metal-organic compounds
Poly[di-μ2-aqua-μ5-(pyridine-2,6-dicarboxylato)-μ3-(pyridine-2,6-dicarboxylato)-cobalt(II)disodium]
aKiev National Taras Shevchenko University, Department of Chemistry, Volodymyrska Street 64, 01601 Kiev, Ukraine, bDepartment of Chemistry, St Petersburg State University, Universitetsky Pr. 26, 198504 Stary Petergof, Russian Federation, cUniversity of Joensuu, Department of Chemistry, PO Box 111, FI-80101 Joensuu, Finland, and dKyiv National University of Construction and Architecture, Department of Chemistry, Povitroflotsky Avenue 31, 03680 Kiev, Ukraine
*Correspondence e-mail: igolenya@ua.fm
In the title compound, [CoNa2(C7H3NO4)2(H2O)2]n, the CoII atom is coordinated by two pyridine N atoms and four carboxylate O atoms from two doubly deprotonated pyridine-2,6-dicarboxylate ligands in a distorted octahedral geometry. One Na+ cation is coordinated by three carboxylate O atoms and two water molecules and the other is coordinated by five carboxylate O atoms and two water molecules in an irregular geometry. The bis(pyridine-2,6-dicarboxylato)cobalt complex units are connected by Na+ cations and bridging water molecules into a three-dimensional coordination network. O—H⋯O hydrogen bonds are formed between the water molecules and the carboxylate O atoms.
Related literature
For hydrolytic decomposition of hydroxamate ligands upon complex formation, see: Dobosz et al. (1999); Świątek-Kozłowska et al. (2000). For related structures, see: Fritsky et al. (2001); Krämer & Fritsky (2000); Mokhir et al. (2002); Moroz et al. (2010); Sachse et al. (2008); Sliva et al. (1997); Wörl et al. (2005a,b). For the preparation of the ligand, see: Świątek-Kozłowska et al. (2002).
Experimental
Crystal data
|
Data collection: COLLECT (Nonius, 1998); cell DENZO/SCALEPACK (Otwinowski & Minor, 1997); data reduction: DENZO/SCALEPACK; program(s) used to solve structure: SIR2004 (Burla et al., 2005); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: DIAMOND (Brandenburg, 1999); software used to prepare material for publication: SHELXL97.
Supporting information
https://doi.org/10.1107/S1600536811048252/hy2486sup1.cif
contains datablocks I, global. DOI:Structure factors: contains datablock I. DOI: https://doi.org/10.1107/S1600536811048252/hy2486Isup2.hkl
Cobalt(II) perchlorate hexahydrate (0.0365 g, 0.1 mmol) was dissolved in methanol (5 ml) and mixed with a solution of pyridine-2,6-dihydroxamic acid (0.0197 g, 0.1 mmol) synthesized according to Świątek-Kozłowska et al. (2002) in H2O, and then to the obtained mixture solution sodium hydroxide (0.1 M, 1 ml) was added. The mixture was stirred for 30 min and filtered. The insoluble material was dissolved in DMSO (3 ml) and set aside for crystallization by slow diffusion of isopropanol vapours into the formed solution. The greenish yellow crystals formed in 5–7 days were filtered off, washed with isopropanol and dried (yield: 78%).
The water H atoms were located from a difference Fourier map and constrained to ride on their parent atom, with Uiso(H) = 1.5Ueq(O). Other H atoms were positioned geometrically and also constrained to ride on their parent atoms, with C—H = 0.95 Å and Uiso(H) = 1.2Ueq(C). The highest peak is located 1.59 Å from atom O3 and the deepest hole is located 0.66 Å from atom Co1.
Hydroxamic acids are widely used in synthesis of polynuclear compounds and coordination polymers. However, when the synthesis is conducted in alkaline conditions, hydrolytic decomposition of the hydroxamate function resulting in the formation of carboxylic groups sometimes occurs (Dobosz et al., 1999; Świątek-Kozłowska et al., 2000). Herein we report the
of the title compound obtained as a result of hydrolytic decomposition of pyridine-2,6-dihydroxamic acid in the course of formation of the anionic complex with cobalt(II) in the presence of sodium hydroxide.In the title compound, the CoII atom is coordinated by two pyridine N atoms and four carboxylate O atoms from two doubly deprotonated pyridine-2,6-dicarboxylate ligands in a distorted octahedral geometry (Fig. 1). The Co—O bond lengths are in a range of 2.1235 (17)–2.2065 (14) Å, which clearly indicates that the central ion is in bivalent state (Sliva et al., 1997). The Na ions are coordinated by O atoms of pyridine-2,6-dicarboxylate ligands and two water molecules in irregular geometries. Na1 atom is in a strongly distorted square-pyramidal environment, while Na2 atom exhibits a
7 and its geometry approaches to a distorted pentagonal-bipyramidal. The Na—O bond lengths lie in a range of 2.2756 (11)–2.7557 (17) Å, which is normal for sodium ions (Mokhir et al., 2002; Świątek-Kozłowska et al., 2000). The C9—O3 and C9—O7 bond lengths [1.284 (2) and 1.240 (2) Å] are typical for a monodentately coordinated carboxylate (Wörl et al., 2005a,b). The C—N and C—C bond lengths in the pyridine rings are normal for 2-substituted pyridine derivatives (Fritsky et al., 2001; Krämer & Fritsky, 2000; Moroz et al., 2010; Sachse et al., 2008).In the crystal packing (Fig. 2), the bis(pyridine-2,6-dicarboxylato)cobalt(II) complex units are connected by the sodium ions and water molecules into a three-dimensional coordination network. The two water molecules bridge the sodium ions and form intermolecular hydrogen bonds (Table 1).
For hydrolytic decomposition of hydroxamate ligands upon complex formation, see: Dobosz et al. (1999); Świątek-Kozłowska et al. (2000). For related structures, see: Fritsky et al. (2001); Krämer & Fritsky (2000); Mokhir et al. (2002); Moroz et al. (2010); Sachse et al. (2008); Sliva et al. (1997); Wörl et al. (2005a,b). For the preparation of the ligand, see: Świątek-Kozłowska et al. (2002).
Data collection: COLLECT (Nonius, 1998); cell
DENZO/SCALEPACK (Otwinowski & Minor, 1997); data reduction: DENZO/SCALEPACK (Otwinowski & Minor, 1997); program(s) used to solve structure: SIR2004 (Burla et al., 2005); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: DIAMOND (Brandenburg, 1999); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).[CoNa2(C7H3NO4)2(H2O)2] | F(000) = 948 |
Mr = 471.15 | Dx = 1.965 Mg m−3 |
Orthorhombic, Pna21 | Mo Kα radiation, λ = 0.71073 Å |
Hall symbol: P 2c -2n | Cell parameters from 14413 reflections |
a = 7.9540 (3) Å | θ = 1.0–27.5° |
b = 13.2187 (3) Å | µ = 1.20 mm−1 |
c = 15.1475 (3) Å | T = 120 K |
V = 1592.63 (8) Å3 | Block, green-yellow |
Z = 4 | 0.17 × 0.10 × 0.06 mm |
Nonius KappaCCD diffractometer | 3640 independent reflections |
Radiation source: fine-focus sealed tube | 3388 reflections with I > 2σ(I) |
Horizontally mounted graphite crystal monochromator | Rint = 0.037 |
Detector resolution: 9 pixels mm-1 | θmax = 27.5°, θmin = 3.1° |
φ and ω scans with κ offset | h = −10→10 |
Absorption correction: multi-scan (DENZO/SCALEPACK; Otwinowski & Minor, 1997) | k = −17→15 |
Tmin = 0.826, Tmax = 0.931 | l = −19→19 |
22979 measured reflections |
Refinement on F2 | Secondary atom site location: difference Fourier map |
Least-squares matrix: full | Hydrogen site location: mixed |
R[F2 > 2σ(F2)] = 0.023 | H-atom parameters constrained |
wR(F2) = 0.054 | w = 1/[σ2(Fo2) + (0.0247P)2 + 0.349P] where P = (Fo2 + 2Fc2)/3 |
S = 1.07 | (Δ/σ)max < 0.001 |
3640 reflections | Δρmax = 0.30 e Å−3 |
264 parameters | Δρmin = −0.32 e Å−3 |
1 restraint | Absolute structure: Flack (1983), 1749 Friedel pairs |
Primary atom site location: structure-invariant direct methods | Absolute structure parameter: 0.017 (10) |
[CoNa2(C7H3NO4)2(H2O)2] | V = 1592.63 (8) Å3 |
Mr = 471.15 | Z = 4 |
Orthorhombic, Pna21 | Mo Kα radiation |
a = 7.9540 (3) Å | µ = 1.20 mm−1 |
b = 13.2187 (3) Å | T = 120 K |
c = 15.1475 (3) Å | 0.17 × 0.10 × 0.06 mm |
Nonius KappaCCD diffractometer | 3640 independent reflections |
Absorption correction: multi-scan (DENZO/SCALEPACK; Otwinowski & Minor, 1997) | 3388 reflections with I > 2σ(I) |
Tmin = 0.826, Tmax = 0.931 | Rint = 0.037 |
22979 measured reflections |
R[F2 > 2σ(F2)] = 0.023 | H-atom parameters constrained |
wR(F2) = 0.054 | Δρmax = 0.30 e Å−3 |
S = 1.07 | Δρmin = −0.32 e Å−3 |
3640 reflections | Absolute structure: Flack (1983), 1749 Friedel pairs |
264 parameters | Absolute structure parameter: 0.017 (10) |
1 restraint |
x | y | z | Uiso*/Ueq | ||
Co1 | −0.05451 (3) | −0.010675 (17) | 0.25557 (2) | 0.01076 (7) | |
Na1 | −0.07221 (11) | 0.28100 (6) | 0.49042 (5) | 0.01966 (19) | |
Na2 | −0.26548 (10) | 0.06445 (7) | 0.52208 (6) | 0.0212 (2) | |
O1 | −0.24152 (18) | 0.05370 (10) | 0.34732 (9) | 0.0146 (3) | |
O2 | 0.1115 (2) | 0.00400 (10) | 0.14651 (11) | 0.0163 (4) | |
O3 | 0.1244 (2) | −0.00136 (10) | 0.36280 (10) | 0.0141 (3) | |
O4 | −0.21550 (19) | −0.09844 (10) | 0.16519 (10) | 0.0158 (3) | |
O5 | −0.30854 (18) | 0.20122 (10) | 0.41058 (9) | 0.0162 (3) | |
O6 | 0.18157 (18) | 0.10750 (11) | 0.03583 (9) | 0.0183 (3) | |
O7 | 0.23230 (19) | −0.09423 (11) | 0.47351 (9) | 0.0180 (3) | |
O8 | −0.2541 (2) | −0.25677 (11) | 0.11508 (9) | 0.0188 (3) | |
O9 | −0.55522 (17) | 0.05090 (11) | 0.53885 (10) | 0.0160 (3) | |
H9A | −0.5987 | 0.0012 | 0.5123 | 0.024* | |
H9B | −0.6164 | 0.0561 | 0.5846 | 0.024* | |
O10 | 0.01645 (19) | 0.11758 (10) | 0.49835 (10) | 0.0164 (3) | |
H10A | 0.0629 | 0.0876 | 0.4541 | 0.025* | |
H10B | 0.0745 | 0.0949 | 0.5461 | 0.025* | |
N1 | −0.0691 (2) | 0.13931 (12) | 0.22358 (10) | 0.0109 (3) | |
N2 | −0.0236 (2) | −0.15690 (12) | 0.29271 (11) | 0.0112 (3) | |
C1 | −0.1490 (2) | 0.20301 (14) | 0.27769 (12) | 0.0120 (4) | |
C2 | −0.2419 (2) | 0.14940 (15) | 0.35081 (13) | 0.0126 (4) | |
C3 | −0.1404 (2) | 0.30715 (14) | 0.26432 (15) | 0.0158 (4) | |
H3 | −0.1946 | 0.3527 | 0.3036 | 0.019* | |
C4 | −0.0503 (3) | 0.34270 (15) | 0.19181 (14) | 0.0153 (4) | |
H4 | −0.0429 | 0.4134 | 0.1812 | 0.018* | |
C5 | 0.0285 (3) | 0.27576 (16) | 0.13529 (14) | 0.0151 (4) | |
H5 | 0.0879 | 0.2992 | 0.0849 | 0.018* | |
C6 | 0.0182 (3) | 0.17334 (15) | 0.15435 (13) | 0.0121 (4) | |
C7 | 0.1110 (3) | 0.09008 (15) | 0.10677 (13) | 0.0136 (4) | |
C8 | 0.0704 (3) | −0.17728 (16) | 0.36365 (13) | 0.0121 (4) | |
C9 | 0.1491 (3) | −0.08438 (15) | 0.40480 (13) | 0.0136 (4) | |
C10 | 0.0974 (3) | −0.27604 (15) | 0.39155 (14) | 0.0153 (4) | |
H10 | 0.1621 | −0.2900 | 0.4429 | 0.018* | |
C11 | 0.0270 (3) | −0.35394 (15) | 0.34216 (13) | 0.0149 (4) | |
H11 | 0.0446 | −0.4222 | 0.3594 | 0.018* | |
C12 | −0.0685 (2) | −0.33259 (14) | 0.26795 (15) | 0.0148 (4) | |
H12 | −0.1161 | −0.3854 | 0.2335 | 0.018* | |
C13 | −0.0928 (2) | −0.23155 (14) | 0.24533 (14) | 0.0120 (4) | |
C14 | −0.1961 (3) | −0.19475 (15) | 0.16881 (13) | 0.0131 (4) |
U11 | U22 | U33 | U12 | U13 | U23 | |
Co1 | 0.01387 (12) | 0.00901 (11) | 0.00941 (12) | 0.00019 (9) | 0.00036 (12) | 0.00034 (13) |
Na1 | 0.0260 (5) | 0.0149 (4) | 0.0181 (4) | −0.0034 (3) | 0.0049 (3) | −0.0026 (3) |
Na2 | 0.0140 (4) | 0.0243 (5) | 0.0251 (4) | 0.0016 (3) | 0.0007 (4) | 0.0109 (4) |
O1 | 0.0164 (8) | 0.0128 (7) | 0.0147 (7) | −0.0013 (6) | 0.0015 (6) | 0.0004 (6) |
O2 | 0.0214 (9) | 0.0125 (8) | 0.0151 (9) | 0.0016 (6) | 0.0058 (7) | 0.0001 (6) |
O3 | 0.0164 (9) | 0.0130 (8) | 0.0130 (9) | −0.0006 (6) | −0.0009 (7) | −0.0006 (5) |
O4 | 0.0194 (8) | 0.0142 (7) | 0.0137 (7) | −0.0007 (6) | −0.0030 (6) | 0.0014 (6) |
O5 | 0.0180 (8) | 0.0181 (7) | 0.0124 (7) | 0.0024 (6) | 0.0024 (6) | −0.0020 (6) |
O6 | 0.0217 (8) | 0.0203 (8) | 0.0130 (7) | −0.0022 (6) | 0.0057 (6) | 0.0004 (6) |
O7 | 0.0194 (8) | 0.0201 (8) | 0.0145 (8) | 0.0017 (6) | −0.0067 (6) | −0.0003 (6) |
O8 | 0.0254 (8) | 0.0168 (8) | 0.0141 (7) | −0.0049 (6) | −0.0050 (6) | −0.0016 (6) |
O9 | 0.0162 (7) | 0.0137 (7) | 0.0181 (7) | −0.0016 (6) | 0.0037 (6) | −0.0029 (6) |
O10 | 0.0184 (8) | 0.0186 (7) | 0.0120 (7) | 0.0018 (6) | −0.0001 (6) | −0.0010 (6) |
N1 | 0.0121 (9) | 0.0111 (8) | 0.0095 (7) | 0.0003 (7) | −0.0010 (6) | −0.0010 (6) |
N2 | 0.0117 (8) | 0.0112 (8) | 0.0108 (8) | 0.0002 (7) | 0.0008 (6) | 0.0001 (6) |
C1 | 0.0104 (9) | 0.0138 (9) | 0.0118 (10) | 0.0012 (8) | −0.0021 (7) | −0.0012 (7) |
C2 | 0.0118 (10) | 0.0154 (10) | 0.0106 (9) | 0.0019 (8) | −0.0016 (8) | −0.0011 (8) |
C3 | 0.0164 (9) | 0.0128 (8) | 0.0180 (11) | 0.0029 (7) | −0.0012 (9) | −0.0014 (9) |
C4 | 0.0182 (11) | 0.0090 (9) | 0.0185 (10) | 0.0005 (8) | −0.0042 (8) | 0.0049 (8) |
C5 | 0.0162 (11) | 0.0169 (10) | 0.0123 (10) | −0.0014 (8) | −0.0024 (8) | 0.0045 (8) |
C6 | 0.0115 (10) | 0.0136 (10) | 0.0114 (10) | −0.0008 (8) | −0.0011 (8) | −0.0006 (8) |
C7 | 0.0121 (10) | 0.0163 (10) | 0.0125 (10) | −0.0029 (8) | −0.0009 (8) | −0.0016 (8) |
C8 | 0.0105 (11) | 0.0145 (10) | 0.0111 (10) | 0.0005 (7) | 0.0029 (7) | 0.0008 (8) |
C9 | 0.0112 (10) | 0.0160 (10) | 0.0137 (10) | 0.0021 (8) | 0.0023 (8) | 0.0001 (8) |
C10 | 0.0152 (10) | 0.0158 (11) | 0.0150 (10) | 0.0030 (8) | 0.0025 (8) | 0.0040 (8) |
C11 | 0.0165 (11) | 0.0116 (10) | 0.0167 (10) | 0.0039 (8) | 0.0025 (8) | 0.0040 (8) |
C12 | 0.0167 (10) | 0.0115 (8) | 0.0163 (11) | −0.0002 (7) | 0.0064 (8) | −0.0033 (8) |
C13 | 0.0124 (9) | 0.0128 (8) | 0.0108 (10) | 0.0001 (7) | 0.0029 (8) | −0.0025 (8) |
C14 | 0.0134 (10) | 0.0140 (9) | 0.0119 (9) | −0.0006 (8) | 0.0038 (8) | 0.0036 (8) |
Co1—N2 | 2.0281 (16) | O9—H9A | 0.8440 |
Co1—N1 | 2.0443 (17) | O9—H9B | 0.8492 |
Co1—O2 | 2.1235 (17) | O10—H10A | 0.8618 |
Co1—O3 | 2.1631 (17) | O10—H10B | 0.9091 |
Co1—O4 | 2.2044 (15) | N1—C6 | 1.336 (3) |
Co1—O1 | 2.2065 (14) | N1—C1 | 1.336 (2) |
Na1—O10 | 2.2757 (16) | N2—C8 | 1.337 (3) |
Na1—O9i | 2.3439 (16) | N2—C13 | 1.339 (2) |
Na1—O8ii | 2.3924 (16) | C1—C3 | 1.393 (3) |
Na1—O5i | 2.4324 (16) | C1—C2 | 1.508 (3) |
Na1—O5 | 2.4715 (16) | C3—C4 | 1.393 (3) |
Na2—O9 | 2.3254 (16) | C3—H3 | 0.9500 |
Na2—O10 | 2.3772 (17) | C4—C5 | 1.382 (3) |
Na2—O6iii | 2.3780 (17) | C4—H4 | 0.9500 |
Na2—O2iii | 2.4232 (18) | C5—C6 | 1.387 (3) |
Na2—O5 | 2.4978 (16) | C5—H5 | 0.9500 |
Na2—O1 | 2.6579 (17) | C6—C7 | 1.508 (3) |
Na2—O8ii | 2.7557 (17) | C8—C10 | 1.389 (3) |
O1—C2 | 1.266 (2) | C8—C9 | 1.513 (3) |
O2—C7 | 1.287 (2) | C10—C11 | 1.391 (3) |
O3—C9 | 1.284 (2) | C10—H10 | 0.9500 |
O4—C14 | 1.284 (2) | C11—C12 | 1.386 (3) |
O5—C2 | 1.253 (2) | C11—H11 | 0.9500 |
O6—C7 | 1.234 (2) | C12—C13 | 1.392 (3) |
O7—C9 | 1.240 (2) | C12—H12 | 0.9500 |
O8—C14 | 1.244 (2) | C13—C14 | 1.502 (3) |
N2—Co1—N1 | 175.53 (7) | C14—O8—Na2vi | 151.48 (14) |
N2—Co1—O2 | 103.15 (6) | Na1vi—O8—Na2vi | 78.94 (5) |
N1—Co1—O2 | 76.24 (6) | Na2—O9—Na1v | 87.13 (5) |
N2—Co1—O3 | 76.47 (6) | Na2—O9—H9A | 114.5 |
N1—Co1—O3 | 99.21 (6) | Na1v—O9—H9A | 124.4 |
O2—Co1—O3 | 99.78 (5) | Na2—O9—H9B | 130.6 |
N2—Co1—O4 | 75.00 (6) | Na1v—O9—H9B | 98.4 |
N1—Co1—O4 | 109.28 (6) | H9A—O9—H9B | 102.5 |
O2—Co1—O4 | 85.76 (6) | Na1—O10—Na2 | 89.78 (6) |
O3—Co1—O4 | 151.46 (5) | Na1—O10—H10A | 121.9 |
N2—Co1—O1 | 105.94 (6) | Na2—O10—H10A | 112.7 |
N1—Co1—O1 | 74.76 (6) | Na1—O10—H10B | 120.8 |
O2—Co1—O1 | 150.91 (5) | Na2—O10—H10B | 105.1 |
O3—Co1—O1 | 87.05 (6) | H10A—O10—H10B | 104.4 |
O4—Co1—O1 | 101.68 (5) | C6—N1—C1 | 121.13 (17) |
O10—Na1—O9i | 149.94 (7) | C6—N1—Co1 | 118.90 (13) |
O10—Na1—O8ii | 86.51 (6) | C1—N1—Co1 | 119.52 (13) |
O9i—Na1—O8ii | 89.09 (5) | C8—N2—C13 | 120.84 (17) |
O10—Na1—O5i | 81.42 (6) | C8—N2—Co1 | 118.88 (14) |
O9i—Na1—O5i | 90.82 (5) | C13—N2—Co1 | 120.26 (13) |
O8ii—Na1—O5i | 155.57 (6) | N1—C1—C3 | 120.67 (17) |
O10—Na1—O5 | 81.75 (5) | N1—C1—C2 | 112.81 (17) |
O9i—Na1—O5 | 126.98 (6) | C3—C1—C2 | 126.53 (17) |
O8ii—Na1—O5 | 81.84 (5) | O5—C2—O1 | 125.27 (18) |
O5i—Na1—O5 | 116.98 (6) | O5—C2—C1 | 118.75 (17) |
O9—Na2—O10 | 166.94 (6) | O1—C2—C1 | 115.96 (17) |
O9—Na2—O6iii | 101.24 (6) | C1—C3—C4 | 118.24 (18) |
O10—Na2—O6iii | 91.77 (5) | C1—C3—H3 | 120.9 |
O9—Na2—O2iii | 112.79 (7) | C4—C3—H3 | 120.9 |
O10—Na2—O2iii | 75.58 (6) | C5—C4—C3 | 120.39 (19) |
O6iii—Na2—O2iii | 55.47 (5) | C5—C4—H4 | 119.8 |
O9—Na2—O5 | 89.64 (6) | C3—C4—H4 | 119.8 |
O10—Na2—O5 | 79.24 (5) | C4—C5—C6 | 118.01 (19) |
O6iii—Na2—O5 | 142.14 (6) | C4—C5—H5 | 121.0 |
O2iii—Na2—O5 | 149.95 (6) | C6—C5—H5 | 121.0 |
O9—Na2—O1 | 100.12 (6) | N1—C6—C5 | 121.52 (19) |
O10—Na2—O1 | 78.32 (5) | N1—C6—C7 | 112.57 (17) |
O6iii—Na2—O1 | 90.91 (5) | C5—C6—C7 | 125.74 (19) |
O2iii—Na2—O1 | 135.93 (6) | O6—C7—O2 | 124.80 (19) |
O5—Na2—O1 | 51.32 (4) | O6—C7—C6 | 120.17 (18) |
O9—Na2—O8ii | 93.80 (6) | O2—C7—C6 | 115.02 (17) |
O10—Na2—O8ii | 76.74 (5) | N2—C8—C10 | 121.37 (19) |
O6iii—Na2—O8ii | 139.38 (6) | N2—C8—C9 | 113.53 (17) |
O2iii—Na2—O8ii | 83.92 (6) | C10—C8—C9 | 125.01 (19) |
O5—Na2—O8ii | 74.50 (5) | O7—C9—O3 | 125.97 (19) |
O1—Na2—O8ii | 123.43 (5) | O7—C9—C8 | 118.77 (18) |
C7iii—Na2—O8ii | 112.28 (6) | O3—C9—C8 | 115.24 (17) |
C2—O1—Co1 | 114.40 (12) | C8—C10—C11 | 118.04 (19) |
C2—O1—Na2 | 84.54 (11) | C8—C10—H10 | 121.0 |
Co1—O1—Na2 | 134.13 (6) | C11—C10—H10 | 121.0 |
C7—O2—Co1 | 116.28 (13) | C12—C11—C10 | 120.42 (18) |
C7—O2—Na2iv | 88.16 (12) | C12—C11—H11 | 119.8 |
Co1—O2—Na2iv | 152.28 (7) | C10—C11—H11 | 119.8 |
C9—O3—Co1 | 115.10 (13) | C11—C12—C13 | 118.10 (19) |
C14—O4—Co1 | 115.19 (13) | C11—C12—H12 | 121.0 |
C2—O5—Na1v | 140.98 (13) | C13—C12—H12 | 121.0 |
C2—O5—Na1 | 105.37 (12) | N2—C13—C12 | 121.21 (18) |
Na1v—O5—Na1 | 111.79 (6) | N2—C13—C14 | 113.58 (16) |
C2—O5—Na2 | 92.00 (12) | C12—C13—C14 | 125.21 (18) |
Na1v—O5—Na2 | 81.48 (5) | O8—C14—O4 | 125.53 (19) |
Na1—O5—Na2 | 82.74 (5) | O8—C14—C13 | 119.63 (17) |
C7—O6—Na2iv | 91.47 (12) | O4—C14—C13 | 114.84 (17) |
C14—O8—Na1vi | 126.37 (13) |
Symmetry codes: (i) x+1/2, −y+1/2, z; (ii) −x−1/2, y+1/2, z+1/2; (iii) −x, −y, z+1/2; (iv) −x, −y, z−1/2; (v) x−1/2, −y+1/2, z; (vi) −x−1/2, y−1/2, z−1/2. |
D—H···A | D—H | H···A | D···A | D—H···A |
O9—H9A···O7vii | 0.84 | 1.94 | 2.742 (2) | 159 |
O9—H9B···O4viii | 0.85 | 1.90 | 2.717 (2) | 162 |
O10—H10A···O3 | 0.86 | 1.88 | 2.725 (2) | 166 |
O10—H10B···O4iii | 0.91 | 2.12 | 2.993 (2) | 159 |
Symmetry codes: (iii) −x, −y, z+1/2; (vii) x−1, y, z; (viii) −x−1, −y, z+1/2. |
Experimental details
Crystal data | |
Chemical formula | [CoNa2(C7H3NO4)2(H2O)2] |
Mr | 471.15 |
Crystal system, space group | Orthorhombic, Pna21 |
Temperature (K) | 120 |
a, b, c (Å) | 7.9540 (3), 13.2187 (3), 15.1475 (3) |
V (Å3) | 1592.63 (8) |
Z | 4 |
Radiation type | Mo Kα |
µ (mm−1) | 1.20 |
Crystal size (mm) | 0.17 × 0.10 × 0.06 |
Data collection | |
Diffractometer | Nonius KappaCCD |
Absorption correction | Multi-scan (DENZO/SCALEPACK; Otwinowski & Minor, 1997) |
Tmin, Tmax | 0.826, 0.931 |
No. of measured, independent and observed [I > 2σ(I)] reflections | 22979, 3640, 3388 |
Rint | 0.037 |
(sin θ/λ)max (Å−1) | 0.650 |
Refinement | |
R[F2 > 2σ(F2)], wR(F2), S | 0.023, 0.054, 1.07 |
No. of reflections | 3640 |
No. of parameters | 264 |
No. of restraints | 1 |
H-atom treatment | H-atom parameters constrained |
Δρmax, Δρmin (e Å−3) | 0.30, −0.32 |
Absolute structure | Flack (1983), 1749 Friedel pairs |
Absolute structure parameter | 0.017 (10) |
Computer programs: COLLECT (Nonius, 1998), DENZO/SCALEPACK (Otwinowski & Minor, 1997), SIR2004 (Burla et al., 2005), SHELXL97 (Sheldrick, 2008), DIAMOND (Brandenburg, 1999).
D—H···A | D—H | H···A | D···A | D—H···A |
O9—H9A···O7i | 0.84 | 1.94 | 2.742 (2) | 159 |
O9—H9B···O4ii | 0.85 | 1.90 | 2.717 (2) | 162 |
O10—H10A···O3 | 0.86 | 1.88 | 2.725 (2) | 166 |
O10—H10B···O4iii | 0.91 | 2.12 | 2.993 (2) | 159 |
Symmetry codes: (i) x−1, y, z; (ii) −x−1, −y, z+1/2; (iii) −x, −y, z+1/2. |
Acknowledgements
Financial support from the State Fund for Fundamental Research of Ukraine (grant No. F40.3/041) and the Russian Foundation for Basic Research (grant No. 11-03-90417) is gratefully acknowledged.
References
Brandenburg, K. (1999). DIAMOND. Crystal Impact GbR, Bonn, Germany. Google Scholar
Burla, M. C., Caliandro, R., Camalli, M., Carrozzini, B., Cascarano, G. L., De Caro, L., Giacovazzo, C., Polidori, G. & Spagna, R. (2005). J. Appl. Cryst. 38, 381–388. Web of Science CrossRef CAS IUCr Journals Google Scholar
Dobosz, A., Dudarenko, N. M., Fritsky, I. O., Głowiak, T., Karaczyn, A., Kozłowski, H., Sliva, T. Yu. & Świątek-Kozłowska, J. (1999). J. Chem. Soc. Dalton Trans. pp. 743–749. Web of Science CSD CrossRef Google Scholar
Flack, H. D. (1983). Acta Cryst. A39, 876–881. CrossRef CAS Web of Science IUCr Journals Google Scholar
Fritsky, I. O., Ott, R., Pritzkow, H. & Krämer, R. (2001). Chem. Eur. J. 7, 1221–1231. Web of Science CSD CrossRef PubMed CAS Google Scholar
Krämer, R. & Fritsky, I. O. (2000). Eur. J. Org. Chem. pp. 3505–3510. Google Scholar
Mokhir, A. A., Gumienna-Kontecka, E. S., Świątek-Kozłowska, J., Petkova, E. G., Fritsky, I. O., Jerzykiewicz, L., Kapshuk, A. A. & Sliva, T. Yu. (2002). Inorg. Chim. Acta, 329, 113–121. Web of Science CSD CrossRef CAS Google Scholar
Moroz, Y. S., Szyrweil, L., Demeshko, S., Kozłowski, H., Meyer, F. & Fritsky, I. O. (2010). Inorg. Chem. 49, 4750–4752. Web of Science CSD CrossRef CAS PubMed Google Scholar
Nonius (1998). COLLECT. Nonius BV, Delft, The Netherlands. Google Scholar
Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307–326. New York: Academic Press. Google Scholar
Sachse, A., Penkova, L., Noel, G., Dechert, S., Varzatskii, O. A., Fritsky, I. O. & Meyer, F. (2008). Synthesis, 5, 800–806. Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Sliva, T. Yu., Kowalik-Jankowska, T., Amirkhanov, V. M., Głowiak, T., Onindo, C. O., Fritsky, I. O. & Kozłowski, H. (1997). J. Inorg. Biochem. 65, 287–294. CSD CrossRef CAS Web of Science Google Scholar
Świątek-Kozłowska, J., Fritsky, I. O., Dobosz, A., Karaczyn, A., Dudarenko, N. M., Sliva, T. Yu., Gumienna-Kontecka, E. & Jerzykiewicz, L. (2000). J. Chem. Soc. Dalton Trans. pp. 4064–4068. Google Scholar
Świątek-Kozłowska, J., Gumienna-Kontecka, E., Dobosz, A., Golenya, I. A. & Fritsky, I. O. (2002). J. Chem. Soc. Dalton Trans. pp. 4639–4643. Google Scholar
Wörl, S., Fritsky, I. O., Hellwinkel, D., Pritzkow, H. & Krämer, R. (2005a). Eur. J. Inorg. Chem. pp. 759–765. Google Scholar
Wörl, S., Pritzkow, H., Fritsky, I. O. & Krämer, R. (2005b). Dalton Trans. pp. 27–29. Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.
Hydroxamic acids are widely used in synthesis of polynuclear compounds and coordination polymers. However, when the synthesis is conducted in alkaline conditions, hydrolytic decomposition of the hydroxamate function resulting in the formation of carboxylic groups sometimes occurs (Dobosz et al., 1999; Świątek-Kozłowska et al., 2000). Herein we report the crystal structure of the title compound obtained as a result of hydrolytic decomposition of pyridine-2,6-dihydroxamic acid in the course of formation of the anionic complex with cobalt(II) in the presence of sodium hydroxide.
In the title compound, the CoII atom is coordinated by two pyridine N atoms and four carboxylate O atoms from two doubly deprotonated pyridine-2,6-dicarboxylate ligands in a distorted octahedral geometry (Fig. 1). The Co—O bond lengths are in a range of 2.1235 (17)–2.2065 (14) Å, which clearly indicates that the central ion is in bivalent state (Sliva et al., 1997). The Na ions are coordinated by O atoms of pyridine-2,6-dicarboxylate ligands and two water molecules in irregular geometries. Na1 atom is in a strongly distorted square-pyramidal environment, while Na2 atom exhibits a coordination number 7 and its geometry approaches to a distorted pentagonal-bipyramidal. The Na—O bond lengths lie in a range of 2.2756 (11)–2.7557 (17) Å, which is normal for sodium ions (Mokhir et al., 2002; Świątek-Kozłowska et al., 2000). The C9—O3 and C9—O7 bond lengths [1.284 (2) and 1.240 (2) Å] are typical for a monodentately coordinated carboxylate (Wörl et al., 2005a,b). The C—N and C—C bond lengths in the pyridine rings are normal for 2-substituted pyridine derivatives (Fritsky et al., 2001; Krämer & Fritsky, 2000; Moroz et al., 2010; Sachse et al., 2008).
In the crystal packing (Fig. 2), the bis(pyridine-2,6-dicarboxylato)cobalt(II) complex units are connected by the sodium ions and water molecules into a three-dimensional coordination network. The two water molecules bridge the sodium ions and form intermolecular hydrogen bonds (Table 1).