930.061*
C30.3003 (4)0.3658 (3)0.9667 (3)0.0458 (9)
H30.23270.40391.01980.055*
C40.3341 (3)0.2526 (3)0.9540 (2)0.0356 (8)
C50.2720 (3)0.1873 (3)1.0187 (3)0.0408 (9)
H50.20430.22091.07360.049*
C60.3093 (3)0.0789 (3)1.0020 (3)0.0408 (8)
H60.26700.03741.04610.049*
C70.4095 (3)0.0241 (3)0.9210 (2)0.0338 (7)
C80.4522 (3)0.0897 (3)0.8999 (3)0.0380 (8)
H80.41340.13510.94170.046*
C90.5486 (3)0.1334 (3)0.8200 (3)0.0385 (8)
H90.57780.20970.80610.046*
C100.6051 (3)0.0662 (3)0.7581 (3)0.0349 (8)
H100.67200.09830.70190.042*
C110.4337 (3)0.2018 (3)0.8734 (2)0.0305 (7)
C120.4717 (3)0.0857 (3)0.8554 (2)0.0298 (7)
C130.7583 (3)0.1566 (3)0.8574 (2)0.0359 (8)
H130.69270.21870.88810.043*
C140.8470 (4)0.1129 (3)0.9051 (3)0.0439 (9)
H140.84240.14590.96610.053*
C150.9405 (4)0.0228 (3)0.8640 (3)0.0449 (9)
H151.00040.00890.89740.054*
C160.9484 (3)0.0236 (3)0.7721 (3)0.0376 (8)
C171.0444 (4)0.1179 (3)0.7218 (3)0.0504 (10)
H171.10660.15320.75210.060*
C181.0475 (3)0.1572 (3)0.6320 (3)0.0475 (9)
H181.11130.22030.60080.057*
C190.9565 (3)0.1053 (3)0.5835 (3)0.0393 (8)
C200.9564 (3)0.1402 (3)0.4882 (3)0.0440 (9)
H201.01870.20220.45320.053*
C210.8667 (3)0.0848 (3)0.4469 (3)0.0423 (9)
H210.86630.10750.38260.051*
C220.7751 (3)0.0058 (3)0.4994 (2)0.0368 (8)
H220.71340.04410.46910.044*
C230.8561 (3)0.0273 (3)0.7274 (2)0.0322 (7)
C240.8607 (3)0.0132 (3)0.6311 (2)0.0326 (7)
C250.7471 (3)0.3352 (3)0.6247 (3)0.0359 (8)
H250.77800.31170.68290.043*
C260.7760 (3)0.4173 (3)0.5578 (3)0.0399 (8)
H260.82390.44960.57170.048*
C270.7346 (3)0.4498 (3)0.4731 (3)0.0396 (8)
H270.75580.50300.42570.047*
C280.6603 (3)0.4045 (3)0.4557 (2)0.0335 (8)
C290.6100 (3)0.4353 (3)0.3700 (3)0.0407 (9)
H290.62970.48700.31940.049*
C300.5352 (3)0.3921 (3)0.3601 (3)0.0412 (9)
H300.50290.41420.30260.049*
C310.5035 (3)0.3138 (3)0.4343 (2)0.0340 (7)
C320.4228 (3)0.2689 (3)0.4297 (3)0.0422 (9)
H320.38500.29130.37600.051*
C330.3996 (3)0.1932 (3)0.5033 (3)0.0431 (9)
H330.34500.16280.50150.052*
C340.4568 (3)0.1606 (3)0.5812 (3)0.0376 (8)
H340.44080.10670.63100.045*
C350.6342 (3)0.3242 (3)0.5274 (2)0.0278 (7)
C360.5545 (3)0.2786 (2)0.5166 (2)0.0286 (7)
N70.7221 (3)0.0523 (3)0.2402 (3)0.0523 (9)
O10.6907 (3)0.0150 (3)0.2998 (2)0.0791 (11)
O20.7909 (2)0.0240 (2)0.1500 (2)0.0519 (7)
O30.6849 (3)0.1498 (3)0.2673 (3)0.0939 (13)
N80.1200 (4)0.3433 (4)0.3285 (4)0.0794 (12)
O40.1898 (4)0.3125 (5)0.3753 (4)0.1248 (19)
O50.1483 (6)0.3317 (8)0.2355 (4)0.198 (4)
O60.0122 (4)0.3875 (4)0.3707 (5)0.133 (2)
O70.0438 (3)0.7131 (3)0.2656 (2)0.0672 (9)
H710.09630.66730.22330.081*
H720.00040.68140.29980.081*
O80.1078 (3)0.2081 (3)0.8549 (3)0.0772 (10)
H810.05960.22800.82250.093*
H820.12710.14190.86500.093*
O90.0897 (3)0.3860 (3)0.5860 (3)0.0781 (10)
H910.09990.37940.52300.094*
H920.05590.45190.59870.094*
O100.2177 (3)0.3503 (3)0.7381 (3)0.0862 (11)
H1010.19430.30280.77090.103*
H1020.17000.38900.70710.103*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Ni10.0334 (3)0.0289 (2)0.0266 (2)0.01518 (19)0.01072 (17)0.00554 (16)
N10.0399 (17)0.0291 (15)0.0298 (14)0.0134 (13)0.0128 (12)0.0056 (11)
N20.0303 (15)0.0294 (14)0.0287 (13)0.0124 (12)0.0104 (11)0.0049 (11)
N30.0377 (16)0.0354 (15)0.0265 (13)0.0198 (13)0.0124 (12)0.0075 (11)
N40.0354 (16)0.0366 (15)0.0306 (14)0.0199 (13)0.0095 (12)0.0034 (11)
N50.0309 (15)0.0307 (14)0.0304 (13)0.0147 (12)0.0079 (11)0.0031 (11)
N60.0328 (16)0.0334 (15)0.0299 (13)0.0153 (13)0.0103 (12)0.0051 (11)
C10.053 (2)0.0336 (19)0.0410 (19)0.0179 (18)0.0103 (17)0.0055 (15)
C20.064 (3)0.036 (2)0.046 (2)0.011 (2)0.015 (2)0.0028 (17)
C30.048 (2)0.043 (2)0.040 (2)0.0115 (19)0.0085 (17)0.0057 (16)
C40.0347 (19)0.041 (2)0.0307 (16)0.0105 (16)0.0139 (14)0.0007 (14)
C50.032 (2)0.055 (2)0.0324 (17)0.0166 (18)0.0060 (15)0.0022 (16)
C60.039 (2)0.051 (2)0.0377 (18)0.0256 (18)0.0092 (16)0.0062 (16)
C70.0348 (19)0.0380 (19)0.0340 (17)0.0180 (16)0.0153 (15)0.0094 (14)
C80.045 (2)0.043 (2)0.0382 (18)0.0282 (18)0.0181 (16)0.0126 (15)
C90.051 (2)0.0301 (18)0.0426 (19)0.0200 (17)0.0195 (17)0.0057 (15)
C100.038 (2)0.0327 (18)0.0378 (18)0.0156 (16)0.0137 (15)0.0039 (14)
C110.0327 (18)0.0319 (17)0.0289 (16)0.0118 (15)0.0144 (14)0.0070 (13)
C120.0307 (18)0.0363 (18)0.0284 (15)0.0167 (15)0.0136 (13)0.0069 (13)
C130.046 (2)0.044 (2)0.0267 (16)0.0265 (17)0.0114 (15)0.0066 (14)
C140.053 (2)0.062 (3)0.0330 (18)0.035 (2)0.0191 (17)0.0083 (17)
C150.045 (2)0.065 (3)0.041 (2)0.034 (2)0.0245 (17)0.0165 (18)
C160.036 (2)0.042 (2)0.0420 (19)0.0214 (17)0.0164 (15)0.0137 (15)
C170.038 (2)0.056 (2)0.062 (3)0.020 (2)0.0227 (19)0.015 (2)
C180.033 (2)0.040 (2)0.065 (3)0.0083 (17)0.0145 (18)0.0019 (18)
C190.0330 (19)0.0363 (19)0.048 (2)0.0170 (16)0.0064 (16)0.0028 (15)
C200.038 (2)0.035 (2)0.055 (2)0.0116 (17)0.0053 (17)0.0088 (17)
C210.049 (2)0.043 (2)0.0358 (18)0.0214 (19)0.0062 (17)0.0043 (16)
C220.044 (2)0.042 (2)0.0277 (16)0.0199 (17)0.0104 (15)0.0029 (14)
C230.0328 (18)0.0389 (19)0.0326 (16)0.0232 (16)0.0106 (14)0.0092 (14)
C240.0357 (19)0.0366 (18)0.0307 (16)0.0211 (16)0.0097 (14)0.0079 (14)
C250.0359 (19)0.0400 (19)0.0383 (18)0.0209 (16)0.0126 (15)0.0055 (15)
C260.039 (2)0.038 (2)0.045 (2)0.0216 (17)0.0085 (16)0.0032 (16)
C270.040 (2)0.0344 (19)0.0402 (19)0.0176 (17)0.0038 (16)0.0064 (15)
C280.0317 (18)0.0293 (17)0.0284 (16)0.0070 (14)0.0010 (13)0.0008 (13)
C290.049 (2)0.0376 (19)0.0295 (17)0.0140 (17)0.0084 (15)0.0091 (14)
C300.049 (2)0.038 (2)0.0274 (17)0.0034 (17)0.0139 (15)0.0023 (14)
C310.0328 (19)0.0327 (18)0.0306 (16)0.0026 (15)0.0116 (14)0.0027 (13)
C320.041 (2)0.044 (2)0.0418 (19)0.0068 (17)0.0212 (17)0.0035 (16)
C330.041 (2)0.046 (2)0.053 (2)0.0189 (18)0.0206 (17)0.0048 (17)
C340.036 (2)0.040 (2)0.0420 (19)0.0177 (16)0.0136 (15)0.0016 (15)
C350.0294 (17)0.0278 (16)0.0227 (14)0.0092 (14)0.0058 (13)0.0042 (12)
C360.0323 (18)0.0266 (16)0.0239 (15)0.0087 (14)0.0061 (13)0.0012 (12)
N70.043 (2)0.075 (3)0.051 (2)0.0298 (19)0.0183 (16)0.0039 (18)
O10.083 (3)0.123 (3)0.0530 (18)0.064 (2)0.0270 (17)0.0274 (19)
O20.0473 (17)0.0572 (17)0.0486 (16)0.0220 (14)0.0046 (13)0.0042 (13)
O30.069 (2)0.088 (3)0.121 (3)0.028 (2)0.000 (2)0.057 (2)
N80.066 (3)0.092 (3)0.078 (3)0.029 (3)0.013 (3)0.013 (3)
O40.056 (3)0.201 (6)0.117 (4)0.030 (3)0.038 (3)0.021 (3)
O50.134 (5)0.359 (11)0.085 (4)0.056 (6)0.018 (3)0.084 (5)
O60.067 (3)0.093 (3)0.182 (5)0.010 (2)0.017 (3)0.001 (3)
O70.0550 (19)0.098 (3)0.0602 (18)0.0392 (19)0.0137 (15)0.0114 (17)
O80.095 (3)0.058 (2)0.091 (2)0.0182 (19)0.057 (2)0.0015 (17)
O90.089 (3)0.063 (2)0.079 (2)0.032 (2)0.0155 (19)0.0027 (17)
O100.078 (3)0.093 (3)0.095 (3)0.039 (2)0.022 (2)0.006 (2)
Geometric parameters (Å, º) top
Ni1—N12.080 (3)C17—C181.353 (6)
Ni1—N52.083 (3)C17—H170.9500
Ni1—N62.087 (3)C18—C191.428 (5)
Ni1—N32.088 (3)C18—H180.9500
Ni1—N42.090 (3)C19—C241.408 (5)
Ni1—N22.103 (2)C19—C201.412 (5)
N1—C11.328 (4)C20—C211.360 (6)
N1—C111.358 (4)C20—H200.9500
N2—C101.326 (4)C21—C221.396 (5)
N2—C121.369 (4)C21—H210.9500
N3—C131.332 (4)C22—H220.9500
N3—C231.356 (4)C23—C241.435 (5)
N4—C221.330 (4)C25—C261.407 (5)
N4—C241.359 (4)C25—H250.9500
N5—C251.329 (4)C26—C271.356 (5)
N5—C351.356 (4)C26—H260.9500
N6—C341.325 (4)C27—C281.402 (5)
N6—C361.361 (4)C27—H270.9500
C1—C21.402 (6)C28—C351.407 (4)
C1—H10.9500C28—C291.434 (5)
C2—C31.367 (6)C29—C301.350 (5)
C2—H20.9500C29—H290.9500
C3—C41.402 (5)C30—C311.429 (5)
C3—H30.9500C30—H300.9500
C4—C111.400 (5)C31—C361.399 (4)
C4—C51.436 (5)C31—C321.410 (5)
C5—C61.346 (5)C32—C331.363 (5)
C5—H50.9500C32—H320.9500
C6—C71.420 (5)C33—C341.397 (5)
C6—H60.9500C33—H330.9500
C7—C121.407 (4)C34—H340.9500
C7—C81.417 (5)C35—C361.434 (5)
C8—C91.354 (5)N7—O11.221 (5)
C8—H80.9500N7—O31.245 (5)
C9—C101.399 (5)N7—O21.265 (4)
C9—H90.9500N8—O41.179 (6)
C10—H100.9500N8—O51.199 (6)
C11—C121.443 (5)N8—O61.266 (6)
C13—C141.388 (5)O7—H710.8200
C13—H130.9500O7—H720.8200
C14—C151.358 (6)O8—H810.8200
C14—H140.9500O8—H820.8200
C15—C161.403 (5)O9—H910.8248
C15—H150.9500O9—H920.8200
C16—C231.407 (5)O10—H1010.8200
C16—C171.437 (6)O10—H1020.8200
N1—Ni1—N595.20 (10)C14—C15—H15120.1
N1—Ni1—N692.06 (11)C16—C15—H15120.1
N5—Ni1—N679.80 (10)C15—C16—C23116.8 (4)
N1—Ni1—N396.51 (11)C15—C16—C17124.0 (3)
N5—Ni1—N393.96 (10)C23—C16—C17119.2 (3)
N6—Ni1—N3169.85 (10)C18—C17—C16121.0 (4)
N1—Ni1—N4170.85 (10)C18—C17—H17119.5
N5—Ni1—N493.40 (10)C16—C17—H17119.5
N6—Ni1—N492.55 (11)C17—C18—C19121.0 (4)
N3—Ni1—N479.75 (11)C17—C18—H18119.5
N1—Ni1—N279.88 (10)C19—C18—H18119.5
N5—Ni1—N2172.77 (11)C24—C19—C20116.8 (3)
N6—Ni1—N295.00 (10)C24—C19—C18119.5 (3)
N3—Ni1—N291.88 (10)C20—C19—C18123.7 (4)
N4—Ni1—N291.84 (10)C21—C20—C19119.7 (3)
C1—N1—C11117.6 (3)C21—C20—H20120.1
C1—N1—Ni1128.6 (2)C19—C20—H20120.1
C11—N1—Ni1113.6 (2)C20—C21—C22119.7 (3)
C10—N2—C12117.9 (3)C20—C21—H21120.2
C10—N2—Ni1129.9 (2)C22—C21—H21120.2
C12—N2—Ni1112.1 (2)N4—C22—C21122.7 (3)
C13—N3—C23117.7 (3)N4—C22—H22118.6
C13—N3—Ni1129.7 (3)C21—C22—H22118.6
C23—N3—Ni1112.5 (2)N3—C23—C16123.1 (3)
C22—N4—C24118.0 (3)N3—C23—C24117.2 (3)
C22—N4—Ni1129.4 (3)C16—C23—C24119.7 (3)
C24—N4—Ni1112.2 (2)N4—C24—C19123.0 (3)
C25—N5—C35117.9 (3)N4—C24—C23117.3 (3)
C25—N5—Ni1129.3 (2)C19—C24—C23119.7 (3)
C35—N5—Ni1112.7 (2)N5—C25—C26122.9 (3)
C34—N6—C36117.8 (3)N5—C25—H25118.6
C34—N6—Ni1129.7 (2)C26—C25—H25118.6
C36—N6—Ni1112.4 (2)C27—C26—C25119.1 (3)
N1—C1—C2122.8 (3)C27—C26—H26120.5
N1—C1—H1118.6C25—C26—H26120.5
C2—C1—H1118.6C26—C27—C28119.9 (3)
C3—C2—C1119.4 (4)C26—C27—H27120.1
C3—C2—H2120.3C28—C27—H27120.1
C1—C2—H2120.3C27—C28—C35117.4 (3)
C2—C3—C4119.4 (4)C27—C28—C29124.0 (3)
C2—C3—H3120.3C35—C28—C29118.6 (3)
C4—C3—H3120.3C30—C29—C28121.2 (3)
C11—C4—C3117.4 (3)C30—C29—H29119.4
C11—C4—C5119.1 (3)C28—C29—H29119.4
C3—C4—C5123.5 (3)C29—C30—C31121.2 (3)
C6—C5—C4120.4 (3)C29—C30—H30119.4
C6—C5—H5119.8C31—C30—H30119.4
C4—C5—H5119.8C36—C31—C32117.3 (3)
C5—C6—C7122.4 (3)C36—C31—C30119.1 (3)
C5—C6—H6118.8C32—C31—C30123.6 (3)
C7—C6—H6118.8C33—C32—C31119.3 (3)
C12—C7—C8116.6 (3)C33—C32—H32120.3
C12—C7—C6118.7 (3)C31—C32—H32120.3
C8—C7—C6124.7 (3)C32—C33—C34119.6 (3)
C9—C8—C7119.8 (3)C32—C33—H33120.2
C9—C8—H8120.1C34—C33—H33120.2
C7—C8—H8120.1N6—C34—C33122.9 (3)
C8—C9—C10120.0 (3)N6—C34—H34118.5
C8—C9—H9120.0C33—C34—H34118.5
C10—C9—H9120.0N5—C35—C28122.8 (3)
N2—C10—C9122.5 (3)N5—C35—C36117.2 (3)
N2—C10—H10118.7C28—C35—C36120.0 (3)
C9—C10—H10118.7N6—C36—C31123.0 (3)
N1—C11—C4123.3 (3)N6—C36—C35117.2 (3)
N1—C11—C12116.8 (3)C31—C36—C35119.8 (3)
C4—C11—C12119.9 (3)O1—N7—O3120.1 (4)
N2—C12—C7123.1 (3)O1—N7—O2120.3 (4)
N2—C12—C11117.4 (3)O3—N7—O2119.6 (4)
C7—C12—C11119.5 (3)O4—N8—O5120.6 (6)
N3—C13—C14122.8 (4)O4—N8—O6124.0 (6)
N3—C13—H13118.6O5—N8—O6115.3 (6)
C14—C13—H13118.6H71—O7—H72105.6
C15—C14—C13119.7 (3)H81—O8—H82109.1
C15—C14—H14120.2H91—O9—H92106.6
C13—C14—H14120.2H101—O10—H102107.6
C14—C15—C16119.9 (3)
N5—Ni1—N1—C14.6 (3)C6—C7—C12—N2179.5 (3)
N6—Ni1—N1—C184.5 (3)C8—C7—C12—C11179.2 (3)
N3—Ni1—N1—C190.0 (3)C6—C7—C12—C111.3 (5)
N2—Ni1—N1—C1179.2 (3)N1—C11—C12—N21.3 (4)
N5—Ni1—N1—C11170.3 (2)C4—C11—C12—N2179.2 (3)
N6—Ni1—N1—C1190.3 (2)N1—C11—C12—C7178.0 (3)
N3—Ni1—N1—C1195.2 (2)C4—C11—C12—C71.5 (5)
N2—Ni1—N1—C114.4 (2)C23—N3—C13—C140.6 (5)
N1—Ni1—N2—C10178.5 (3)Ni1—N3—C13—C14175.1 (2)
N6—Ni1—N2—C1090.3 (3)N3—C13—C14—C151.5 (5)
N3—Ni1—N2—C1082.2 (3)C13—C14—C15—C161.9 (5)
N4—Ni1—N2—C102.4 (3)C14—C15—C16—C230.3 (5)
N1—Ni1—N2—C123.7 (2)C14—C15—C16—C17179.1 (3)
N6—Ni1—N2—C1287.5 (2)C15—C16—C17—C18178.7 (4)
N3—Ni1—N2—C1299.9 (2)C23—C16—C17—C180.7 (5)
N4—Ni1—N2—C12179.7 (2)C16—C17—C18—C191.0 (6)
N1—Ni1—N3—C1312.4 (3)C17—C18—C19—C241.5 (5)
N5—Ni1—N3—C1383.3 (3)C17—C18—C19—C20178.0 (4)
N6—Ni1—N3—C13134.9 (5)C24—C19—C20—C210.4 (5)
N4—Ni1—N3—C13176.0 (3)C18—C19—C20—C21179.0 (3)
N2—Ni1—N3—C1392.5 (3)C19—C20—C21—C220.4 (5)
N1—Ni1—N3—C23163.4 (2)C24—N4—C22—C211.4 (5)
N5—Ni1—N3—C23100.9 (2)Ni1—N4—C22—C21171.0 (2)
N6—Ni1—N3—C2349.3 (7)C20—C21—C22—N40.6 (5)
N4—Ni1—N3—C238.1 (2)C13—N3—C23—C162.2 (4)
N2—Ni1—N3—C2383.4 (2)Ni1—N3—C23—C16174.2 (2)
N5—Ni1—N4—C2285.2 (3)C13—N3—C23—C24177.1 (3)
N6—Ni1—N4—C225.2 (3)Ni1—N3—C23—C246.5 (3)
N3—Ni1—N4—C22178.6 (3)C15—C16—C23—N31.8 (5)
N2—Ni1—N4—C2289.8 (3)C17—C16—C23—N3178.8 (3)
N5—Ni1—N4—C24102.1 (2)C15—C16—C23—C24177.6 (3)
N6—Ni1—N4—C24178.0 (2)C17—C16—C23—C241.9 (5)
N3—Ni1—N4—C248.7 (2)C22—N4—C24—C191.4 (4)
N2—Ni1—N4—C2482.9 (2)Ni1—N4—C24—C19172.3 (2)
N1—Ni1—N5—C2585.3 (3)C22—N4—C24—C23178.3 (3)
N6—Ni1—N5—C25176.5 (3)Ni1—N4—C24—C238.0 (3)
N3—Ni1—N5—C2511.6 (3)C20—C19—C24—N40.5 (5)
N4—Ni1—N5—C2591.6 (3)C18—C19—C24—N4180.0 (3)
N1—Ni1—N5—C3599.1 (2)C20—C19—C24—C23179.2 (3)
N6—Ni1—N5—C357.9 (2)C18—C19—C24—C230.3 (5)
N3—Ni1—N5—C35164.0 (2)N3—C23—C24—N41.1 (4)
N4—Ni1—N5—C3584.1 (2)C16—C23—C24—N4178.3 (3)
N1—Ni1—N6—C3482.2 (3)N3—C23—C24—C19179.2 (3)
N5—Ni1—N6—C34177.1 (3)C16—C23—C24—C191.4 (4)
N3—Ni1—N6—C34130.3 (6)C35—N5—C25—C260.7 (5)
N4—Ni1—N6—C3489.9 (3)Ni1—N5—C25—C26174.8 (3)
N2—Ni1—N6—C342.2 (3)N5—C25—C26—C271.5 (6)
N1—Ni1—N6—C36101.9 (2)C25—C26—C27—C282.5 (5)
N5—Ni1—N6—C367.0 (2)C26—C27—C28—C351.4 (5)
N3—Ni1—N6—C3645.6 (7)C26—C27—C28—C29178.5 (3)
N4—Ni1—N6—C3686.0 (2)C27—C28—C29—C30177.1 (3)
N2—Ni1—N6—C36178.1 (2)C35—C28—C29—C302.8 (5)
C11—N1—C1—C21.0 (5)C28—C29—C30—C310.2 (6)
Ni1—N1—C1—C2173.7 (3)C29—C30—C31—C362.3 (5)
N1—C1—C2—C31.6 (6)C29—C30—C31—C32177.7 (3)
C1—C2—C3—C40.6 (6)C36—C31—C32—C331.0 (5)
C2—C3—C4—C110.9 (5)C30—C31—C32—C33178.9 (3)
C2—C3—C4—C5179.4 (4)C31—C32—C33—C340.6 (6)
C11—C4—C5—C60.1 (5)C36—N6—C34—C330.1 (5)
C3—C4—C5—C6179.9 (4)Ni1—N6—C34—C33175.8 (3)
C4—C5—C6—C70.3 (6)C32—C33—C34—N61.2 (6)
C5—C6—C7—C120.3 (5)C25—N5—C35—C281.8 (5)
C5—C6—C7—C8179.9 (3)Ni1—N5—C35—C28174.4 (2)
C12—C7—C8—C90.2 (5)C25—N5—C35—C36176.1 (3)
C6—C7—C8—C9179.7 (3)Ni1—N5—C35—C367.7 (4)
C7—C8—C9—C100.5 (5)C27—C28—C35—N50.8 (5)
C12—N2—C10—C90.5 (5)C29—C28—C35—N5179.3 (3)
Ni1—N2—C10—C9178.2 (2)C27—C28—C35—C36177.1 (3)
C8—C9—C10—N20.7 (5)C29—C28—C35—C362.8 (5)
C1—N1—C11—C40.6 (5)C34—N6—C36—C311.6 (5)
Ni1—N1—C11—C4176.1 (2)Ni1—N6—C36—C31174.8 (2)
C1—N1—C11—C12179.9 (3)C34—N6—C36—C35178.4 (3)
Ni1—N1—C11—C124.4 (4)Ni1—N6—C36—C355.2 (4)
C3—C4—C11—N11.6 (5)C32—C31—C36—N62.2 (5)
C5—C4—C11—N1178.7 (3)C30—C31—C36—N6177.7 (3)
C3—C4—C11—C12179.0 (3)C32—C31—C36—C35177.8 (3)
C5—C4—C11—C120.8 (5)C30—C31—C36—C352.2 (5)
C10—N2—C12—C70.1 (5)N5—C35—C36—N61.7 (4)
Ni1—N2—C12—C7178.2 (2)C28—C35—C36—N6179.7 (3)
C10—N2—C12—C11179.4 (3)N5—C35—C36—C31178.3 (3)
Ni1—N2—C12—C112.5 (3)C28—C35—C36—C310.4 (5)
C8—C7—C12—N20.0 (5)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O7—H72···O9i0.821.972.768 (5)164
O8—H81···O7i0.821.942.749 (5)172
O8—H82···O2ii0.822.042.827 (4)164
O9—H91···O40.822.072.845 (6)155
O9—H92···O6i0.822.002.817 (6)175
O10—H101···O80.822.012.822 (5)169
O10—H102···O90.822.202.900 (6)143
C5—H5···O5iii0.952.533.293 (7)138
C15—H15···O2iv0.952.533.265 (5)134
C25—H25···O7v0.952.523.300 (5)140
C32—H32···O40.952.463.165 (6)131
C34—H34···O1ii0.952.373.180 (5)143
Symmetry codes: (i) x, y+1, z+1; (ii) x+1, y, z+1; (iii) x, y, z+1; (iv) x+2, y, z+1; (v) x+1, y+1, z+1.

Experimental details

Crystal data
Chemical formula[Ni(C12H8N2)3](NO3)2·4H2O
Mr795.41
Crystal system, space groupTriclinic, P1
Temperature (K)173
a, b, c (Å)13.0463 (6), 13.1785 (5), 13.4093 (4)
α, β, γ (°)82.688 (2), 72.147 (2), 67.402 (2)
V3)2025.85 (14)
Z2
Radiation typeMo Kα
µ (mm1)0.54
Crystal size (mm)0.14 × 0.12 × 0.10
Data collection
DiffractometerNonius KappaCCD
diffractometer with APEXII CCD
Absorption correctionMulti-scan
(SORTAV; Blessing, 1997)
Tmin, Tmax0.928, 0.948
No. of measured, independent and
observed [I > 2σ(I)] reflections
13391, 7100, 5845
Rint0.037
(sin θ/λ)max1)0.595
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.057, 0.160, 1.08
No. of reflections7100
No. of parameters496
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.42, 0.39

Computer programs: COLLECT (Hooft, 1998), DENZO (Otwinowski & Minor, 1997), SCALEPACK (Otwinowski & Minor, 1997), SIR92 (Altomare et al., 1994), ORTEP-3 (Farrugia, 1997), SHELXL97 (Sheldrick, 2008) and PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O7—H72···O9i0.821.972.768 (5)164
O8—H81···O7i0.821.942.749 (5)172
O8—H82···O2ii0.822.042.827 (4)164
O9—H91···O40.822.072.845 (6)155
O9—H92···O6i0.822.002.817 (6)175
O10—H101···O80.822.012.822 (5)169
O10—H102···O90.822.202.900 (6)143
C5—H5···O5iii0.952.533.293 (7)138
C15—H15···O2iv0.952.533.265 (5)134
C25—H25···O7v0.952.523.300 (5)140
C32—H32···O40.952.463.165 (6)131
C34—H34···O1ii0.952.373.180 (5)143
Symmetry codes: (i) x, y+1, z+1; (ii) x+1, y, z+1; (iii) x, y, z+1; (iv) x+2, y, z+1; (v) x+1, y+1, z+1.
 

Acknowledgements

This research was supported by the Islamic Azad University, Yazd Branch, Iran.

References

First citationAltomare, A., Cascarano, G., Giacovazzo, C., Guagliardi, A., Burla, M. C., Polidori, G. & Camalli, M. (1994). J. Appl. Cryst. 27, 435.  CrossRef Web of Science IUCr Journals Google Scholar
First citationBeyer, H. & Kröger, C.-F. (1960). Chem. Ber. 637, 135–135.  CAS Google Scholar
First citationBlessing, R. H. (1997). J. Appl. Cryst. 30, 421–426.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationHooft, R. W. W. (1998). COLLECT. Nonius BV, Delft, The Netherlands.  Google Scholar
First citationOtwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307–326. New York: Academic Press.  Google Scholar
First citationQiua, B., Guoa, L., Guoa, C., Guob, Z., Lina, Z. & Chen, G. (2011). Biosens. Bioelectron. 26, 2270–2274.  Web of Science PubMed Google Scholar
First citationRodríguez-Cuamatzi, P., Vargas-Díaz, G. & Höpfl, H. (2004). Angew. Chem. Int. Ed. 43, 3041–3044.  Web of Science CSD CrossRef Google Scholar
First citationSchilt, A. A. & Taylor, R. C. (1959). J. Inorg. Nucl. Chem. 9, 211–221.  CrossRef CAS Web of Science Google Scholar
First citationSharif, M. A., Tabatabaee, M., Adinehloo, M. & Aghabozorg, H. (2010). Acta Cryst. E66, o3232.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds