metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Tetra­aqua­bis­­[N,N′-bis­­(pyridin-3-yl­methyl­­idene)benzene-1,4-di­amine]­zinc dinitrate 1.49-hydrate

aJilin Institute of Chemical Technology, Jilin 132012, People's Republic of China, and bCollege of Chemical Engineering, Northeast Dianli University, Jilin 132012, People's Republic of China
*Correspondence e-mail: haihuiyu@ciac.jl.cn

(Received 25 October 2011; accepted 7 November 2011; online 12 November 2011)

In the title compound, [Zn(C18H14N4)2(H2O)4](NO3)2·1.49H2O, the ZnII atom, lying on an inversion center, is coordinated by two N atoms from two N,N′-bis­(pyridin-3-yl­methyl­idene)benzene-1,4-diamine ligands and four water mol­ecules in a distorted octa­hedral geometry. The nitrate anion is disordered over two sets of sites, with an occupancy ratio of 0.744 (4):0.256 (4). The uncoordinated water mol­ecule is also disordered with an occupancy factor of 0.744 (4). O—H⋯O and O—H⋯N hydrogen bonds link the complex cations, nitrate anions and uncoordinated water mol­ecules into a supra­molecular layer parallel to (102).

Related literature

For background to the design and synthesis of zinc complexes with Schiff-base ligands and their potential applications as fluorescent probes, see: Su et al. (1999[Su, C.-Y., Yang, X.-P., Liao, S., Mak, T. C. W. & Kang, B.-S. (1999). Inorg. Chem. Commun. 2, 383-385.]); Ye et al. (2005[Ye, K.-Q., Wu, Y., Guo, J.-H., Sun, Y.-H. & Wang, Y. (2005). Chem. J. Chin. Univ. 26, 93-96.]). For the synthesis of the ligand, see: Ye et al. (2004[Ye, K.-Q., Kong, J.-F., Jiang, S.-M., Ye, L. & Wang, Y. (2004). J. Mol. Sci. (Chin.), 20, 1-4.]).

[Scheme 1]

Experimental

Crystal data
  • [Zn(C18H14N4)2(H2O)4](NO3)2·1.49H2O

  • Mr = 860.95

  • Triclinic, [P \overline 1]

  • a = 8.5664 (17) Å

  • b = 9.928 (2) Å

  • c = 12.496 (3) Å

  • α = 81.47 (3)°

  • β = 71.55 (3)°

  • γ = 78.78 (3)°

  • V = 984.6 (4) Å3

  • Z = 1

  • Mo Kα radiation

  • μ = 0.70 mm−1

  • T = 295 K

  • 0.48 × 0.28 × 0.18 mm

Data collection
  • Rigaku R-AXIS RAPID diffractometer

  • Absorption correction: multi-scan (ABSCOR; Higashi, 1995[Higashi, T. (1995). ABSCOR. Rigaku Corporation, Tokyo, Japan.]) Tmin = 0.731, Tmax = 0.885

  • 9721 measured reflections

  • 4462 independent reflections

  • 3908 reflections with I > 2σ(I)

  • Rint = 0.019

Refinement
  • R[F2 > 2σ(F2)] = 0.046

  • wR(F2) = 0.141

  • S = 1.14

  • 4462 reflections

  • 305 parameters

  • H-atom parameters constrained

  • Δρmax = 0.70 e Å−3

  • Δρmin = −0.45 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O1W—H1A⋯O4i 0.87 1.87 2.725 (4) 170
O1W—H1A⋯O4′i 0.87 2.23 3.035 (13) 154
O1W—H1B⋯O3W 0.86 2.03 2.859 (13) 161
O1W—H1B⋯O3′ 0.86 1.82 2.65 (3) 161
O2W—H2A⋯N4ii 0.85 1.92 2.706 (3) 152
O2W—H2B⋯O3iii 0.86 1.96 2.761 (3) 155
O3W—H3A⋯O3iv 0.88 2.36 3.073 (12) 139
O3W—H3A⋯O5iv 0.88 2.38 3.112 (13) 142
O3W—H3B⋯O4 0.88 1.95 2.824 (13) 169
Symmetry codes: (i) -x+1, -y-1, -z+1; (ii) -x-1, -y+1, -z+2; (iii) x, y+1, z; (iv) -x, -y-1, -z+1.

Data collection: RAPID-AUTO (Rigaku, 1998[Rigaku (1998). RAPID-AUTO. Rigaku Corporation, Tokyo, Japan.]); cell refinement: RAPID-AUTO; data reduction: CrystalStructure (Rigaku/MSC, 2002[Rigaku/MSC (2002). CrystalStructure. Rigaku/MSC Inc., The Woodlands, Texas, USA.]); program(s) used to solve structure: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXTL; molecular graphics: XP in SHELXTL and Mercury (Macrae et al., 2006[Macrae, C. F., Edgington, P. R., McCabe, P., Pidcock, E., Shields, G. P., Taylor, R., Towler, M. & van de Streek, J. (2006). J. Appl. Cryst. 39, 453-457.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

Bipyridine-type ligands have been extensively investigated in recent years, owing to their simple structures, readily availabilities and predictable formation of network structures. Moreover, when introduced in double Schiff-base, a great deal of metal–organic frameworks with unusual network patterns and novel properties can be achieved due to the specific geometry including the different relative orientation of N-donors and the zigzag conformation of the space moiety between the two terminal coordination groups. For background to the design and syntheses of zinc complexes with Schiff-base and their potential applications as fluorescent probes, see: Su et al. (1999); Ye et al. (2005).

In the title compound (Fig. 1), the ZnII ion lies on an inversion center and is coordinated in a distorted octahedral geometry by two N atoms from two N,N'-bis(3-pyridylmethylene)-p-phenylenediamine (L) ligands in the axial positions and four O atoms of four coordinated water molecules in the equatorial positions. The Zn—O distances are 2.0705 (17) and 2.1691 (19) Å and the Zn—N distance is 2.1462 (19) Å. As shown in Fig. 2, the complex cations, nitrate anions and uncoordinated water molecules are connected by O—H···O hydrogen bonds (Table 1), forming a layer structure.

Related literature top

For background to the design and synthesis of zinc complexes with Schiff-base ligands and their potential applications as fluorescent probes, see: Su et al. (1999); Ye et al. (2005). For the synthesis of the ligand, see: Ye et al. (2004).

Experimental top

The ligand L was prepared according to the previous method (Ye et al., 2004). 1,4-Diaminobenzene (2.14 mg, 10 mmol) was dissolved in methanol (20 ml), followed by addition of 3-pyridinecarboxaldehyde (4.24 mg, 40 mmol). The mixture was stirred at room temperature for 2 h and then filtered. The resulting yellow crystalline solid was washed with methanol several times and dried in air. A solution of Zn(NO3)2 (35.9 mg, 0.2 mmol) in acetonitrile (10 ml) was slowly layered onto a solution of L (117 mg, 0.625 mmol) in methylene chloride (12 ml). Diffusion between the two phases over two weeks produced colorless crystals of the title compound.

Refinement top

H atoms bound to C atoms were positioned geometrically and refined as riding atoms, with C—H = 0.93 Å and with Uiso(H) = 1.2Ueq(C). The water H atoms were located from difference Fourier maps and refined as riding atoms, with Uiso(H) = 1.5Ueq(O). The nitrate anion is disordered over two sets of sites. The occupancy factors were refined to a ratio of 0.744 (4):0.256 (4). The uncoordinated water molecule is also disordered with an occupancy factor of 0.744 (4).

Structure description top

Bipyridine-type ligands have been extensively investigated in recent years, owing to their simple structures, readily availabilities and predictable formation of network structures. Moreover, when introduced in double Schiff-base, a great deal of metal–organic frameworks with unusual network patterns and novel properties can be achieved due to the specific geometry including the different relative orientation of N-donors and the zigzag conformation of the space moiety between the two terminal coordination groups. For background to the design and syntheses of zinc complexes with Schiff-base and their potential applications as fluorescent probes, see: Su et al. (1999); Ye et al. (2005).

In the title compound (Fig. 1), the ZnII ion lies on an inversion center and is coordinated in a distorted octahedral geometry by two N atoms from two N,N'-bis(3-pyridylmethylene)-p-phenylenediamine (L) ligands in the axial positions and four O atoms of four coordinated water molecules in the equatorial positions. The Zn—O distances are 2.0705 (17) and 2.1691 (19) Å and the Zn—N distance is 2.1462 (19) Å. As shown in Fig. 2, the complex cations, nitrate anions and uncoordinated water molecules are connected by O—H···O hydrogen bonds (Table 1), forming a layer structure.

For background to the design and synthesis of zinc complexes with Schiff-base ligands and their potential applications as fluorescent probes, see: Su et al. (1999); Ye et al. (2005). For the synthesis of the ligand, see: Ye et al. (2004).

Computing details top

Data collection: RAPID-AUTO (Rigaku, 1998); cell refinement: RAPID-AUTO (Rigaku, 1998); data reduction: CrystalStructure (Rigaku/MSC, 2002); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL (Sheldrick, 2008); molecular graphics: XP in SHELXTL (Sheldrick, 2008) and Mercury (Macrae et al., 2006); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. Molecular structure of the title compound. Displacement ellipsoids are drawn at the 30% probability level. H atoms have been omitted for clarity. [Symmetry code: (i) 1 - x, -y, 1 - z.]
[Figure 2] Fig. 2. A view of the layer structure in the title compound. Dashed lines denote hydrogen bonds. H atoms and minor disordered nitrate are omitted for clarity.
Tetraaquabis[N,N'-bis(pyridin-3-ylmethylidene)benzene-1,4- diamine]zinc dinitrate 1.49-hydrate top
Crystal data top
[Zn(C18H14N4)2(H2O)4](NO3)2·1.49H2OZ = 1
Mr = 860.95F(000) = 447
Triclinic, P1Dx = 1.452 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 8.5664 (17) ÅCell parameters from 3864 reflections
b = 9.928 (2) Åθ = 3.0–27.5°
c = 12.496 (3) ŵ = 0.70 mm1
α = 81.47 (3)°T = 295 K
β = 71.55 (3)°Block, colorless
γ = 78.78 (3)°0.48 × 0.28 × 0.18 mm
V = 984.6 (4) Å3
Data collection top
Rigaku R-AXIS RAPID
diffractometer
4462 independent reflections
Radiation source: rotation anode3908 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.019
ω scanθmax = 27.5°, θmin = 3.0°
Absorption correction: multi-scan
(ABSCOR; Higashi, 1995)
h = 1011
Tmin = 0.731, Tmax = 0.885k = 1212
9721 measured reflectionsl = 1616
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.046Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.141H-atom parameters constrained
S = 1.14 w = 1/[σ2(Fo2) + (0.0912P)2 + 0.1378P]
where P = (Fo2 + 2Fc2)/3
4462 reflections(Δ/σ)max = 0.001
305 parametersΔρmax = 0.70 e Å3
0 restraintsΔρmin = 0.45 e Å3
Crystal data top
[Zn(C18H14N4)2(H2O)4](NO3)2·1.49H2Oγ = 78.78 (3)°
Mr = 860.95V = 984.6 (4) Å3
Triclinic, P1Z = 1
a = 8.5664 (17) ÅMo Kα radiation
b = 9.928 (2) ŵ = 0.70 mm1
c = 12.496 (3) ÅT = 295 K
α = 81.47 (3)°0.48 × 0.28 × 0.18 mm
β = 71.55 (3)°
Data collection top
Rigaku R-AXIS RAPID
diffractometer
4462 independent reflections
Absorption correction: multi-scan
(ABSCOR; Higashi, 1995)
3908 reflections with I > 2σ(I)
Tmin = 0.731, Tmax = 0.885Rint = 0.019
9721 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0460 restraints
wR(F2) = 0.141H-atom parameters constrained
S = 1.14Δρmax = 0.70 e Å3
4462 reflectionsΔρmin = 0.45 e Å3
305 parameters
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
Zn10.50000.00000.50000.03476 (14)
O1W0.4583 (2)0.21267 (19)0.52697 (18)0.0542 (5)
H1A0.53800.27980.53180.081*
H1B0.37190.24830.53250.081*
O2W0.27473 (19)0.06743 (19)0.46591 (14)0.0442 (4)
H2A0.17560.05420.50110.066*
H2B0.27540.14950.43310.066*
N10.3790 (2)0.0222 (2)0.67673 (15)0.0366 (4)
N20.0343 (3)0.2800 (2)0.95880 (17)0.0434 (4)
N30.5097 (3)0.7453 (2)1.10197 (19)0.0440 (5)
N40.9932 (2)0.9640 (2)1.36277 (19)0.0471 (5)
C10.4027 (3)0.0800 (2)0.7552 (2)0.0424 (5)
H10.48030.15750.73190.051*
C20.3184 (3)0.0765 (3)0.8683 (2)0.0483 (6)
H20.33950.14970.92020.058*
C30.2017 (3)0.0377 (3)0.9038 (2)0.0446 (5)
H30.14060.04120.97980.054*
C40.1767 (3)0.1469 (2)0.82479 (19)0.0363 (4)
C50.2690 (3)0.1342 (2)0.71269 (19)0.0375 (5)
H50.25390.20740.65930.045*
C60.0548 (3)0.2709 (2)0.8576 (2)0.0408 (5)
H60.04320.34370.80310.049*
C70.1540 (3)0.3988 (2)0.9907 (2)0.0399 (5)
C80.2182 (3)0.4937 (3)0.9165 (2)0.0458 (5)
H80.18240.48220.83950.055*
C90.3352 (3)0.6051 (3)0.9566 (2)0.0458 (5)
H90.37690.66860.90590.055*
C100.3921 (3)0.6249 (2)1.0708 (2)0.0400 (5)
C110.3289 (3)0.5300 (3)1.1453 (2)0.0474 (6)
H110.36520.54181.22220.057*
C120.2112 (3)0.4169 (3)1.1054 (2)0.0477 (6)
H120.17040.35261.15620.057*
C130.6147 (3)0.7459 (3)1.1989 (2)0.0454 (5)
H130.61360.66761.24990.054*
C140.7385 (3)0.8685 (2)1.2324 (2)0.0391 (5)
C150.7352 (3)0.9931 (3)1.1659 (2)0.0443 (5)
H150.64791.00401.10000.053*
C160.8622 (3)1.1002 (3)1.1987 (3)0.0511 (6)
H160.86231.18491.15540.061*
C170.9892 (3)1.0806 (3)1.2962 (2)0.0473 (6)
H171.07681.15281.31640.057*
C180.8701 (3)0.8603 (3)1.3314 (2)0.0458 (5)
H180.87190.77801.37800.055*
O30.1857 (5)0.6809 (2)0.3557 (3)0.0680 (9)0.744 (4)
O40.3062 (5)0.5772 (4)0.4302 (5)0.1089 (17)0.744 (4)
O50.1009 (5)0.4680 (3)0.3743 (3)0.0796 (10)0.744 (4)
N50.1921 (5)0.5781 (4)0.3878 (3)0.0653 (10)0.744 (4)
O3'0.205 (2)0.352 (3)0.587 (3)0.063 (4)0.256 (4)
O4'0.3410 (16)0.4995 (13)0.4725 (14)0.109 (5)0.256 (4)
O5'0.1218 (17)0.5612 (10)0.5901 (10)0.091 (4)0.256 (4)
N5'0.2171 (12)0.4742 (8)0.5525 (8)0.050 (2)0.256 (4)
O3W0.1962 (15)0.3745 (12)0.5856 (14)0.108 (4)0.744 (4)
H3A0.09880.39610.62590.162*0.744 (4)
H3B0.24400.43590.53610.162*0.744 (4)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Zn10.02806 (19)0.0387 (2)0.0302 (2)0.00313 (13)0.00152 (13)0.00763 (13)
O1W0.0454 (10)0.0420 (9)0.0700 (13)0.0046 (8)0.0107 (9)0.0064 (8)
O2W0.0275 (7)0.0564 (10)0.0400 (9)0.0010 (7)0.0030 (6)0.0030 (7)
N10.0319 (8)0.0402 (9)0.0307 (9)0.0030 (7)0.0031 (7)0.0066 (7)
N20.0399 (10)0.0426 (10)0.0383 (10)0.0044 (8)0.0015 (8)0.0109 (8)
N30.0373 (10)0.0410 (10)0.0473 (11)0.0046 (8)0.0056 (9)0.0138 (9)
N40.0330 (9)0.0576 (12)0.0448 (11)0.0024 (9)0.0009 (8)0.0164 (10)
C10.0356 (11)0.0429 (11)0.0392 (12)0.0066 (9)0.0045 (9)0.0062 (9)
C20.0481 (13)0.0498 (13)0.0366 (12)0.0048 (11)0.0082 (10)0.0020 (10)
C30.0405 (12)0.0538 (13)0.0302 (11)0.0032 (10)0.0025 (9)0.0065 (10)
C40.0303 (10)0.0408 (11)0.0331 (11)0.0005 (9)0.0035 (8)0.0098 (9)
C50.0334 (10)0.0390 (11)0.0339 (11)0.0023 (9)0.0054 (8)0.0055 (9)
C60.0380 (11)0.0404 (11)0.0372 (11)0.0023 (9)0.0042 (9)0.0094 (9)
C70.0342 (10)0.0392 (11)0.0387 (12)0.0015 (9)0.0017 (9)0.0101 (9)
C80.0437 (12)0.0512 (13)0.0331 (11)0.0026 (11)0.0020 (10)0.0090 (10)
C90.0405 (12)0.0474 (12)0.0414 (13)0.0039 (10)0.0069 (10)0.0049 (10)
C100.0314 (10)0.0376 (11)0.0445 (12)0.0002 (9)0.0028 (9)0.0096 (9)
C110.0468 (13)0.0498 (13)0.0378 (12)0.0052 (11)0.0048 (10)0.0144 (10)
C120.0477 (13)0.0480 (13)0.0368 (12)0.0082 (11)0.0054 (10)0.0082 (10)
C130.0371 (11)0.0412 (12)0.0501 (14)0.0006 (10)0.0048 (10)0.0069 (10)
C140.0297 (10)0.0430 (11)0.0412 (12)0.0007 (9)0.0056 (9)0.0126 (9)
C150.0384 (11)0.0486 (13)0.0405 (12)0.0059 (10)0.0020 (10)0.0104 (10)
C160.0504 (14)0.0402 (12)0.0574 (16)0.0018 (11)0.0100 (12)0.0083 (11)
C170.0357 (11)0.0463 (12)0.0556 (15)0.0028 (10)0.0066 (10)0.0192 (11)
C180.0371 (11)0.0501 (13)0.0424 (13)0.0031 (10)0.0032 (10)0.0040 (10)
O30.117 (3)0.0299 (12)0.0700 (19)0.0042 (14)0.0529 (19)0.0107 (11)
O40.087 (3)0.077 (3)0.184 (5)0.014 (2)0.074 (3)0.039 (3)
O50.096 (2)0.0527 (16)0.082 (2)0.0106 (16)0.031 (2)0.0014 (15)
N50.071 (2)0.056 (2)0.065 (2)0.0079 (17)0.0215 (18)0.0064 (16)
O3'0.046 (6)0.033 (5)0.112 (12)0.003 (5)0.012 (6)0.040 (6)
O4'0.085 (8)0.088 (8)0.147 (12)0.017 (6)0.003 (8)0.055 (8)
O5'0.132 (10)0.050 (5)0.087 (8)0.030 (6)0.022 (7)0.002 (5)
N5'0.067 (6)0.022 (4)0.058 (5)0.013 (4)0.022 (5)0.012 (3)
O3W0.118 (6)0.082 (7)0.137 (6)0.035 (4)0.028 (4)0.043 (5)
Geometric parameters (Å, º) top
Zn1—N12.1462 (19)C8—C91.376 (3)
Zn1—O1W2.1691 (19)C8—H80.9300
Zn1—O2W2.0705 (17)C9—C101.385 (4)
O1W—H1A0.8670C9—H90.9300
O1W—H1B0.8608C10—C111.381 (4)
O2W—H2A0.8497C11—C121.391 (3)
O2W—H2B0.8565C11—H110.9300
N1—C11.335 (3)C12—H120.9300
N1—C51.341 (3)C13—C141.466 (3)
N2—C61.259 (3)C13—H130.9300
N2—C71.418 (3)C14—C151.384 (4)
N3—C131.259 (3)C14—C181.389 (3)
N3—C101.420 (3)C15—C161.372 (3)
N4—C171.321 (4)C15—H150.9300
N4—C181.328 (3)C16—C171.371 (4)
C1—C21.371 (3)C16—H160.9300
C1—H10.9300C17—H170.9300
C2—C31.382 (3)C18—H180.9300
C2—H20.9300O3—N51.167 (4)
C3—C41.386 (3)O4—N51.252 (5)
C3—H30.9300O5—N51.237 (5)
C4—C51.384 (3)O3'—N5'1.32 (3)
C4—C61.468 (3)O4'—N5'1.220 (15)
C5—H50.9300O5'—N5'1.243 (14)
C6—H60.9300O3W—H3A0.8756
C7—C81.383 (4)O3W—H3B0.8812
C7—C121.388 (3)
O2W—Zn1—O2Wi180.0C4—C6—H6119.6
O2W—Zn1—N190.18 (7)C8—C7—C12119.0 (2)
O2Wi—Zn1—N189.82 (7)C8—C7—N2124.7 (2)
O2W—Zn1—N1i89.82 (7)C12—C7—N2116.3 (2)
O2Wi—Zn1—N1i90.18 (7)C9—C8—C7120.0 (2)
N1—Zn1—N1i180.0C9—C8—H8120.0
O2W—Zn1—O1Wi88.56 (8)C7—C8—H8120.0
O2Wi—Zn1—O1Wi91.44 (8)C8—C9—C10121.5 (2)
N1—Zn1—O1Wi90.24 (8)C8—C9—H9119.3
N1i—Zn1—O1Wi89.76 (8)C10—C9—H9119.3
O2W—Zn1—O1W91.44 (8)C11—C10—C9118.7 (2)
O2Wi—Zn1—O1W88.56 (8)C11—C10—N3124.8 (2)
N1—Zn1—O1W89.76 (8)C9—C10—N3116.5 (2)
N1i—Zn1—O1W90.24 (8)C10—C11—C12120.1 (2)
O1Wi—Zn1—O1W180.0C10—C11—H11119.9
Zn1—O1W—H1A120.9C12—C11—H11119.9
Zn1—O1W—H1B131.5C7—C12—C11120.7 (2)
H1A—O1W—H1B107.6C7—C12—H12119.7
Zn1—O2W—H2A133.0C11—C12—H12119.7
Zn1—O2W—H2B108.5N3—C13—C14120.9 (2)
H2A—O2W—H2B110.5N3—C13—H13119.6
C1—N1—C5117.18 (19)C14—C13—H13119.6
C1—N1—Zn1120.75 (15)C15—C14—C18117.5 (2)
C5—N1—Zn1121.93 (15)C15—C14—C13122.4 (2)
C6—N2—C7121.0 (2)C18—C14—C13120.0 (2)
C13—N3—C10120.0 (2)C16—C15—C14119.1 (2)
C17—N4—C18117.9 (2)C16—C15—H15120.4
N1—C1—C2123.4 (2)C14—C15—H15120.4
N1—C1—H1118.3C17—C16—C15119.0 (2)
C2—C1—H1118.3C17—C16—H16120.5
C1—C2—C3118.8 (2)C15—C16—H16120.5
C1—C2—H2120.6N4—C17—C16123.2 (2)
C3—C2—H2120.6N4—C17—H17118.4
C2—C3—C4119.2 (2)C16—C17—H17118.4
C2—C3—H3120.4N4—C18—C14123.3 (2)
C4—C3—H3120.4N4—C18—H18118.4
C5—C4—C3117.6 (2)C14—C18—H18118.4
C5—C4—C6120.7 (2)O3—N5—O5123.6 (4)
C3—C4—C6121.6 (2)O3—N5—O4117.9 (4)
N1—C5—C4123.7 (2)O5—N5—O4118.3 (4)
N1—C5—H5118.2O4'—N5'—O5'118.7 (10)
C4—C5—H5118.2O4'—N5'—O3'112.3 (15)
N2—C6—C4120.8 (2)O5'—N5'—O3'129.0 (15)
N2—C6—H6119.6H3A—O3W—H3B107.9
Symmetry code: (i) x+1, y, z+1.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1W—H1A···O4ii0.871.872.725 (4)170
O1W—H1A···O4ii0.872.233.035 (13)154
O1W—H1B···O3W0.862.032.859 (13)161
O1W—H1B···O30.861.822.65 (3)161
O2W—H2A···N4iii0.851.922.706 (3)152
O2W—H2B···O3iv0.861.962.761 (3)155
O3W—H3A···O3v0.882.363.073 (12)139
O3W—H3A···O5v0.882.383.112 (13)142
O3W—H3B···O40.881.952.824 (13)169
Symmetry codes: (ii) x+1, y1, z+1; (iii) x1, y+1, z+2; (iv) x, y+1, z; (v) x, y1, z+1.

Experimental details

Crystal data
Chemical formula[Zn(C18H14N4)2(H2O)4](NO3)2·1.49H2O
Mr860.95
Crystal system, space groupTriclinic, P1
Temperature (K)295
a, b, c (Å)8.5664 (17), 9.928 (2), 12.496 (3)
α, β, γ (°)81.47 (3), 71.55 (3), 78.78 (3)
V3)984.6 (4)
Z1
Radiation typeMo Kα
µ (mm1)0.70
Crystal size (mm)0.48 × 0.28 × 0.18
Data collection
DiffractometerRigaku R-AXIS RAPID
Absorption correctionMulti-scan
(ABSCOR; Higashi, 1995)
Tmin, Tmax0.731, 0.885
No. of measured, independent and
observed [I > 2σ(I)] reflections
9721, 4462, 3908
Rint0.019
(sin θ/λ)max1)0.649
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.046, 0.141, 1.14
No. of reflections4462
No. of parameters305
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.70, 0.45

Computer programs: RAPID-AUTO (Rigaku, 1998), CrystalStructure (Rigaku/MSC, 2002), XP in SHELXTL (Sheldrick, 2008) and Mercury (Macrae et al., 2006).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1W—H1A···O4i0.871.872.725 (4)170
O1W—H1A···O4'i0.872.233.035 (13)154
O1W—H1B···O3W0.862.032.859 (13)161
O1W—H1B···O3'0.861.822.65 (3)161
O2W—H2A···N4ii0.851.922.706 (3)152
O2W—H2B···O3iii0.861.962.761 (3)155
O3W—H3A···O3iv0.882.363.073 (12)139
O3W—H3A···O5iv0.882.383.112 (13)142
O3W—H3B···O40.881.952.824 (13)169
Symmetry codes: (i) x+1, y1, z+1; (ii) x1, y+1, z+2; (iii) x, y+1, z; (iv) x, y1, z+1.
 

Acknowledgements

This work was supported financially by the Natural Science Foundation of Jilin Province (grant Nos. 2010178 and 2011073).

References

First citationHigashi, T. (1995). ABSCOR. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationMacrae, C. F., Edgington, P. R., McCabe, P., Pidcock, E., Shields, G. P., Taylor, R., Towler, M. & van de Streek, J. (2006). J. Appl. Cryst. 39, 453–457.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationRigaku (1998). RAPID-AUTO. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationRigaku/MSC (2002). CrystalStructure. Rigaku/MSC Inc., The Woodlands, Texas, USA.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSu, C.-Y., Yang, X.-P., Liao, S., Mak, T. C. W. & Kang, B.-S. (1999). Inorg. Chem. Commun. 2, 383–385.  Web of Science CSD CrossRef CAS Google Scholar
First citationYe, K.-Q., Kong, J.-F., Jiang, S.-M., Ye, L. & Wang, Y. (2004). J. Mol. Sci. (Chin.), 20, 1–4.  CAS Google Scholar
First citationYe, K.-Q., Wu, Y., Guo, J.-H., Sun, Y.-H. & Wang, Y. (2005). Chem. J. Chin. Univ. 26, 93–96.  CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds