metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

cis-Aqua­bromidobis(di-2-pyridyl­amine-κ2N,N′)manganese(II) bromide

aSchool of Applied Chemical Engineering, The Research Institute of Catalysis, Chonnam National University, Gwangju 500-757, Republic of Korea
*Correspondence e-mail: hakwang@chonnam.ac.kr

(Received 7 November 2011; accepted 13 November 2011; online 19 November 2011)

In the title compound, [MnBr(C10H9N3)2(H2O)]Br, the MnII ion is six-coordinated in a considerably distorted cis-N4BrO octa­hedral environment defined by four N atoms of two chelating di-2-pyridyl­amine (dpa) ligands, one Br anion and one O atom of a water ligand. As a result of the different trans effects of Br, N and O atoms, the Mn—N bond trans to the Br atom is slightly longer than the Mn—N bond trans to the N or O atoms. In the crystal, the dpa ligands are not planar, the dihedral angles between the two pyridine rings being 29.2 (4) and 28.2 (3)°. The complex cations and the Br anions are linked by inter­molecular O—H⋯Br and N—H⋯Br hydrogen bonds. Inter­molecular ππ inter­actions are present between the pyridine rings, with a centroid–centroid distance of 3.793 (4) Å.

Related literature

For the structures of related MnII complexes with a di-2-pyridyl­amine ligand, see: Bose et al. (2005[Bose, D., Mostafa, G., Fun, H.-K. & Ghosh, B. K. (2005). Polyhedron, 24, 747-758.]).

[Scheme 1]

Experimental

Crystal data
  • [MnBr(C10H9N3)2(H2O)]Br

  • Mr = 575.18

  • Triclinic, [P \overline 1]

  • a = 8.3990 (15) Å

  • b = 10.0022 (18) Å

  • c = 13.613 (2) Å

  • α = 90.692 (4)°

  • β = 103.619 (4)°

  • γ = 98.556 (4)°

  • V = 1097.8 (3) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 4.27 mm−1

  • T = 200 K

  • 0.22 × 0.21 × 0.19 mm

Data collection
  • Bruker SMART 1000 CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2001[Bruker (2001). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.708, Tmax = 1.000

  • 6807 measured reflections

  • 4215 independent reflections

  • 2569 reflections with I > 2σ(I)

  • Rint = 0.049

Refinement
  • R[F2 > 2σ(F2)] = 0.057

  • wR(F2) = 0.174

  • S = 0.96

  • 4215 reflections

  • 271 parameters

  • H-atom parameters constrained

  • Δρmax = 1.02 e Å−3

  • Δρmin = −1.02 e Å−3

Table 1
Selected bond lengths (Å)

Mn1—O1 2.154 (6)
Mn1—N1 2.318 (6)
Mn1—N3 2.256 (5)
Mn1—N4 2.246 (6)
Mn1—N6 2.266 (6)
Mn1—Br1 2.6395 (13)

Table 2
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O1—H1A⋯Br2i 0.84 2.50 3.304 (5) 160
O1—H1B⋯Br1ii 0.84 2.44 3.272 (5) 171
N2—H2N⋯Br2iii 0.92 2.62 3.472 (6) 154
N5—H5N⋯Br2iv 0.92 2.63 3.503 (6) 159
Symmetry codes: (i) x-1, y, z; (ii) -x, -y+1, -z+1; (iii) -x+1, -y+1, -z; (iv) x-1, y+1, z.

Data collection: SMART (Bruker, 2007[Bruker (2007). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2007[Bruker (2007). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]) and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

Cationic MnII complexes of di-2-pyridylamine (dpa; C10H9N3) ligand, such as [MnX(dpa)2(H2O)]ClO4 (X = N3-, NCO-), have been investigated previously (Bose et al., 2005).

The asymmetric unit of the title compound, [MnBr(dpa)2(H2O)]Br, consists of a cationic MnII complex and a Br- anion (Fig. 1). In the complex, the MnII ion is six-coordinated in a considerably distorted cis-N4BrO octahedral environment defined by four N atoms of two chelating dpa ligands, one Br- anion and one O atom of a water ligand. The main contribution to the distortion is the tight N—Mn—N chelating angles, which results in non-linear trans axes [N3—Mn1—N4 = 165.8 (2) and O1—Mn1—N6 = 171.6 (2)°]. But, the apical Br1—Mn1—N1 bond is almost linear with a bond angle of 177.25 (15)°. The Mn—N(dpa) bond lengths are slightly different and longer than the Mn—O(H2O) bond (Table 1). As a result of the different trans effects of Br, N and O atoms, the Mn—N bond trans to the Br atom is somewhat longer than the Mn—N bond trans to the N or O atom. In the crystal structure, the dpa ligands are not planar. The dihedral angles between the two pyridine rings of dpa are 29.2 (4) and 28.2 (3)°. The complexes are stacked in columns along the a axis, and the components are linked by intermolecular O—H···Br and N—H···Br hydrogen bonds (Fig. 2, Table 2). Intermolecular ππ interactions between the pyridine rings are present, with a centroid–centroid distance of 3.793 (4) Å.

Related literature top

For the structures of related MnII complexes with a di-2-pyridylamine ligand, see: Bose et al. (2005).

Experimental top

To a solution of MnBr2.4H2O (0.2882 g, 1.005 mmol) in EtOH (30 ml) was added di-2-pyridylamine (0.3465 g, 2.024 mmol) and stirred for 3 h at room temperature. The formed precipitate was separated by filtration and washed with EtOH and acetone and dried at 50°C to give a white powder (0.4092 g). Crystals suitable for X-ray analysis were obtained by slow evaporation from a CH3NO2/MeOH solution.

Refinement top

C-bound H atoms were positioned geometrically and allowed to ride on their respective parent atoms [C—H = 0.95 Å and Uiso(H) = 1.2Ueq(C)]. N- and O-bound H atoms were located from difference Fourier maps and allowed to ride on their parent atoms in the final cycles of refinement, with N—H = 0.92, O—H = 0.84 Å and Uiso(H) = 1.5Ueq(N, O). The highest peak (1.02 e Å-3) and the deepest hole (-1.02 e Å-3) in the difference Fourier map are located 1.19 and 0.94 Å from atoms Br2 and Br1, respectively.

Structure description top

Cationic MnII complexes of di-2-pyridylamine (dpa; C10H9N3) ligand, such as [MnX(dpa)2(H2O)]ClO4 (X = N3-, NCO-), have been investigated previously (Bose et al., 2005).

The asymmetric unit of the title compound, [MnBr(dpa)2(H2O)]Br, consists of a cationic MnII complex and a Br- anion (Fig. 1). In the complex, the MnII ion is six-coordinated in a considerably distorted cis-N4BrO octahedral environment defined by four N atoms of two chelating dpa ligands, one Br- anion and one O atom of a water ligand. The main contribution to the distortion is the tight N—Mn—N chelating angles, which results in non-linear trans axes [N3—Mn1—N4 = 165.8 (2) and O1—Mn1—N6 = 171.6 (2)°]. But, the apical Br1—Mn1—N1 bond is almost linear with a bond angle of 177.25 (15)°. The Mn—N(dpa) bond lengths are slightly different and longer than the Mn—O(H2O) bond (Table 1). As a result of the different trans effects of Br, N and O atoms, the Mn—N bond trans to the Br atom is somewhat longer than the Mn—N bond trans to the N or O atom. In the crystal structure, the dpa ligands are not planar. The dihedral angles between the two pyridine rings of dpa are 29.2 (4) and 28.2 (3)°. The complexes are stacked in columns along the a axis, and the components are linked by intermolecular O—H···Br and N—H···Br hydrogen bonds (Fig. 2, Table 2). Intermolecular ππ interactions between the pyridine rings are present, with a centroid–centroid distance of 3.793 (4) Å.

For the structures of related MnII complexes with a di-2-pyridylamine ligand, see: Bose et al. (2005).

Computing details top

Data collection: SMART (Bruker, 2007); cell refinement: SAINT (Bruker, 2007); data reduction: SAINT (Bruker, 2007); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997) and PLATON (Spek, 2009); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound, with displacement ellipsoids drawn at the 30% probability level.
[Figure 2] Fig. 2. View of the crystal packing of the title compound. Hydrogen bonds are drawn with dashed lines.
cis-Aquabromidobis(di-2-pyridylamine- κ2N,N')manganese(II) bromide top
Crystal data top
[MnBr(C10H9N3)2(H2O)]BrZ = 2
Mr = 575.18F(000) = 570
Triclinic, P1Dx = 1.740 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 8.3990 (15) ÅCell parameters from 2405 reflections
b = 10.0022 (18) Åθ = 2.5–25.9°
c = 13.613 (2) ŵ = 4.27 mm1
α = 90.692 (4)°T = 200 K
β = 103.619 (4)°Block, colorless
γ = 98.556 (4)°0.22 × 0.21 × 0.19 mm
V = 1097.8 (3) Å3
Data collection top
Bruker SMART 1000 CCD
diffractometer
4215 independent reflections
Radiation source: fine-focus sealed tube2569 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.049
φ and ω scansθmax = 26.0°, θmin = 2.1°
Absorption correction: multi-scan
(SADABS; Bruker, 2001)
h = 109
Tmin = 0.708, Tmax = 1.000k = 1210
6807 measured reflectionsl = 1316
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.057Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.174H-atom parameters constrained
S = 0.96 w = 1/[σ2(Fo2) + (0.0886P)2]
where P = (Fo2 + 2Fc2)/3
4215 reflections(Δ/σ)max < 0.001
271 parametersΔρmax = 1.02 e Å3
0 restraintsΔρmin = 1.02 e Å3
Crystal data top
[MnBr(C10H9N3)2(H2O)]Brγ = 98.556 (4)°
Mr = 575.18V = 1097.8 (3) Å3
Triclinic, P1Z = 2
a = 8.3990 (15) ÅMo Kα radiation
b = 10.0022 (18) ŵ = 4.27 mm1
c = 13.613 (2) ÅT = 200 K
α = 90.692 (4)°0.22 × 0.21 × 0.19 mm
β = 103.619 (4)°
Data collection top
Bruker SMART 1000 CCD
diffractometer
4215 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2001)
2569 reflections with I > 2σ(I)
Tmin = 0.708, Tmax = 1.000Rint = 0.049
6807 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0570 restraints
wR(F2) = 0.174H-atom parameters constrained
S = 0.96Δρmax = 1.02 e Å3
4215 reflectionsΔρmin = 1.02 e Å3
271 parameters
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Mn10.07207 (13)0.66748 (11)0.32514 (7)0.0313 (3)
Br10.27645 (10)0.65301 (8)0.50321 (5)0.0403 (3)
O10.0809 (7)0.4759 (5)0.3301 (4)0.0525 (15)
H1A0.09810.42710.27690.079*
H1B0.13910.43830.36740.079*
N10.0969 (7)0.6794 (6)0.1652 (4)0.0330 (14)
N20.1133 (7)0.6848 (6)0.0779 (4)0.0372 (15)
H2N0.12560.67680.01280.056*
N30.2136 (7)0.5727 (6)0.2284 (4)0.0329 (14)
N40.0788 (7)0.7969 (6)0.3899 (4)0.0339 (14)
N50.0214 (7)0.9888 (6)0.2943 (4)0.0366 (15)
H5N0.09511.04400.26390.055*
N60.2054 (7)0.8730 (5)0.2987 (4)0.0327 (14)
C10.2490 (9)0.7091 (8)0.1666 (5)0.0403 (19)
H10.30090.67050.21680.048*
C20.3311 (11)0.7904 (9)0.1005 (6)0.051 (2)
H20.43970.80520.10180.062*
C30.2485 (11)0.8519 (9)0.0298 (6)0.053 (2)
H30.29510.91780.01280.064*
C40.1021 (11)0.8160 (8)0.0235 (6)0.047 (2)
H40.04900.85190.02700.057*
C50.0286 (9)0.7255 (7)0.0914 (5)0.0341 (17)
C60.2109 (9)0.5943 (7)0.1305 (5)0.0319 (16)
C70.3075 (9)0.5330 (8)0.0785 (6)0.0402 (19)
H70.29810.54440.00830.048*
C80.4167 (10)0.4554 (8)0.1323 (6)0.050 (2)
H80.48650.41500.09920.060*
C90.4269 (10)0.4354 (8)0.2317 (6)0.044 (2)
H90.50490.38400.26900.053*
C100.3202 (9)0.4921 (7)0.2772 (5)0.0377 (18)
H100.32160.47380.34560.045*
C110.1581 (10)0.7396 (8)0.4578 (5)0.0417 (19)
H110.14180.65070.47700.050*
C120.2624 (9)0.8039 (9)0.5012 (6)0.043 (2)
H120.32060.75910.54640.052*
C130.2780 (10)0.9345 (10)0.4761 (6)0.050 (2)
H130.34640.98230.50540.060*
C140.1948 (8)0.9969 (8)0.4084 (5)0.0361 (18)
H140.20411.08800.39220.043*
C150.0972 (8)0.9252 (7)0.3641 (5)0.0322 (17)
C160.1330 (9)0.9824 (7)0.2764 (5)0.0346 (17)
C170.2081 (10)1.0955 (8)0.2350 (5)0.0398 (19)
H170.15301.17150.21850.048*
C180.3648 (10)1.0939 (8)0.2186 (5)0.0429 (19)
H180.41791.16820.18930.051*
C190.4427 (9)0.9823 (8)0.2456 (5)0.0402 (19)
H190.55050.97920.23600.048*
C200.3607 (9)0.8760 (8)0.2867 (5)0.0376 (18)
H200.41610.80130.30760.045*
Br20.78643 (10)0.23349 (8)0.14966 (5)0.0421 (3)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Mn10.0396 (7)0.0264 (6)0.0306 (6)0.0082 (5)0.0117 (5)0.0025 (4)
Br10.0467 (5)0.0432 (5)0.0329 (4)0.0121 (4)0.0100 (3)0.0078 (3)
O10.081 (4)0.044 (3)0.036 (3)0.009 (3)0.031 (3)0.003 (2)
N10.036 (3)0.031 (3)0.031 (3)0.001 (3)0.008 (3)0.003 (3)
N20.049 (4)0.045 (4)0.023 (3)0.018 (3)0.014 (3)0.005 (3)
N30.041 (4)0.027 (3)0.033 (3)0.010 (3)0.010 (3)0.001 (2)
N40.036 (3)0.035 (4)0.030 (3)0.006 (3)0.005 (3)0.001 (3)
N50.032 (3)0.040 (4)0.039 (3)0.014 (3)0.007 (3)0.010 (3)
N60.037 (4)0.022 (3)0.037 (3)0.008 (3)0.004 (3)0.002 (2)
C10.034 (4)0.046 (5)0.038 (4)0.003 (4)0.005 (3)0.013 (4)
C20.048 (5)0.073 (7)0.034 (4)0.021 (5)0.004 (4)0.011 (4)
C30.063 (6)0.055 (6)0.043 (5)0.034 (5)0.001 (4)0.004 (4)
C40.064 (6)0.043 (5)0.038 (4)0.019 (4)0.011 (4)0.002 (4)
C50.051 (5)0.028 (4)0.025 (3)0.013 (3)0.008 (3)0.000 (3)
C60.040 (4)0.024 (4)0.032 (4)0.005 (3)0.009 (3)0.001 (3)
C70.041 (5)0.045 (5)0.036 (4)0.006 (4)0.012 (3)0.008 (3)
C80.048 (5)0.045 (5)0.056 (5)0.010 (4)0.009 (4)0.007 (4)
C90.049 (5)0.033 (5)0.052 (5)0.018 (4)0.009 (4)0.001 (4)
C100.054 (5)0.031 (4)0.035 (4)0.012 (4)0.020 (4)0.009 (3)
C110.053 (5)0.041 (5)0.031 (4)0.010 (4)0.008 (4)0.001 (3)
C120.035 (4)0.063 (6)0.037 (4)0.010 (4)0.017 (3)0.004 (4)
C130.034 (5)0.075 (7)0.042 (5)0.023 (4)0.004 (4)0.014 (4)
C140.025 (4)0.042 (5)0.038 (4)0.007 (3)0.001 (3)0.006 (3)
C150.030 (4)0.030 (4)0.033 (4)0.009 (3)0.001 (3)0.000 (3)
C160.045 (5)0.026 (4)0.027 (4)0.008 (3)0.007 (3)0.004 (3)
C170.051 (5)0.031 (4)0.034 (4)0.013 (4)0.001 (4)0.008 (3)
C180.051 (5)0.029 (4)0.041 (4)0.002 (4)0.000 (4)0.004 (3)
C190.031 (4)0.056 (5)0.032 (4)0.002 (4)0.007 (3)0.004 (4)
C200.036 (4)0.038 (5)0.038 (4)0.011 (4)0.006 (3)0.003 (3)
Br20.0507 (5)0.0409 (5)0.0388 (4)0.0156 (4)0.0133 (4)0.0053 (3)
Geometric parameters (Å, º) top
Mn1—O12.154 (6)C3—H30.9500
Mn1—N12.318 (6)C4—C51.405 (10)
Mn1—N32.256 (5)C4—H40.9500
Mn1—N42.246 (6)C6—C71.394 (10)
Mn1—N62.266 (6)C7—C81.375 (10)
Mn1—Br12.6395 (13)C7—H70.9500
O1—H1A0.8400C8—C91.354 (11)
O1—H1B0.8400C8—H80.9500
N1—C51.324 (9)C9—C101.383 (10)
N1—C11.358 (8)C9—H90.9500
N2—C51.366 (9)C10—H100.9500
N2—C61.403 (8)C11—C121.390 (10)
N2—H2N0.9200C11—H110.9500
N3—C61.347 (8)C12—C131.372 (12)
N3—C101.356 (9)C12—H120.9500
N4—C111.347 (10)C13—C141.384 (12)
N4—C151.356 (9)C13—H130.9500
N5—C151.375 (9)C14—C151.396 (10)
N5—C161.385 (9)C14—H140.9500
N5—H5N0.9200C16—C171.402 (11)
N6—C161.334 (8)C17—C181.388 (11)
N6—C201.348 (9)C17—H170.9500
C1—C21.356 (10)C18—C191.387 (10)
C1—H10.9500C18—H180.9500
C2—C31.410 (12)C19—C201.376 (11)
C2—H20.9500C19—H190.9500
C3—C41.353 (11)C20—H200.9500
O1—Mn1—N497.1 (2)N1—C5—N2121.2 (6)
O1—Mn1—N391.0 (2)N1—C5—C4120.8 (7)
N4—Mn1—N3165.8 (2)N2—C5—C4118.0 (7)
O1—Mn1—N6171.6 (2)N3—C6—C7122.5 (6)
N4—Mn1—N681.6 (2)N3—C6—N2120.3 (6)
N3—Mn1—N688.6 (2)C7—C6—N2117.2 (6)
O1—Mn1—N185.7 (2)C8—C7—C6117.6 (7)
N4—Mn1—N189.9 (2)C8—C7—H7121.2
N3—Mn1—N179.1 (2)C6—C7—H7121.2
N6—Mn1—N186.0 (2)C9—C8—C7121.4 (7)
O1—Mn1—Br195.45 (15)C9—C8—H8119.3
N4—Mn1—Br192.44 (14)C7—C8—H8119.3
N3—Mn1—Br198.39 (14)C8—C9—C10118.0 (7)
N6—Mn1—Br192.92 (14)C8—C9—H9121.0
N1—Mn1—Br1177.25 (15)C10—C9—H9121.0
Mn1—O1—H1A112.9N3—C10—C9123.0 (7)
Mn1—O1—H1B138.1N3—C10—H10118.5
H1A—O1—H1B108.5C9—C10—H10118.5
C5—N1—C1118.4 (6)N4—C11—C12123.4 (8)
C5—N1—Mn1119.0 (5)N4—C11—H11118.3
C1—N1—Mn1113.4 (4)C12—C11—H11118.3
C5—N2—C6131.1 (6)C13—C12—C11117.4 (8)
C5—N2—H2N117.9C13—C12—H12121.3
C6—N2—H2N103.9C11—C12—H12121.3
C6—N3—C10117.4 (6)C12—C13—C14120.4 (7)
C6—N3—Mn1127.2 (4)C12—C13—H13119.8
C10—N3—Mn1115.3 (4)C14—C13—H13119.8
C11—N4—C15118.9 (6)C13—C14—C15119.6 (7)
C11—N4—Mn1116.3 (5)C13—C14—H14120.2
C15—N4—Mn1124.8 (5)C15—C14—H14120.2
C15—N5—C16130.2 (6)N4—C15—N5121.7 (6)
C15—N5—H5N103.2N4—C15—C14120.4 (7)
C16—N5—H5N126.5N5—C15—C14117.9 (7)
C16—N6—C20118.2 (7)N6—C16—N5120.6 (7)
C16—N6—Mn1124.7 (5)N6—C16—C17122.3 (7)
C20—N6—Mn1115.9 (4)N5—C16—C17117.1 (6)
C2—C1—N1123.8 (8)C18—C17—C16118.5 (7)
C2—C1—H1118.1C18—C17—H17120.7
N1—C1—H1118.1C16—C17—H17120.7
C1—C2—C3117.2 (8)C19—C18—C17119.0 (7)
C1—C2—H2121.4C19—C18—H18120.5
C3—C2—H2121.4C17—C18—H18120.5
C4—C3—C2119.1 (8)C20—C19—C18118.7 (7)
C4—C3—H3120.4C20—C19—H19120.6
C2—C3—H3120.4C18—C19—H19120.6
C3—C4—C5120.0 (8)N6—C20—C19123.0 (7)
C3—C4—H4120.0N6—C20—H20118.5
C5—C4—H4120.0C19—C20—H20118.5
O1—Mn1—N1—C5139.0 (5)Mn1—N1—C5—C4137.2 (6)
N4—Mn1—N1—C5123.8 (5)C6—N2—C5—N10.7 (11)
N3—Mn1—N1—C547.1 (5)C6—N2—C5—C4178.1 (7)
N6—Mn1—N1—C542.2 (5)C3—C4—C5—N13.2 (11)
O1—Mn1—N1—C174.7 (5)C3—C4—C5—N2175.6 (7)
N4—Mn1—N1—C122.4 (5)C10—N3—C6—C72.7 (10)
N3—Mn1—N1—C1166.6 (5)Mn1—N3—C6—C7178.1 (6)
N6—Mn1—N1—C1104.1 (5)C10—N3—C6—N2175.0 (7)
O1—Mn1—N3—C6111.4 (6)Mn1—N3—C6—N20.4 (10)
N4—Mn1—N3—C613.8 (13)C5—N2—C6—N326.7 (11)
N6—Mn1—N3—C660.2 (6)C5—N2—C6—C7155.5 (7)
N1—Mn1—N3—C626.0 (6)N3—C6—C7—C84.5 (12)
Br1—Mn1—N3—C6153.0 (6)N2—C6—C7—C8173.2 (7)
O1—Mn1—N3—C1073.1 (5)C6—C7—C8—C92.1 (13)
N4—Mn1—N3—C10161.6 (8)C7—C8—C9—C101.9 (13)
N6—Mn1—N3—C10115.3 (5)C6—N3—C10—C91.6 (11)
N1—Mn1—N3—C10158.5 (6)Mn1—N3—C10—C9174.3 (6)
Br1—Mn1—N3—C1022.5 (5)C8—C9—C10—N33.9 (12)
O1—Mn1—N4—C1132.0 (5)C15—N4—C11—C121.9 (11)
N3—Mn1—N4—C11156.6 (8)Mn1—N4—C11—C12176.9 (6)
N6—Mn1—N4—C11156.4 (5)N4—C11—C12—C133.0 (11)
N1—Mn1—N4—C11117.6 (5)C11—C12—C13—C141.4 (11)
Br1—Mn1—N4—C1163.8 (5)C12—C13—C14—C151.3 (11)
O1—Mn1—N4—C15146.7 (5)C11—N4—C15—N5179.1 (6)
N3—Mn1—N4—C1522.1 (12)Mn1—N4—C15—N50.5 (9)
N6—Mn1—N4—C1524.9 (5)C11—N4—C15—C140.9 (10)
N1—Mn1—N4—C1561.1 (5)Mn1—N4—C15—C14179.6 (5)
Br1—Mn1—N4—C15117.5 (5)C16—N5—C15—N436.6 (11)
N4—Mn1—N6—C1633.8 (5)C16—N5—C15—C14143.3 (7)
N3—Mn1—N6—C16135.8 (5)C13—C14—C15—N42.5 (10)
N1—Mn1—N6—C1656.7 (5)C13—C14—C15—N5177.6 (6)
Br1—Mn1—N6—C16125.8 (5)C20—N6—C16—N5175.2 (6)
N4—Mn1—N6—C20158.8 (5)Mn1—N6—C16—N517.7 (8)
N3—Mn1—N6—C2031.5 (5)C20—N6—C16—C174.4 (10)
N1—Mn1—N6—C20110.7 (5)Mn1—N6—C16—C17162.8 (5)
Br1—Mn1—N6—C2066.8 (5)C15—N5—C16—N626.8 (11)
C5—N1—C1—C24.3 (10)C15—N5—C16—C17152.8 (7)
Mn1—N1—C1—C2142.2 (6)N6—C16—C17—C181.3 (10)
N1—C1—C2—C33.1 (11)N5—C16—C17—C18178.3 (6)
C1—C2—C3—C47.3 (12)C16—C17—C18—C191.3 (10)
C2—C3—C4—C54.4 (12)C17—C18—C19—C200.8 (10)
C1—N1—C5—N2171.3 (6)C16—N6—C20—C195.0 (10)
Mn1—N1—C5—N244.1 (8)Mn1—N6—C20—C19163.2 (6)
C1—N1—C5—C47.5 (10)C18—C19—C20—N62.5 (11)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1A···Br2i0.842.503.304 (5)160
O1—H1B···Br1ii0.842.443.272 (5)171
N2—H2N···Br2iii0.922.623.472 (6)154
N5—H5N···Br2iv0.922.633.503 (6)159
Symmetry codes: (i) x1, y, z; (ii) x, y+1, z+1; (iii) x+1, y+1, z; (iv) x1, y+1, z.

Experimental details

Crystal data
Chemical formula[MnBr(C10H9N3)2(H2O)]Br
Mr575.18
Crystal system, space groupTriclinic, P1
Temperature (K)200
a, b, c (Å)8.3990 (15), 10.0022 (18), 13.613 (2)
α, β, γ (°)90.692 (4), 103.619 (4), 98.556 (4)
V3)1097.8 (3)
Z2
Radiation typeMo Kα
µ (mm1)4.27
Crystal size (mm)0.22 × 0.21 × 0.19
Data collection
DiffractometerBruker SMART 1000 CCD
Absorption correctionMulti-scan
(SADABS; Bruker, 2001)
Tmin, Tmax0.708, 1.000
No. of measured, independent and
observed [I > 2σ(I)] reflections
6807, 4215, 2569
Rint0.049
(sin θ/λ)max1)0.617
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.057, 0.174, 0.96
No. of reflections4215
No. of parameters271
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)1.02, 1.02

Computer programs: SMART (Bruker, 2007), SAINT (Bruker, 2007), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 (Farrugia, 1997) and PLATON (Spek, 2009).

Selected bond lengths (Å) top
Mn1—O12.154 (6)Mn1—N42.246 (6)
Mn1—N12.318 (6)Mn1—N62.266 (6)
Mn1—N32.256 (5)Mn1—Br12.6395 (13)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1A···Br2i0.842.503.304 (5)160
O1—H1B···Br1ii0.842.443.272 (5)171
N2—H2N···Br2iii0.922.623.472 (6)154
N5—H5N···Br2iv0.922.633.503 (6)159
Symmetry codes: (i) x1, y, z; (ii) x, y+1, z+1; (iii) x+1, y+1, z; (iv) x1, y+1, z.
 

Acknowledgements

This work was supported by the Priority Research Centers Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Education, Science and Technology (2010–0029626).

References

First citationBose, D., Mostafa, G., Fun, H.-K. & Ghosh, B. K. (2005). Polyhedron, 24, 747–758.  Web of Science CSD CrossRef CAS Google Scholar
First citationBruker (2001). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBruker (2007). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds