metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Poly[di-μ2-aqua-μ5-(pyridine-2,6-di­carboxyl­ato)-μ3-(pyridine-2,6-di­carboxyl­ato)-cobalt(II)disodium]

aKiev National Taras Shevchenko University, Department of Chemistry, Volodymyrska Street 64, 01601 Kiev, Ukraine, bDepartment of Chemistry, St Petersburg State University, Universitetsky Pr. 26, 198504 Stary Petergof, Russian Federation, cUniversity of Joensuu, Department of Chemistry, PO Box 111, FI-80101 Joensuu, Finland, and dKyiv National University of Construction and Architecture, Department of Chemistry, Povitroflotsky Avenue 31, 03680 Kiev, Ukraine
*Correspondence e-mail: igolenya@ua.fm

(Received 6 November 2011; accepted 14 November 2011; online 19 November 2011)

In the title compound, [CoNa2(C7H3NO4)2(H2O)2]n, the CoII atom is coordinated by two pyridine N atoms and four carboxyl­ate O atoms from two doubly deprotonated pyridine-2,6-dicarboxyl­ate ligands in a distorted octa­hedral geometry. One Na+ cation is coordinated by three carboxyl­ate O atoms and two water mol­ecules and the other is coordinated by five carboxyl­ate O atoms and two water mol­ecules in an irregular geometry. The bis­(pyridine-2,6-dicarboxyl­ato)cobalt complex units are connected by Na+ cations and bridging water mol­ecules into a three-dimensional coordination network. O—H⋯O hydrogen bonds are formed between the water mol­ecules and the carboxyl­ate O atoms.

Related literature

For hydrolytic decomposition of hydroxamate ligands upon complex formation, see: Dobosz et al. (1999[Dobosz, A., Dudarenko, N. M., Fritsky, I. O., Głowiak, T., Karaczyn, A., Kozłowski, H., Sliva, T. Yu. & Świątek-Kozłowska, J. (1999). J. Chem. Soc. Dalton Trans. pp. 743-749.]); Świątek-Kozłowska et al. (2000[Świątek-Kozłowska, J., Fritsky, I. O., Dobosz, A., Karaczyn, A., Dudarenko, N. M., Sliva, T. Yu., Gumienna-Kontecka, E. & Jerzykiewicz, L. (2000). J. Chem. Soc. Dalton Trans. pp. 4064-4068.]). For related structures, see: Fritsky et al. (2001[Fritsky, I. O., Ott, R., Pritzkow, H. & Krämer, R. (2001). Chem. Eur. J. 7, 1221-1231.]); Krämer & Fritsky (2000[Krämer, R. & Fritsky, I. O. (2000). Eur. J. Org. Chem. pp. 3505-3510.]); Mokhir et al. (2002[Mokhir, A. A., Gumienna-Kontecka, E. S., Świątek-Kozłowska, J., Petkova, E. G., Fritsky, I. O., Jerzykiewicz, L., Kapshuk, A. A. & Sliva, T. Yu. (2002). Inorg. Chim. Acta, 329, 113-121.]); Moroz et al. (2010[Moroz, Y. S., Szyrweil, L., Demeshko, S., Kozłowski, H., Meyer, F. & Fritsky, I. O. (2010). Inorg. Chem. 49, 4750-4752.]); Sachse et al. (2008[Sachse, A., Penkova, L., Noel, G., Dechert, S., Varzatskii, O. A., Fritsky, I. O. & Meyer, F. (2008). Synthesis, 5, 800-806.]); Sliva et al. (1997[Sliva, T. Yu., Kowalik-Jankowska, T., Amirkhanov, V. M., Głowiak, T., Onindo, C. O., Fritsky, I. O. & Kozłowski, H. (1997). J. Inorg. Biochem. 65, 287-294.]); Wörl et al. (2005a[Wörl, S., Fritsky, I. O., Hellwinkel, D., Pritzkow, H. & Krämer, R. (2005a). Eur. J. Inorg. Chem. pp. 759-765.],b[Wörl, S., Pritzkow, H., Fritsky, I. O. & Krämer, R. (2005b). Dalton Trans. pp. 27-29.]). For the preparation of the ligand, see: Świątek-Kozłowska et al. (2002[Świątek-Kozłowska, J., Gumienna-Kontecka, E., Dobosz, A., Golenya, I. A. & Fritsky, I. O. (2002). J. Chem. Soc. Dalton Trans. pp. 4639-4643.]).

[Scheme 1]

Experimental

Crystal data
  • [CoNa2(C7H3NO4)2(H2O)2]

  • Mr = 471.15

  • Orthorhombic, P n a 21

  • a = 7.9540 (3) Å

  • b = 13.2187 (3) Å

  • c = 15.1475 (3) Å

  • V = 1592.63 (8) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 1.20 mm−1

  • T = 120 K

  • 0.17 × 0.10 × 0.06 mm

Data collection
  • Nonius KappaCCD diffractometer

  • Absorption correction: multi-scan (DENZO/SCALEPACK; Otwinowski & Minor, 1997[Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307-326. New York: Academic Press.]) Tmin = 0.826, Tmax = 0.931

  • 22979 measured reflections

  • 3640 independent reflections

  • 3388 reflections with I > 2σ(I)

  • Rint = 0.037

Refinement
  • R[F2 > 2σ(F2)] = 0.023

  • wR(F2) = 0.054

  • S = 1.07

  • 3640 reflections

  • 264 parameters

  • 1 restraint

  • H-atom parameters constrained

  • Δρmax = 0.30 e Å−3

  • Δρmin = −0.32 e Å−3

  • Absolute structure: Flack (1983[Flack, H. D. (1983). Acta Cryst. A39, 876-881.]), 1749 Friedel pairs

  • Flack parameter: 0.017 (10)

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O9—H9A⋯O7i 0.84 1.94 2.742 (2) 159
O9—H9B⋯O4ii 0.85 1.90 2.717 (2) 162
O10—H10A⋯O3 0.86 1.88 2.725 (2) 166
O10—H10B⋯O4iii 0.91 2.12 2.993 (2) 159
Symmetry codes: (i) x-1, y, z; (ii) [-x-1, -y, z+{\script{1\over 2}}]; (iii) [-x, -y, z+{\script{1\over 2}}].

Data collection: COLLECT (Nonius, 1998[Nonius (1998). COLLECT. Nonius BV, Delft, The Netherlands.]); cell refinement: DENZO/SCALEPACK (Otwinowski & Minor, 1997[Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307-326. New York: Academic Press.]); data reduction: DENZO/SCALEPACK; program(s) used to solve structure: SIR2004 (Burla et al., 2005[Burla, M. C., Caliandro, R., Camalli, M., Carrozzini, B., Cascarano, G. L., De Caro, L., Giacovazzo, C., Polidori, G. & Spagna, R. (2005). J. Appl. Cryst. 38, 381-388.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: DIAMOND (Brandenburg, 1999[Brandenburg, K. (1999). DIAMOND. Crystal Impact GbR, Bonn, Germany.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

Hydroxamic acids are widely used in synthesis of polynuclear compounds and coordination polymers. However, when the synthesis is conducted in alkaline conditions, hydrolytic decomposition of the hydroxamate function resulting in the formation of carboxylic groups sometimes occurs (Dobosz et al., 1999; Świątek-Kozłowska et al., 2000). Herein we report the crystal structure of the title compound obtained as a result of hydrolytic decomposition of pyridine-2,6-dihydroxamic acid in the course of formation of the anionic complex with cobalt(II) in the presence of sodium hydroxide.

In the title compound, the CoII atom is coordinated by two pyridine N atoms and four carboxylate O atoms from two doubly deprotonated pyridine-2,6-dicarboxylate ligands in a distorted octahedral geometry (Fig. 1). The Co—O bond lengths are in a range of 2.1235 (17)–2.2065 (14) Å, which clearly indicates that the central ion is in bivalent state (Sliva et al., 1997). The Na ions are coordinated by O atoms of pyridine-2,6-dicarboxylate ligands and two water molecules in irregular geometries. Na1 atom is in a strongly distorted square-pyramidal environment, while Na2 atom exhibits a coordination number 7 and its geometry approaches to a distorted pentagonal-bipyramidal. The Na—O bond lengths lie in a range of 2.2756 (11)–2.7557 (17) Å, which is normal for sodium ions (Mokhir et al., 2002; Świątek-Kozłowska et al., 2000). The C9—O3 and C9—O7 bond lengths [1.284 (2) and 1.240 (2) Å] are typical for a monodentately coordinated carboxylate (Wörl et al., 2005a,b). The C—N and C—C bond lengths in the pyridine rings are normal for 2-substituted pyridine derivatives (Fritsky et al., 2001; Krämer & Fritsky, 2000; Moroz et al., 2010; Sachse et al., 2008).

In the crystal packing (Fig. 2), the bis(pyridine-2,6-dicarboxylato)cobalt(II) complex units are connected by the sodium ions and water molecules into a three-dimensional coordination network. The two water molecules bridge the sodium ions and form intermolecular hydrogen bonds (Table 1).

Related literature top

For hydrolytic decomposition of hydroxamate ligands upon complex formation, see: Dobosz et al. (1999); Świątek-Kozłowska et al. (2000). For related structures, see: Fritsky et al. (2001); Krämer & Fritsky (2000); Mokhir et al. (2002); Moroz et al. (2010); Sachse et al. (2008); Sliva et al. (1997); Wörl et al. (2005a,b). For the preparation of the ligand, see: Świątek-Kozłowska et al. (2002).

Experimental top

Cobalt(II) perchlorate hexahydrate (0.0365 g, 0.1 mmol) was dissolved in methanol (5 ml) and mixed with a solution of pyridine-2,6-dihydroxamic acid (0.0197 g, 0.1 mmol) synthesized according to Świątek-Kozłowska et al. (2002) in H2O, and then to the obtained mixture solution sodium hydroxide (0.1 M, 1 ml) was added. The mixture was stirred for 30 min and filtered. The insoluble material was dissolved in DMSO (3 ml) and set aside for crystallization by slow diffusion of isopropanol vapours into the formed solution. The greenish yellow crystals formed in 5–7 days were filtered off, washed with isopropanol and dried (yield: 78%).

Refinement top

The water H atoms were located from a difference Fourier map and constrained to ride on their parent atom, with Uiso(H) = 1.5Ueq(O). Other H atoms were positioned geometrically and also constrained to ride on their parent atoms, with C—H = 0.95 Å and Uiso(H) = 1.2Ueq(C). The highest peak is located 1.59 Å from atom O3 and the deepest hole is located 0.66 Å from atom Co1.

Structure description top

Hydroxamic acids are widely used in synthesis of polynuclear compounds and coordination polymers. However, when the synthesis is conducted in alkaline conditions, hydrolytic decomposition of the hydroxamate function resulting in the formation of carboxylic groups sometimes occurs (Dobosz et al., 1999; Świątek-Kozłowska et al., 2000). Herein we report the crystal structure of the title compound obtained as a result of hydrolytic decomposition of pyridine-2,6-dihydroxamic acid in the course of formation of the anionic complex with cobalt(II) in the presence of sodium hydroxide.

In the title compound, the CoII atom is coordinated by two pyridine N atoms and four carboxylate O atoms from two doubly deprotonated pyridine-2,6-dicarboxylate ligands in a distorted octahedral geometry (Fig. 1). The Co—O bond lengths are in a range of 2.1235 (17)–2.2065 (14) Å, which clearly indicates that the central ion is in bivalent state (Sliva et al., 1997). The Na ions are coordinated by O atoms of pyridine-2,6-dicarboxylate ligands and two water molecules in irregular geometries. Na1 atom is in a strongly distorted square-pyramidal environment, while Na2 atom exhibits a coordination number 7 and its geometry approaches to a distorted pentagonal-bipyramidal. The Na—O bond lengths lie in a range of 2.2756 (11)–2.7557 (17) Å, which is normal for sodium ions (Mokhir et al., 2002; Świątek-Kozłowska et al., 2000). The C9—O3 and C9—O7 bond lengths [1.284 (2) and 1.240 (2) Å] are typical for a monodentately coordinated carboxylate (Wörl et al., 2005a,b). The C—N and C—C bond lengths in the pyridine rings are normal for 2-substituted pyridine derivatives (Fritsky et al., 2001; Krämer & Fritsky, 2000; Moroz et al., 2010; Sachse et al., 2008).

In the crystal packing (Fig. 2), the bis(pyridine-2,6-dicarboxylato)cobalt(II) complex units are connected by the sodium ions and water molecules into a three-dimensional coordination network. The two water molecules bridge the sodium ions and form intermolecular hydrogen bonds (Table 1).

For hydrolytic decomposition of hydroxamate ligands upon complex formation, see: Dobosz et al. (1999); Świątek-Kozłowska et al. (2000). For related structures, see: Fritsky et al. (2001); Krämer & Fritsky (2000); Mokhir et al. (2002); Moroz et al. (2010); Sachse et al. (2008); Sliva et al. (1997); Wörl et al. (2005a,b). For the preparation of the ligand, see: Świątek-Kozłowska et al. (2002).

Computing details top

Data collection: COLLECT (Nonius, 1998); cell refinement: DENZO/SCALEPACK (Otwinowski & Minor, 1997); data reduction: DENZO/SCALEPACK (Otwinowski & Minor, 1997); program(s) used to solve structure: SIR2004 (Burla et al., 2005); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: DIAMOND (Brandenburg, 1999); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The asymmetric unit of the title compound. Displacement ellipsoinds are shown at the 50% probability level. Hydrogen bonds are indicated by dashed lines. [Symmetry codes: (i) 1/2+x, 1/2-y, z; (ii) -x, -y, 1/2+z; (iii) -1/2-x, 1/2+y, 1/2+z.]
[Figure 2] Fig. 2. A view of the crystal packing for the title compound.
Poly[di-µ2-aqua-µ5-(pyridine-2,6-dicarboxylato)-µ3-(pyridine- 2,6-dicarboxylato)-cobalt(II)disodium] top
Crystal data top
[CoNa2(C7H3NO4)2(H2O)2]F(000) = 948
Mr = 471.15Dx = 1.965 Mg m3
Orthorhombic, Pna21Mo Kα radiation, λ = 0.71073 Å
Hall symbol: P 2c -2nCell parameters from 14413 reflections
a = 7.9540 (3) Åθ = 1.0–27.5°
b = 13.2187 (3) ŵ = 1.20 mm1
c = 15.1475 (3) ÅT = 120 K
V = 1592.63 (8) Å3Block, green-yellow
Z = 40.17 × 0.10 × 0.06 mm
Data collection top
Nonius KappaCCD
diffractometer
3640 independent reflections
Radiation source: fine-focus sealed tube3388 reflections with I > 2σ(I)
Horizontally mounted graphite crystal monochromatorRint = 0.037
Detector resolution: 9 pixels mm-1θmax = 27.5°, θmin = 3.1°
φ and ω scans with κ offseth = 1010
Absorption correction: multi-scan
(DENZO/SCALEPACK; Otwinowski & Minor, 1997)
k = 1715
Tmin = 0.826, Tmax = 0.931l = 1919
22979 measured reflections
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: mixed
R[F2 > 2σ(F2)] = 0.023H-atom parameters constrained
wR(F2) = 0.054 w = 1/[σ2(Fo2) + (0.0247P)2 + 0.349P]
where P = (Fo2 + 2Fc2)/3
S = 1.07(Δ/σ)max < 0.001
3640 reflectionsΔρmax = 0.30 e Å3
264 parametersΔρmin = 0.32 e Å3
1 restraintAbsolute structure: Flack (1983), 1749 Friedel pairs
Primary atom site location: structure-invariant direct methodsAbsolute structure parameter: 0.017 (10)
Crystal data top
[CoNa2(C7H3NO4)2(H2O)2]V = 1592.63 (8) Å3
Mr = 471.15Z = 4
Orthorhombic, Pna21Mo Kα radiation
a = 7.9540 (3) ŵ = 1.20 mm1
b = 13.2187 (3) ÅT = 120 K
c = 15.1475 (3) Å0.17 × 0.10 × 0.06 mm
Data collection top
Nonius KappaCCD
diffractometer
3640 independent reflections
Absorption correction: multi-scan
(DENZO/SCALEPACK; Otwinowski & Minor, 1997)
3388 reflections with I > 2σ(I)
Tmin = 0.826, Tmax = 0.931Rint = 0.037
22979 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.023H-atom parameters constrained
wR(F2) = 0.054Δρmax = 0.30 e Å3
S = 1.07Δρmin = 0.32 e Å3
3640 reflectionsAbsolute structure: Flack (1983), 1749 Friedel pairs
264 parametersAbsolute structure parameter: 0.017 (10)
1 restraint
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Co10.05451 (3)0.010675 (17)0.25557 (2)0.01076 (7)
Na10.07221 (11)0.28100 (6)0.49042 (5)0.01966 (19)
Na20.26548 (10)0.06445 (7)0.52208 (6)0.0212 (2)
O10.24152 (18)0.05370 (10)0.34732 (9)0.0146 (3)
O20.1115 (2)0.00400 (10)0.14651 (11)0.0163 (4)
O30.1244 (2)0.00136 (10)0.36280 (10)0.0141 (3)
O40.21550 (19)0.09844 (10)0.16519 (10)0.0158 (3)
O50.30854 (18)0.20122 (10)0.41058 (9)0.0162 (3)
O60.18157 (18)0.10750 (11)0.03583 (9)0.0183 (3)
O70.23230 (19)0.09423 (11)0.47351 (9)0.0180 (3)
O80.2541 (2)0.25677 (11)0.11508 (9)0.0188 (3)
O90.55522 (17)0.05090 (11)0.53885 (10)0.0160 (3)
H9A0.59870.00120.51230.024*
H9B0.61640.05610.58460.024*
O100.01645 (19)0.11758 (10)0.49835 (10)0.0164 (3)
H10A0.06290.08760.45410.025*
H10B0.07450.09490.54610.025*
N10.0691 (2)0.13931 (12)0.22358 (10)0.0109 (3)
N20.0236 (2)0.15690 (12)0.29271 (11)0.0112 (3)
C10.1490 (2)0.20301 (14)0.27769 (12)0.0120 (4)
C20.2419 (2)0.14940 (15)0.35081 (13)0.0126 (4)
C30.1404 (2)0.30715 (14)0.26432 (15)0.0158 (4)
H30.19460.35270.30360.019*
C40.0503 (3)0.34270 (15)0.19181 (14)0.0153 (4)
H40.04290.41340.18120.018*
C50.0285 (3)0.27576 (16)0.13529 (14)0.0151 (4)
H50.08790.29920.08490.018*
C60.0182 (3)0.17334 (15)0.15435 (13)0.0121 (4)
C70.1110 (3)0.09008 (15)0.10677 (13)0.0136 (4)
C80.0704 (3)0.17728 (16)0.36365 (13)0.0121 (4)
C90.1491 (3)0.08438 (15)0.40480 (13)0.0136 (4)
C100.0974 (3)0.27604 (15)0.39155 (14)0.0153 (4)
H100.16210.29000.44290.018*
C110.0270 (3)0.35394 (15)0.34216 (13)0.0149 (4)
H110.04460.42220.35940.018*
C120.0685 (2)0.33259 (14)0.26795 (15)0.0148 (4)
H120.11610.38540.23350.018*
C130.0928 (2)0.23155 (14)0.24533 (14)0.0120 (4)
C140.1961 (3)0.19475 (15)0.16881 (13)0.0131 (4)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Co10.01387 (12)0.00901 (11)0.00941 (12)0.00019 (9)0.00036 (12)0.00034 (13)
Na10.0260 (5)0.0149 (4)0.0181 (4)0.0034 (3)0.0049 (3)0.0026 (3)
Na20.0140 (4)0.0243 (5)0.0251 (4)0.0016 (3)0.0007 (4)0.0109 (4)
O10.0164 (8)0.0128 (7)0.0147 (7)0.0013 (6)0.0015 (6)0.0004 (6)
O20.0214 (9)0.0125 (8)0.0151 (9)0.0016 (6)0.0058 (7)0.0001 (6)
O30.0164 (9)0.0130 (8)0.0130 (9)0.0006 (6)0.0009 (7)0.0006 (5)
O40.0194 (8)0.0142 (7)0.0137 (7)0.0007 (6)0.0030 (6)0.0014 (6)
O50.0180 (8)0.0181 (7)0.0124 (7)0.0024 (6)0.0024 (6)0.0020 (6)
O60.0217 (8)0.0203 (8)0.0130 (7)0.0022 (6)0.0057 (6)0.0004 (6)
O70.0194 (8)0.0201 (8)0.0145 (8)0.0017 (6)0.0067 (6)0.0003 (6)
O80.0254 (8)0.0168 (8)0.0141 (7)0.0049 (6)0.0050 (6)0.0016 (6)
O90.0162 (7)0.0137 (7)0.0181 (7)0.0016 (6)0.0037 (6)0.0029 (6)
O100.0184 (8)0.0186 (7)0.0120 (7)0.0018 (6)0.0001 (6)0.0010 (6)
N10.0121 (9)0.0111 (8)0.0095 (7)0.0003 (7)0.0010 (6)0.0010 (6)
N20.0117 (8)0.0112 (8)0.0108 (8)0.0002 (7)0.0008 (6)0.0001 (6)
C10.0104 (9)0.0138 (9)0.0118 (10)0.0012 (8)0.0021 (7)0.0012 (7)
C20.0118 (10)0.0154 (10)0.0106 (9)0.0019 (8)0.0016 (8)0.0011 (8)
C30.0164 (9)0.0128 (8)0.0180 (11)0.0029 (7)0.0012 (9)0.0014 (9)
C40.0182 (11)0.0090 (9)0.0185 (10)0.0005 (8)0.0042 (8)0.0049 (8)
C50.0162 (11)0.0169 (10)0.0123 (10)0.0014 (8)0.0024 (8)0.0045 (8)
C60.0115 (10)0.0136 (10)0.0114 (10)0.0008 (8)0.0011 (8)0.0006 (8)
C70.0121 (10)0.0163 (10)0.0125 (10)0.0029 (8)0.0009 (8)0.0016 (8)
C80.0105 (11)0.0145 (10)0.0111 (10)0.0005 (7)0.0029 (7)0.0008 (8)
C90.0112 (10)0.0160 (10)0.0137 (10)0.0021 (8)0.0023 (8)0.0001 (8)
C100.0152 (10)0.0158 (11)0.0150 (10)0.0030 (8)0.0025 (8)0.0040 (8)
C110.0165 (11)0.0116 (10)0.0167 (10)0.0039 (8)0.0025 (8)0.0040 (8)
C120.0167 (10)0.0115 (8)0.0163 (11)0.0002 (7)0.0064 (8)0.0033 (8)
C130.0124 (9)0.0128 (8)0.0108 (10)0.0001 (7)0.0029 (8)0.0025 (8)
C140.0134 (10)0.0140 (9)0.0119 (9)0.0006 (8)0.0038 (8)0.0036 (8)
Geometric parameters (Å, º) top
Co1—N22.0281 (16)O9—H9A0.8440
Co1—N12.0443 (17)O9—H9B0.8492
Co1—O22.1235 (17)O10—H10A0.8618
Co1—O32.1631 (17)O10—H10B0.9091
Co1—O42.2044 (15)N1—C61.336 (3)
Co1—O12.2065 (14)N1—C11.336 (2)
Na1—O102.2757 (16)N2—C81.337 (3)
Na1—O9i2.3439 (16)N2—C131.339 (2)
Na1—O8ii2.3924 (16)C1—C31.393 (3)
Na1—O5i2.4324 (16)C1—C21.508 (3)
Na1—O52.4715 (16)C3—C41.393 (3)
Na2—O92.3254 (16)C3—H30.9500
Na2—O102.3772 (17)C4—C51.382 (3)
Na2—O6iii2.3780 (17)C4—H40.9500
Na2—O2iii2.4232 (18)C5—C61.387 (3)
Na2—O52.4978 (16)C5—H50.9500
Na2—O12.6579 (17)C6—C71.508 (3)
Na2—O8ii2.7557 (17)C8—C101.389 (3)
O1—C21.266 (2)C8—C91.513 (3)
O2—C71.287 (2)C10—C111.391 (3)
O3—C91.284 (2)C10—H100.9500
O4—C141.284 (2)C11—C121.386 (3)
O5—C21.253 (2)C11—H110.9500
O6—C71.234 (2)C12—C131.392 (3)
O7—C91.240 (2)C12—H120.9500
O8—C141.244 (2)C13—C141.502 (3)
N2—Co1—N1175.53 (7)C14—O8—Na2vi151.48 (14)
N2—Co1—O2103.15 (6)Na1vi—O8—Na2vi78.94 (5)
N1—Co1—O276.24 (6)Na2—O9—Na1v87.13 (5)
N2—Co1—O376.47 (6)Na2—O9—H9A114.5
N1—Co1—O399.21 (6)Na1v—O9—H9A124.4
O2—Co1—O399.78 (5)Na2—O9—H9B130.6
N2—Co1—O475.00 (6)Na1v—O9—H9B98.4
N1—Co1—O4109.28 (6)H9A—O9—H9B102.5
O2—Co1—O485.76 (6)Na1—O10—Na289.78 (6)
O3—Co1—O4151.46 (5)Na1—O10—H10A121.9
N2—Co1—O1105.94 (6)Na2—O10—H10A112.7
N1—Co1—O174.76 (6)Na1—O10—H10B120.8
O2—Co1—O1150.91 (5)Na2—O10—H10B105.1
O3—Co1—O187.05 (6)H10A—O10—H10B104.4
O4—Co1—O1101.68 (5)C6—N1—C1121.13 (17)
O10—Na1—O9i149.94 (7)C6—N1—Co1118.90 (13)
O10—Na1—O8ii86.51 (6)C1—N1—Co1119.52 (13)
O9i—Na1—O8ii89.09 (5)C8—N2—C13120.84 (17)
O10—Na1—O5i81.42 (6)C8—N2—Co1118.88 (14)
O9i—Na1—O5i90.82 (5)C13—N2—Co1120.26 (13)
O8ii—Na1—O5i155.57 (6)N1—C1—C3120.67 (17)
O10—Na1—O581.75 (5)N1—C1—C2112.81 (17)
O9i—Na1—O5126.98 (6)C3—C1—C2126.53 (17)
O8ii—Na1—O581.84 (5)O5—C2—O1125.27 (18)
O5i—Na1—O5116.98 (6)O5—C2—C1118.75 (17)
O9—Na2—O10166.94 (6)O1—C2—C1115.96 (17)
O9—Na2—O6iii101.24 (6)C1—C3—C4118.24 (18)
O10—Na2—O6iii91.77 (5)C1—C3—H3120.9
O9—Na2—O2iii112.79 (7)C4—C3—H3120.9
O10—Na2—O2iii75.58 (6)C5—C4—C3120.39 (19)
O6iii—Na2—O2iii55.47 (5)C5—C4—H4119.8
O9—Na2—O589.64 (6)C3—C4—H4119.8
O10—Na2—O579.24 (5)C4—C5—C6118.01 (19)
O6iii—Na2—O5142.14 (6)C4—C5—H5121.0
O2iii—Na2—O5149.95 (6)C6—C5—H5121.0
O9—Na2—O1100.12 (6)N1—C6—C5121.52 (19)
O10—Na2—O178.32 (5)N1—C6—C7112.57 (17)
O6iii—Na2—O190.91 (5)C5—C6—C7125.74 (19)
O2iii—Na2—O1135.93 (6)O6—C7—O2124.80 (19)
O5—Na2—O151.32 (4)O6—C7—C6120.17 (18)
O9—Na2—O8ii93.80 (6)O2—C7—C6115.02 (17)
O10—Na2—O8ii76.74 (5)N2—C8—C10121.37 (19)
O6iii—Na2—O8ii139.38 (6)N2—C8—C9113.53 (17)
O2iii—Na2—O8ii83.92 (6)C10—C8—C9125.01 (19)
O5—Na2—O8ii74.50 (5)O7—C9—O3125.97 (19)
O1—Na2—O8ii123.43 (5)O7—C9—C8118.77 (18)
C7iii—Na2—O8ii112.28 (6)O3—C9—C8115.24 (17)
C2—O1—Co1114.40 (12)C8—C10—C11118.04 (19)
C2—O1—Na284.54 (11)C8—C10—H10121.0
Co1—O1—Na2134.13 (6)C11—C10—H10121.0
C7—O2—Co1116.28 (13)C12—C11—C10120.42 (18)
C7—O2—Na2iv88.16 (12)C12—C11—H11119.8
Co1—O2—Na2iv152.28 (7)C10—C11—H11119.8
C9—O3—Co1115.10 (13)C11—C12—C13118.10 (19)
C14—O4—Co1115.19 (13)C11—C12—H12121.0
C2—O5—Na1v140.98 (13)C13—C12—H12121.0
C2—O5—Na1105.37 (12)N2—C13—C12121.21 (18)
Na1v—O5—Na1111.79 (6)N2—C13—C14113.58 (16)
C2—O5—Na292.00 (12)C12—C13—C14125.21 (18)
Na1v—O5—Na281.48 (5)O8—C14—O4125.53 (19)
Na1—O5—Na282.74 (5)O8—C14—C13119.63 (17)
C7—O6—Na2iv91.47 (12)O4—C14—C13114.84 (17)
C14—O8—Na1vi126.37 (13)
Symmetry codes: (i) x+1/2, y+1/2, z; (ii) x1/2, y+1/2, z+1/2; (iii) x, y, z+1/2; (iv) x, y, z1/2; (v) x1/2, y+1/2, z; (vi) x1/2, y1/2, z1/2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O9—H9A···O7vii0.841.942.742 (2)159
O9—H9B···O4viii0.851.902.717 (2)162
O10—H10A···O30.861.882.725 (2)166
O10—H10B···O4iii0.912.122.993 (2)159
Symmetry codes: (iii) x, y, z+1/2; (vii) x1, y, z; (viii) x1, y, z+1/2.

Experimental details

Crystal data
Chemical formula[CoNa2(C7H3NO4)2(H2O)2]
Mr471.15
Crystal system, space groupOrthorhombic, Pna21
Temperature (K)120
a, b, c (Å)7.9540 (3), 13.2187 (3), 15.1475 (3)
V3)1592.63 (8)
Z4
Radiation typeMo Kα
µ (mm1)1.20
Crystal size (mm)0.17 × 0.10 × 0.06
Data collection
DiffractometerNonius KappaCCD
Absorption correctionMulti-scan
(DENZO/SCALEPACK; Otwinowski & Minor, 1997)
Tmin, Tmax0.826, 0.931
No. of measured, independent and
observed [I > 2σ(I)] reflections
22979, 3640, 3388
Rint0.037
(sin θ/λ)max1)0.650
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.023, 0.054, 1.07
No. of reflections3640
No. of parameters264
No. of restraints1
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.30, 0.32
Absolute structureFlack (1983), 1749 Friedel pairs
Absolute structure parameter0.017 (10)

Computer programs: COLLECT (Nonius, 1998), DENZO/SCALEPACK (Otwinowski & Minor, 1997), SIR2004 (Burla et al., 2005), SHELXL97 (Sheldrick, 2008), DIAMOND (Brandenburg, 1999).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O9—H9A···O7i0.841.942.742 (2)159
O9—H9B···O4ii0.851.902.717 (2)162
O10—H10A···O30.861.882.725 (2)166
O10—H10B···O4iii0.912.122.993 (2)159
Symmetry codes: (i) x1, y, z; (ii) x1, y, z+1/2; (iii) x, y, z+1/2.
 

Acknowledgements

Financial support from the State Fund for Fundamental Research of Ukraine (grant No. F40.3/041) and the Russian Foundation for Basic Research (grant No. 11-03-90417) is gratefully acknowledged.

References

First citationBrandenburg, K. (1999). DIAMOND. Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationBurla, M. C., Caliandro, R., Camalli, M., Carrozzini, B., Cascarano, G. L., De Caro, L., Giacovazzo, C., Polidori, G. & Spagna, R. (2005). J. Appl. Cryst. 38, 381–388.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationDobosz, A., Dudarenko, N. M., Fritsky, I. O., Głowiak, T., Karaczyn, A., Kozłowski, H., Sliva, T. Yu. & Świątek-Kozłowska, J. (1999). J. Chem. Soc. Dalton Trans. pp. 743–749.  Web of Science CSD CrossRef Google Scholar
First citationFlack, H. D. (1983). Acta Cryst. A39, 876–881.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationFritsky, I. O., Ott, R., Pritzkow, H. & Krämer, R. (2001). Chem. Eur. J. 7, 1221–1231.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationKrämer, R. & Fritsky, I. O. (2000). Eur. J. Org. Chem. pp. 3505–3510.  Google Scholar
First citationMokhir, A. A., Gumienna-Kontecka, E. S., Świątek-Kozłowska, J., Petkova, E. G., Fritsky, I. O., Jerzykiewicz, L., Kapshuk, A. A. & Sliva, T. Yu. (2002). Inorg. Chim. Acta, 329, 113–121.  Web of Science CSD CrossRef CAS Google Scholar
First citationMoroz, Y. S., Szyrweil, L., Demeshko, S., Kozłowski, H., Meyer, F. & Fritsky, I. O. (2010). Inorg. Chem. 49, 4750–4752.  Web of Science CSD CrossRef CAS PubMed Google Scholar
First citationNonius (1998). COLLECT. Nonius BV, Delft, The Netherlands.  Google Scholar
First citationOtwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307–326. New York: Academic Press.  Google Scholar
First citationSachse, A., Penkova, L., Noel, G., Dechert, S., Varzatskii, O. A., Fritsky, I. O. & Meyer, F. (2008). Synthesis, 5, 800–806.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSliva, T. Yu., Kowalik-Jankowska, T., Amirkhanov, V. M., Głowiak, T., Onindo, C. O., Fritsky, I. O. & Kozłowski, H. (1997). J. Inorg. Biochem. 65, 287–294.  CSD CrossRef CAS Web of Science Google Scholar
First citationŚwiątek-Kozłowska, J., Fritsky, I. O., Dobosz, A., Karaczyn, A., Dudarenko, N. M., Sliva, T. Yu., Gumienna-Kontecka, E. & Jerzykiewicz, L. (2000). J. Chem. Soc. Dalton Trans. pp. 4064–4068.  Google Scholar
First citationŚwiątek-Kozłowska, J., Gumienna-Kontecka, E., Dobosz, A., Golenya, I. A. & Fritsky, I. O. (2002). J. Chem. Soc. Dalton Trans. pp. 4639–4643.  Google Scholar
First citationWörl, S., Fritsky, I. O., Hellwinkel, D., Pritzkow, H. & Krämer, R. (2005a). Eur. J. Inorg. Chem. pp. 759–765.  Google Scholar
First citationWörl, S., Pritzkow, H., Fritsky, I. O. & Krämer, R. (2005b). Dalton Trans. pp. 27–29.  Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds