metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

catena-Poly[[bis­­[3-(1H-imidazol-1-yl)-1-phenyl­propan-1-one-κN3]nickel(II)]-μ-oxalato-κ4O1,O2:O1′,O2′]

aTianjin Key Laboratory of Structure and Performance for Functional Molecules, College of Chemistry, Tianjin Normal University, Tianjin 300387, People's Republic of China
*Correspondence e-mail: guojianhua1998@163.com

(Received 11 November 2011; accepted 21 November 2011; online 25 November 2011)

In the title compound, [Ni(C2O4)(C12H12N2O)2]n, the NiII atom, lying on a twofold rotation axis, is coordinated by two N atoms from two monodentate 3-(1H-imidazol-1-yl)-1-phenyl­propan-1-one (L) ligands and four O atoms from two oxalate anions in a distorted octa­hedral geometry. The oxalate anion has a twofold rotation axis through the mid-point of the C—C bond and acts as a bridging ligand, linking the NiII atoms into a polymeric chain along [010]. Weak inter­molecular C—H⋯O hydrogen bonds connect the chains, resulting in a three-dimensional supra­molecular structure. >

Related literature

For background to the construction of metal-organic frameworks using a mixed-ligand strategy, see: Du et al. (2005[Du, M., Jiang, X.-J. & Zhao, X.-J. (2005). Chem. Commun. pp. 5521-5523.]); Tao et al. (2000[Tao, J., Tong, M.-L., Shi, J.-X., Chen, X.-M. & Ng, S. W. (2000). Chem. Commun. pp. 2043-2044.]); Ye et al. (2005[Ye, B.-H., Tong, M.-L. & Chen, X.-M. (2005). Coord. Chem. Rev. 249, 545-565.]).

[Scheme 1]

Experimental

Crystal data
  • [Ni(C2O4)(C12H12N2O)2]

  • Mr = 547.20

  • Monoclinic, C 2/c

  • a = 15.3065 (11) Å

  • b = 5.6605 (4) Å

  • c = 27.536 (2) Å

  • β = 95.613 (1)°

  • V = 2374.3 (3) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.87 mm−1

  • T = 296 K

  • 0.28 × 0.22 × 0.20 mm

Data collection
  • Bruker APEXII CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996[Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.]) Tmin = 0.793, Tmax = 0.845

  • 5794 measured reflections

  • 2105 independent reflections

  • 1676 reflections with I > 2σ(I)

  • Rint = 0.043

Refinement
  • R[F2 > 2σ(F2)] = 0.045

  • wR(F2) = 0.096

  • S = 1.02

  • 2105 reflections

  • 168 parameters

  • 1 restraint

  • H-atom parameters constrained

  • Δρmax = 0.63 e Å−3

  • Δρmin = −0.45 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C3—H3⋯O1i 0.93 2.46 3.290 (4) 149
C4—H4B⋯O2i 0.97 2.58 3.467 (5) 152
C10—H10⋯O2ii 0.93 2.42 3.318 (5) 162
Symmetry codes: (i) [x+{\script{1\over 2}}, y-{\script{1\over 2}}, z]; (ii) [-x+{\script{3\over 2}}, -y+{\script{1\over 2}}, -z+2].

Data collection: APEX2 (Bruker, 2007[Bruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2007[Bruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: XP in SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]) and DIAMOND (Brandenburg & Berndt, 1999[Brandenburg, K. & Berndt, M. (1999). DIAMOND. Crystal Impact GbR, Bonn, Germany.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

Currently, the rational construction of new structurally defined metal-organic frameworks using a mixed-ligand strategy seems to be a marvelous success (Du et al., 2005; Tao et al., 2000; Ye et al., 2005). In our recent research, we have initiated a synthetic approach employing multicarboxylates and 3-(1H-imidazol-1-yl)-1-phenylpropan-1-one (L) upon reactions with differnent metal ions to construct new functional frameworks. To explore this series, we synthesized the title compound, a new Ni(II) complex based on the L ligand.

In the title complex (Fig. 1), the NiII atom, lying on a twofold rotation axis, is six-coordinated in a distorted octahedral geometry by four O atoms from two oxalate anions in the equatorial plane and two N atoms from two monodentate L ligands occupying the axial positions, with the N1—Ni1—N1i angle of 178.56 (17)° [symmetry code: (i) 1-x, y, 3/2-z]. As depicted in Fig. 2, the oxalate dianions as bridging ligands joint the NiII atoms into a one-dimensional polymeric [Ni(C2O4)]n chain along [0 1 0]. The imidazole and benzene rings in the L ligands are not coplanar, the dihedral angel between the imidazole and benzene rings being 68.7 (2)°. Analysis of the crystal packing indicates that weak intermolecular C—H···O hydrogen bonds (Table 1) connect the chains, producing a three-dimensional supramolecular structure.

Related literature top

For background to the construction of metal-organic frameworks using a mixed-ligand strategy, see: Du et al. (2005); Tao et al. (2000); Ye et al. (2005).

Experimental top

Ni(CH3CO2)2.4H2O (24.9 mg, 0.1 mmol), 3-(1H-imidazol-1-yl)-1-phenylpropan-1-one (22.2 mg, 0.1 mmol) and oxalic acid were mixed in a CH3CN/H2O solution (20 ml, v/v = 1:1) with vigorous stirring for ca 30 min. The resulting solution was filtered and left to stand at room temperature. Green block crystals of the title compound suitable for X-ray analysis were obtained in 65% yield by slow evaporation of the solvent over a period of one week. Analysis, calculated for C26H24N4NiO6: C 57.07, H 4.42, N 10.24%; found: C 57.13, H 4.47, N 10.32%.

Refinement top

Although all H atoms were visible in difference Fourier maps, they were finally placed in geometrically calculated positions and refined as riding atoms, with C—H = 0.93 (CH) and 0.97 (CH2) Å and with Uiso(H) = 1.2Ueq(C).

Structure description top

Currently, the rational construction of new structurally defined metal-organic frameworks using a mixed-ligand strategy seems to be a marvelous success (Du et al., 2005; Tao et al., 2000; Ye et al., 2005). In our recent research, we have initiated a synthetic approach employing multicarboxylates and 3-(1H-imidazol-1-yl)-1-phenylpropan-1-one (L) upon reactions with differnent metal ions to construct new functional frameworks. To explore this series, we synthesized the title compound, a new Ni(II) complex based on the L ligand.

In the title complex (Fig. 1), the NiII atom, lying on a twofold rotation axis, is six-coordinated in a distorted octahedral geometry by four O atoms from two oxalate anions in the equatorial plane and two N atoms from two monodentate L ligands occupying the axial positions, with the N1—Ni1—N1i angle of 178.56 (17)° [symmetry code: (i) 1-x, y, 3/2-z]. As depicted in Fig. 2, the oxalate dianions as bridging ligands joint the NiII atoms into a one-dimensional polymeric [Ni(C2O4)]n chain along [0 1 0]. The imidazole and benzene rings in the L ligands are not coplanar, the dihedral angel between the imidazole and benzene rings being 68.7 (2)°. Analysis of the crystal packing indicates that weak intermolecular C—H···O hydrogen bonds (Table 1) connect the chains, producing a three-dimensional supramolecular structure.

For background to the construction of metal-organic frameworks using a mixed-ligand strategy, see: Du et al. (2005); Tao et al. (2000); Ye et al. (2005).

Computing details top

Data collection: APEX2 (Bruker, 2007); cell refinement: SAINT (Bruker, 2007); data reduction: SAINT (Bruker, 2007); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: XP in SHELXTL (Sheldrick, 2008) and DIAMOND (Brandenburg & Berndt, 1999); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The asymmetric unit of the title compound, showing the 30% probability ellipsoids. [Symmetry codes: (A) 1-x, y, 3/2-z; (B) x, -1+y, z; (C) 1-x, -1+y, 3/2-z.]
[Figure 2] Fig. 2. The one-dimensional structure of the title compound.
catena-Poly[[bis[3-(1H-imidazol-1-yl)-1-phenylpropan-1-one- κN3]nickel(II)]-µ-oxalato- κ4O1,O2:O1',O2'] top
Crystal data top
[Ni(C2O4)(C12H12N2O)2]F(000) = 1136
Mr = 547.20Dx = 1.531 Mg m3
Monoclinic, C2/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -C 2ycCell parameters from 1107 reflections
a = 15.3065 (11) Åθ = 2.9–21.3°
b = 5.6605 (4) ŵ = 0.87 mm1
c = 27.536 (2) ÅT = 296 K
β = 95.613 (1)°Block, colorless
V = 2374.3 (3) Å30.28 × 0.22 × 0.20 mm
Z = 4
Data collection top
Bruker APEXII CCD
diffractometer
2105 independent reflections
Radiation source: fine-focus sealed tube1676 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.043
φ and ω scansθmax = 25.0°, θmin = 2.7°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 1618
Tmin = 0.793, Tmax = 0.845k = 65
5794 measured reflectionsl = 3232
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.045Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.096H-atom parameters constrained
S = 1.02 w = 1/[σ2(Fo2) + (0.0315P)2 + 4.5895P]
where P = (Fo2 + 2Fc2)/3
2105 reflections(Δ/σ)max < 0.001
168 parametersΔρmax = 0.63 e Å3
1 restraintΔρmin = 0.45 e Å3
Crystal data top
[Ni(C2O4)(C12H12N2O)2]V = 2374.3 (3) Å3
Mr = 547.20Z = 4
Monoclinic, C2/cMo Kα radiation
a = 15.3065 (11) ŵ = 0.87 mm1
b = 5.6605 (4) ÅT = 296 K
c = 27.536 (2) Å0.28 × 0.22 × 0.20 mm
β = 95.613 (1)°
Data collection top
Bruker APEXII CCD
diffractometer
2105 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
1676 reflections with I > 2σ(I)
Tmin = 0.793, Tmax = 0.845Rint = 0.043
5794 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0451 restraint
wR(F2) = 0.096H-atom parameters constrained
S = 1.02Δρmax = 0.63 e Å3
2105 reflectionsΔρmin = 0.45 e Å3
168 parameters
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Ni10.50000.13748 (10)0.75000.02887 (19)
O10.46495 (16)0.1678 (4)0.79304 (9)0.0464 (6)
O20.46148 (17)0.5597 (5)0.79161 (9)0.0528 (7)
O30.8709 (3)0.4212 (6)0.93819 (12)0.0912 (12)
N10.62123 (18)0.1330 (5)0.78683 (10)0.0388 (7)
N20.73701 (18)0.0047 (5)0.83297 (10)0.0400 (7)
C10.6893 (2)0.2891 (6)0.78450 (13)0.0418 (9)
H10.68650.42740.76620.050*
C20.6534 (2)0.0357 (7)0.81664 (12)0.0421 (9)
H20.62160.16660.82520.050*
C30.7610 (2)0.2127 (7)0.81268 (13)0.0433 (9)
H30.81550.28630.81730.052*
C40.7933 (2)0.1504 (7)0.86521 (13)0.0497 (10)
H4A0.76680.30590.86570.060*
H4B0.84990.16680.85250.060*
C50.8066 (3)0.0541 (8)0.91673 (13)0.0591 (12)
H5A0.74980.01920.92790.071*
H5B0.83940.09250.91660.071*
C60.8547 (3)0.2235 (9)0.95153 (15)0.0573 (11)
C70.8814 (3)0.1443 (9)1.00249 (14)0.0572 (11)
C80.8604 (4)0.0672 (11)1.02023 (18)0.099 (2)
H80.82680.17211.00020.119*
C90.8881 (5)0.1321 (11)1.06808 (19)0.115 (2)
H90.87250.27881.07970.138*
C100.9371 (3)0.0151 (11)1.09733 (17)0.0782 (15)
H100.95460.02831.12940.094*
C110.9609 (4)0.2238 (12)1.08058 (18)0.0918 (18)
H110.99640.32471.10060.110*
C120.9326 (4)0.2895 (10)1.03341 (16)0.0855 (17)
H120.94880.43671.02220.103*
C130.4784 (2)0.3633 (6)0.77433 (12)0.0357 (8)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Ni10.0301 (3)0.0254 (3)0.0291 (3)0.0000.0074 (2)0.000
O10.0468 (15)0.0402 (14)0.0522 (15)0.0059 (12)0.0044 (12)0.0031 (11)
O20.0515 (16)0.0561 (18)0.0480 (16)0.0131 (13)0.0091 (13)0.0136 (13)
O30.125 (3)0.075 (3)0.066 (2)0.038 (2)0.027 (2)0.0008 (18)
N10.0409 (17)0.0349 (16)0.0391 (16)0.0020 (14)0.0034 (13)0.0032 (14)
N20.0357 (17)0.0447 (18)0.0372 (16)0.0003 (14)0.0086 (13)0.0031 (15)
C10.042 (2)0.040 (2)0.042 (2)0.0066 (17)0.0002 (17)0.0078 (17)
C20.039 (2)0.043 (2)0.041 (2)0.0053 (17)0.0081 (17)0.0050 (18)
C30.033 (2)0.048 (2)0.048 (2)0.0055 (17)0.0039 (17)0.0025 (18)
C40.045 (2)0.055 (2)0.046 (2)0.008 (2)0.0118 (18)0.006 (2)
C50.065 (3)0.060 (3)0.048 (2)0.011 (2)0.017 (2)0.002 (2)
C60.056 (3)0.067 (3)0.046 (2)0.008 (2)0.007 (2)0.005 (2)
C70.053 (2)0.073 (3)0.042 (2)0.010 (2)0.0081 (19)0.010 (2)
C80.133 (5)0.095 (4)0.060 (3)0.046 (4)0.035 (3)0.004 (3)
C90.169 (6)0.106 (5)0.062 (3)0.048 (5)0.038 (4)0.019 (3)
C100.077 (3)0.109 (4)0.046 (3)0.002 (3)0.010 (3)0.008 (3)
C110.084 (4)0.134 (5)0.053 (3)0.036 (4)0.014 (3)0.015 (3)
C120.093 (4)0.110 (4)0.050 (3)0.042 (3)0.010 (3)0.009 (3)
C130.0311 (18)0.0335 (19)0.0402 (19)0.0031 (16)0.0089 (15)0.0039 (17)
Geometric parameters (Å, º) top
Ni1—N12.026 (3)C4—H4A0.9700
Ni1—N1i2.026 (3)C4—H4B0.9700
Ni1—O2ii2.175 (3)C5—C61.497 (5)
Ni1—O2iii2.175 (3)C5—H5A0.9700
Ni1—O12.191 (3)C5—H5B0.9700
Ni1—O1i2.191 (3)C6—C71.492 (6)
O1—C131.247 (4)C7—C81.344 (7)
O2—C131.247 (4)C7—C121.372 (6)
O3—C61.211 (5)C8—C91.393 (7)
N1—C21.322 (4)C8—H80.9300
N1—C11.372 (4)C9—C101.337 (7)
N2—C21.334 (4)C9—H90.9300
N2—C31.369 (4)C10—C111.332 (7)
N2—C41.467 (4)C10—H100.9300
C1—C31.352 (5)C11—C121.380 (6)
C1—H10.9300C11—H110.9300
C2—H20.9300C12—H120.9300
C3—H30.9300C13—C13i1.550 (7)
C4—C51.515 (5)
N1—Ni1—N1i178.56 (17)C5—C4—H4A109.3
N1—Ni1—O2ii89.51 (10)N2—C4—H4B109.3
N1i—Ni1—O2ii91.63 (11)C5—C4—H4B109.3
N1—Ni1—O2iii91.63 (11)H4A—C4—H4B108.0
N1i—Ni1—O2iii89.51 (11)C6—C5—C4112.4 (4)
O2ii—Ni1—O2iii75.98 (14)C6—C5—H5A109.1
N1—Ni1—O188.86 (10)C4—C5—H5A109.1
N1i—Ni1—O190.01 (11)C6—C5—H5B109.1
O2ii—Ni1—O1178.36 (9)C4—C5—H5B109.1
O2iii—Ni1—O1104.07 (9)H5A—C5—H5B107.8
N1—Ni1—O1i90.01 (11)O3—C6—C7121.2 (4)
N1i—Ni1—O1i88.86 (10)O3—C6—C5120.0 (4)
O2ii—Ni1—O1i104.07 (9)C7—C6—C5118.8 (4)
O2iii—Ni1—O1i178.36 (9)C8—C7—C12116.8 (4)
O1—Ni1—O1i75.92 (13)C8—C7—C6123.8 (4)
C13—O1—Ni1114.7 (2)C12—C7—C6119.4 (5)
C13—O2—Ni1iv115.1 (2)C7—C8—C9121.1 (5)
C2—N1—C1104.8 (3)C7—C8—H8119.4
C2—N1—Ni1125.9 (2)C9—C8—H8119.4
C1—N1—Ni1129.1 (2)C10—C9—C8120.4 (6)
C2—N2—C3107.3 (3)C10—C9—H9119.8
C2—N2—C4126.1 (3)C8—C9—H9119.8
C3—N2—C4126.6 (3)C11—C10—C9120.0 (5)
C3—C1—N1110.2 (3)C11—C10—H10120.0
C3—C1—H1124.9C9—C10—H10120.0
N1—C1—H1124.9C10—C11—C12119.6 (5)
N1—C2—N2111.8 (3)C10—C11—H11120.2
N1—C2—H2124.1C12—C11—H11120.2
N2—C2—H2124.1C7—C12—C11122.0 (5)
C1—C3—N2105.9 (3)C7—C12—H12119.0
C1—C3—H3127.0C11—C12—H12119.0
N2—C3—H3127.0O2—C13—O1125.8 (3)
N2—C4—C5111.6 (3)O2—C13—C13i116.9 (2)
N2—C4—H4A109.3O1—C13—C13i117.3 (2)
N1—Ni1—O1—C1391.5 (2)C2—N2—C4—C5105.2 (4)
N1i—Ni1—O1—C1387.6 (2)C3—N2—C4—C577.3 (5)
O2iii—Ni1—O1—C13177.1 (2)N2—C4—C5—C6173.1 (3)
O1i—Ni1—O1—C131.18 (18)C4—C5—C6—O37.0 (7)
O2ii—Ni1—N1—C2170.1 (3)C4—C5—C6—C7173.5 (4)
O2iii—Ni1—N1—C2114.0 (3)O3—C6—C7—C8175.5 (5)
O1—Ni1—N1—C29.9 (3)C5—C6—C7—C84.0 (7)
O1i—Ni1—N1—C266.0 (3)O3—C6—C7—C126.5 (7)
O2ii—Ni1—N1—C15.1 (3)C5—C6—C7—C12173.9 (5)
O2iii—Ni1—N1—C170.8 (3)C12—C7—C8—C91.3 (9)
O1—Ni1—N1—C1174.9 (3)C6—C7—C8—C9179.3 (6)
O1i—Ni1—N1—C1109.2 (3)C7—C8—C9—C100.6 (11)
C2—N1—C1—C30.1 (4)C8—C9—C10—C111.0 (10)
Ni1—N1—C1—C3175.9 (2)C9—C10—C11—C121.8 (9)
C1—N1—C2—N20.1 (4)C8—C7—C12—C110.5 (9)
Ni1—N1—C2—N2176.0 (2)C6—C7—C12—C11178.6 (5)
C3—N2—C2—N10.1 (4)C10—C11—C12—C71.1 (9)
C4—N2—C2—N1177.8 (3)Ni1iv—O2—C13—O1177.3 (3)
N1—C1—C3—N20.0 (4)Ni1iv—O2—C13—C13i1.6 (4)
C2—N2—C3—C10.1 (4)Ni1—O1—C13—O2178.1 (3)
C4—N2—C3—C1177.8 (3)Ni1—O1—C13—C13i3.0 (4)
Symmetry codes: (i) x+1, y, z+3/2; (ii) x+1, y1, z+3/2; (iii) x, y1, z; (iv) x, y+1, z.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C3—H3···O1v0.932.463.290 (4)149
C4—H4B···O2v0.972.583.467 (5)152
C10—H10···O2vi0.932.423.318 (5)162
Symmetry codes: (v) x+1/2, y1/2, z; (vi) x+3/2, y+1/2, z+2.

Experimental details

Crystal data
Chemical formula[Ni(C2O4)(C12H12N2O)2]
Mr547.20
Crystal system, space groupMonoclinic, C2/c
Temperature (K)296
a, b, c (Å)15.3065 (11), 5.6605 (4), 27.536 (2)
β (°) 95.613 (1)
V3)2374.3 (3)
Z4
Radiation typeMo Kα
µ (mm1)0.87
Crystal size (mm)0.28 × 0.22 × 0.20
Data collection
DiffractometerBruker APEXII CCD
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.793, 0.845
No. of measured, independent and
observed [I > 2σ(I)] reflections
5794, 2105, 1676
Rint0.043
(sin θ/λ)max1)0.595
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.045, 0.096, 1.02
No. of reflections2105
No. of parameters168
No. of restraints1
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.63, 0.45

Computer programs: APEX2 (Bruker, 2007), SAINT (Bruker, 2007), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), XP in SHELXTL (Sheldrick, 2008) and DIAMOND (Brandenburg & Berndt, 1999), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C3—H3···O1i0.932.463.290 (4)149
C4—H4B···O2i0.972.583.467 (5)152
C10—H10···O2ii0.932.423.318 (5)162
Symmetry codes: (i) x+1/2, y1/2, z; (ii) x+3/2, y+1/2, z+2.
 

References

First citationBrandenburg, K. & Berndt, M. (1999). DIAMOND. Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationBruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationDu, M., Jiang, X.-J. & Zhao, X.-J. (2005). Chem. Commun. pp. 5521–5523.  Web of Science CSD CrossRef Google Scholar
First citationSheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationTao, J., Tong, M.-L., Shi, J.-X., Chen, X.-M. & Ng, S. W. (2000). Chem. Commun. pp. 2043–2044.  Web of Science CSD CrossRef Google Scholar
First citationYe, B.-H., Tong, M.-L. & Chen, X.-M. (2005). Coord. Chem. Rev. 249, 545–565.  Web of Science CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds