metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Hexa­aqua­magnesium 5-[1-(carboxyl­ato­meth­yl)pyridin-1-ium-4-yl]tetra­zol-2-ide chloride dihydrate

aDepartment of Physics, Southeast University, Nanjing 210096, People's Republic of China
*Correspondence e-mail: yzh55@yahoo.com.cn

(Received 13 November 2011; accepted 23 November 2011; online 30 November 2011)

In the title compound, [Mg(H2O)6](C8H6N5O2)Cl·2H2O, the MgII ion is surrounded by six water mol­ecules, exhibiting a slightly distorted octa­hedral coordination. The pyridine and tetra­zole rings are nearly coplanar, forming a dihedral angle of 4.63 (3)°. The complex cations, zwitterionic organic anions, Cl anions and uncoordinated water mol­ecules are connected by O—H⋯O, O—H⋯N and O—H⋯Cl hydrogen bonds, leading to the formation of a three-dimensional network.

Related literature

For related tetra­zole derivatives, see: Fu et al. (2009[Fu, D.-W., Ge, J.-Z., Dai, J., Ye, H.-Y. & Qu, Z.-R. (2009). Inorg. Chem. Commun. 12, 994-997.], 2010[Fu, D.-W., Dai, J., Ge, J.-Z., Ye, H.-Y. & Qu, Z.-R. (2010). Inorg. Chem. Commun. 13, 282-285.]).

[Scheme 1]

Experimental

Crystal data
  • [Mg(H2O)6](C8H6N5O2)Cl·2H2O

  • Mr = 408.07

  • Monoclinic, P 21 /n

  • a = 8.1627 (16) Å

  • b = 12.896 (3) Å

  • c = 17.435 (4) Å

  • β = 96.85 (3)°

  • V = 1822.3 (7) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.30 mm−1

  • T = 298 K

  • 0.40 × 0.30 × 0.20 mm

Data collection
  • Rigaku Mercury2 diffractometer

  • Absorption correction: multi-scan (CrystalClear; Rigaku, 2005[Rigaku (2005). CrystalClear. Rigaku Corporation, Tokyo, Japan.]) Tmin = 0.89, Tmax = 1.00

  • 18612 measured reflections

  • 4172 independent reflections

  • 3261 reflections with I > 2σ(I)

  • Rint = 0.044

Refinement
  • R[F2 > 2σ(F2)] = 0.061

  • wR(F2) = 0.181

  • S = 1.10

  • 4172 reflections

  • 226 parameters

  • 16 restraints

  • H-atom parameters constrained

  • Δρmax = 1.00 e Å−3

  • Δρmin = −0.41 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O1W—H1WA⋯N1i 0.82 2.07 2.883 (5) 174
O1W—H1WB⋯Cl1 0.82 2.36 3.180 (3) 173
O2W—H2WA⋯N3ii 0.82 2.07 2.885 (5) 178
O2W—H2WB⋯O1iii 0.82 1.99 2.793 (4) 167
O3W—H3WA⋯O1 0.82 1.91 2.722 (4) 170
O3W—H3WB⋯O7Wiv 0.82 1.95 2.748 (4) 165
O4W—H4WA⋯O2v 0.82 1.94 2.738 (4) 164
O4W—H4WB⋯O8Wvi 0.82 1.98 2.794 (4) 174
O5W—H5WA⋯Cl1vii 0.82 2.34 3.162 (3) 174
O5W—H5WB⋯O2 0.82 1.91 2.715 (4) 169
O6W—H6WA⋯O8Wii 0.82 1.97 2.763 (5) 164
O6W—H6WB⋯O7Wv 0.82 1.86 2.678 (4) 178
O7W—H7WA⋯N2viii 0.82 1.94 2.748 (5) 169
O7W—H7WB⋯Cl1vii 0.82 2.29 3.106 (3) 170
O8W—H8WA⋯Cl1iv 0.91 2.26 3.109 (4) 156
O8W—H8WB⋯N4 0.82 2.00 2.822 (5) 179
Symmetry codes: (i) [x-{\script{1\over 2}}, -y+{\script{1\over 2}}, z-{\script{1\over 2}}]; (ii) x, y+1, z; (iii) -x, -y+1, -z+1; (iv) [-x+{\script{1\over 2}}, y-{\script{1\over 2}}, -z+{\script{1\over 2}}]; (v) x-1, y, z; (vi) [-x-{\script{1\over 2}}, y+{\script{1\over 2}}, -z+{\script{1\over 2}}]; (vii) [-x+{\script{1\over 2}}, y+{\script{1\over 2}}, -z+{\script{1\over 2}}]; (viii) [x+{\script{1\over 2}}, -y+{\script{1\over 2}}, z-{\script{1\over 2}}].

Data collection: CrystalClear (Rigaku, 2005[Rigaku (2005). CrystalClear. Rigaku Corporation, Tokyo, Japan.]); cell refinement: CrystalClear; data reduction: CrystalClear; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: XP in SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]) and DIAMOND (Brandenburg, 1999[Brandenburg, K. (1999). DIAMOND. Crystal Impact GbR, Bonn, Germany.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

Molecule-based compounds have attracted more attention as phase transition dielectric materials for their applications in micro-electronics and memory storage. With the purpose of obtaining phase transition crystals of tetrazole compounds, the interactions of tetrazoles with various metal ions have been studied and a series of new materials have been elaborated (Fu et al., 2010). In this paper, we describe the crystal structure of the title compound.

In the title compound, the asymmetric unit consists of one zwitterionic 5-[1-(carboxylatomethyl)pyridinium-4-yl]tetrazol-2-ide anion, one [Mg(H2O)6]2+ cation, one Cl- anion and two uncoordinated water molecules. The MgII ion is surrounded by six water molecules, exhibiting a slightly distorted octahedral coordination. Mg—O bond distances range from 2.041 (3) to 2.092 (3)Å [mean value 2.059 (3)Å]. In the zwitterionic organic anion, the pyridine and tetrazole rings are nearly coplanar, only twisted from each other by a dihedral angle of 4.63 (3)°. The geometric parameters of the tetrazole rings are comparable to those in related molecules (Fu et al., 2009). In crystal, the complex cations, and Cl- anions are linked through O—H···Cl hydrogen bonds into a sheet parallel to (0 0 1). The sheets are linked by the organic anions and water molecules through O—H···N and O—H···O hydrogen bonds into a three-dimensional network (Table 1 and Fig. 2).

Related literature top

For related tetrazole derivatives, see: Fu et al. (2009, 2010).

Experimental top

MgCl2.6H2O (2 mmol) and 1-(carboxymethyl)-4-(2H-tetrazol-5-yl)pyridinium (2 mmol) were dissolved in a 70% methanol aqueous solution, and then 2 ml HCl was added. Single crystals suitable for X-ray diffraction analysis were obtained by slow evaporation of the solution at room temperature after two weeks.

Refinement top

H atoms attached to C atoms were positioned geometrically and treated as riding, with C—H = 0.93 (aromatic) and 0.97 (methylene) Å and with Uiso(H) = 1.2Ueq(C). H atoms bonded to O atoms were located in difference Fourier maps and restrained with H—O = 0.820 (2)Å. In the last stage of refinements they were treated as riding on the O atoms with Uiso(H) = 1.5Ueq(O).

Structure description top

Molecule-based compounds have attracted more attention as phase transition dielectric materials for their applications in micro-electronics and memory storage. With the purpose of obtaining phase transition crystals of tetrazole compounds, the interactions of tetrazoles with various metal ions have been studied and a series of new materials have been elaborated (Fu et al., 2010). In this paper, we describe the crystal structure of the title compound.

In the title compound, the asymmetric unit consists of one zwitterionic 5-[1-(carboxylatomethyl)pyridinium-4-yl]tetrazol-2-ide anion, one [Mg(H2O)6]2+ cation, one Cl- anion and two uncoordinated water molecules. The MgII ion is surrounded by six water molecules, exhibiting a slightly distorted octahedral coordination. Mg—O bond distances range from 2.041 (3) to 2.092 (3)Å [mean value 2.059 (3)Å]. In the zwitterionic organic anion, the pyridine and tetrazole rings are nearly coplanar, only twisted from each other by a dihedral angle of 4.63 (3)°. The geometric parameters of the tetrazole rings are comparable to those in related molecules (Fu et al., 2009). In crystal, the complex cations, and Cl- anions are linked through O—H···Cl hydrogen bonds into a sheet parallel to (0 0 1). The sheets are linked by the organic anions and water molecules through O—H···N and O—H···O hydrogen bonds into a three-dimensional network (Table 1 and Fig. 2).

For related tetrazole derivatives, see: Fu et al. (2009, 2010).

Computing details top

Data collection: CrystalClear (Rigaku, 2005); cell refinement: CrystalClear (Rigaku, 2005); data reduction: CrystalClear (Rigaku, 2005); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: XP in SHELXTL (Sheldrick, 2008) and DIAMOND (Brandenburg, 1999); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. Molecular structure of the title compound. Displacement ellipsoids are drawn at the 30% probability level.
[Figure 2] Fig. 2. The crystal packing of the title compound, showing the three-dimensional hydrogen-bonded network. H atoms not involved in hydrogen bonds (dashed line) have been omitted for clarity.
Hexaaquamagnesium 5-[1-(carboxylatomethyl)pyridin-1-ium-4-yl]tetrazol-2-ide chloride dihydrate top
Crystal data top
[Mg(H2O)6](C8H6N5O2)Cl·2H2OF(000) = 856
Mr = 408.07Dx = 1.487 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ynCell parameters from 4172 reflections
a = 8.1627 (16) Åθ = 3.1–27.5°
b = 12.896 (3) ŵ = 0.30 mm1
c = 17.435 (4) ÅT = 298 K
β = 96.85 (3)°Block, colourless
V = 1822.3 (7) Å30.40 × 0.30 × 0.20 mm
Z = 4
Data collection top
Rigaku Mercury2
diffractometer
4172 independent reflections
Radiation source: fine-focus sealed tube3261 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.044
Detector resolution: 13.6612 pixels mm-1θmax = 27.5°, θmin = 3.1°
profile data from φ scansh = 1010
Absorption correction: multi-scan
(CrystalClear; Rigaku, 2005)
k = 1616
Tmin = 0.89, Tmax = 1.00l = 2222
18612 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.061Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.181H-atom parameters constrained
S = 1.10 w = 1/[σ2(Fo2) + (0.0828P)2 + 2.4078P]
where P = (Fo2 + 2Fc2)/3
4172 reflections(Δ/σ)max < 0.001
226 parametersΔρmax = 1.00 e Å3
16 restraintsΔρmin = 0.41 e Å3
Crystal data top
[Mg(H2O)6](C8H6N5O2)Cl·2H2OV = 1822.3 (7) Å3
Mr = 408.07Z = 4
Monoclinic, P21/nMo Kα radiation
a = 8.1627 (16) ŵ = 0.30 mm1
b = 12.896 (3) ÅT = 298 K
c = 17.435 (4) Å0.40 × 0.30 × 0.20 mm
β = 96.85 (3)°
Data collection top
Rigaku Mercury2
diffractometer
4172 independent reflections
Absorption correction: multi-scan
(CrystalClear; Rigaku, 2005)
3261 reflections with I > 2σ(I)
Tmin = 0.89, Tmax = 1.00Rint = 0.044
18612 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.06116 restraints
wR(F2) = 0.181H-atom parameters constrained
S = 1.10Δρmax = 1.00 e Å3
4172 reflectionsΔρmin = 0.41 e Å3
226 parameters
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cl10.17139 (12)0.34162 (8)0.22732 (6)0.0364 (3)
Mg10.08699 (16)0.61711 (10)0.33130 (7)0.0310 (3)
O10.2675 (4)0.4216 (2)0.45454 (18)0.0442 (7)
N10.2557 (4)0.0553 (3)0.5764 (2)0.0394 (8)
O1W0.0632 (4)0.5384 (2)0.22830 (17)0.0502 (8)
H1WA0.11610.53890.18520.075*
H1WB0.00780.48600.22450.075*
C10.3765 (6)0.2067 (3)0.3919 (2)0.0445 (10)
H1A0.36250.22970.34100.053*
O20.4243 (4)0.5313 (2)0.39940 (19)0.0429 (7)
O2W0.1241 (4)0.6896 (2)0.43319 (17)0.0453 (7)
H2WA0.06670.73780.45150.068*
H2WB0.15200.65760.47020.068*
N20.1572 (5)0.1383 (3)0.5687 (2)0.0442 (9)
C20.3020 (6)0.1176 (3)0.4109 (2)0.0430 (10)
H2A0.23760.08020.37290.052*
O3W0.0387 (4)0.4836 (2)0.39268 (17)0.0430 (7)
H3WA0.05060.46790.41650.065*
H3WB0.07250.42600.37840.065*
C30.3210 (5)0.0823 (3)0.4857 (2)0.0303 (8)
N30.0837 (5)0.1434 (3)0.4978 (2)0.0408 (8)
O4W0.3332 (4)0.5816 (3)0.31010 (18)0.0459 (8)
H4WA0.39080.56270.34290.069*
H4WB0.38940.54490.27880.069*
N40.1325 (4)0.0644 (3)0.45715 (19)0.0363 (8)
C40.4211 (6)0.1390 (3)0.5397 (2)0.0393 (9)
H4A0.43960.11610.59060.047*
O5W0.1614 (4)0.6522 (2)0.3482 (2)0.0507 (8)
H5WA0.20150.70410.33080.076*
H5WB0.23690.61650.36940.076*
N50.4697 (4)0.2615 (2)0.44566 (19)0.0327 (7)
C50.4932 (5)0.2285 (3)0.5186 (2)0.0402 (9)
H5A0.55920.26680.55550.048*
O6W0.1197 (4)0.7529 (2)0.27062 (19)0.0480 (8)
H6WA0.08400.80850.28840.072*
H6WB0.20260.76350.24010.072*
C60.2380 (5)0.0120 (3)0.5067 (2)0.0316 (8)
C70.5290 (5)0.3640 (3)0.4247 (3)0.0372 (9)
H7A0.56300.36110.37330.045*
H7B0.62410.38350.46050.045*
O7W0.6092 (4)0.7924 (2)0.17261 (18)0.0480 (8)
H7WA0.61270.74280.14340.072*
H7WB0.53610.79780.20080.072*
C80.3928 (5)0.4459 (3)0.4266 (2)0.0322 (8)
O8W0.0012 (4)0.0492 (3)0.30034 (18)0.0519 (8)
H8WA0.08980.07210.27840.078*
H8WB0.04030.05290.34580.078*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cl10.0352 (5)0.0379 (5)0.0369 (5)0.0131 (4)0.0081 (4)0.0006 (4)
Mg10.0294 (7)0.0299 (7)0.0333 (7)0.0015 (5)0.0025 (5)0.0014 (5)
O10.0342 (15)0.0489 (18)0.0517 (18)0.0035 (13)0.0143 (13)0.0126 (14)
N10.044 (2)0.0372 (19)0.0364 (18)0.0053 (15)0.0004 (15)0.0035 (14)
O1W0.062 (2)0.054 (2)0.0343 (16)0.0199 (16)0.0024 (14)0.0062 (14)
C10.057 (3)0.043 (2)0.032 (2)0.012 (2)0.0015 (18)0.0056 (18)
O20.0384 (16)0.0329 (15)0.0584 (19)0.0015 (12)0.0101 (13)0.0107 (13)
O2W0.0570 (19)0.0406 (16)0.0406 (16)0.0135 (14)0.0151 (14)0.0071 (13)
N20.051 (2)0.038 (2)0.042 (2)0.0098 (16)0.0023 (16)0.0069 (15)
C20.049 (3)0.045 (2)0.033 (2)0.015 (2)0.0036 (18)0.0001 (17)
O3W0.0451 (17)0.0327 (15)0.0486 (17)0.0014 (13)0.0055 (13)0.0063 (13)
C30.0301 (18)0.0289 (18)0.0317 (19)0.0029 (15)0.0032 (14)0.0013 (15)
N30.044 (2)0.0339 (18)0.044 (2)0.0066 (15)0.0054 (15)0.0004 (15)
O4W0.0316 (15)0.0569 (19)0.0494 (18)0.0115 (14)0.0062 (13)0.0078 (15)
N40.0379 (18)0.0347 (18)0.0358 (18)0.0045 (14)0.0023 (14)0.0002 (14)
C40.052 (2)0.034 (2)0.0307 (19)0.0030 (18)0.0027 (17)0.0027 (16)
O5W0.0308 (15)0.0462 (18)0.074 (2)0.0025 (13)0.0014 (14)0.0215 (16)
N50.0304 (16)0.0283 (16)0.0396 (18)0.0000 (13)0.0048 (13)0.0014 (13)
C50.045 (2)0.038 (2)0.036 (2)0.0046 (18)0.0032 (17)0.0014 (17)
O6W0.0470 (17)0.0367 (16)0.0568 (19)0.0057 (14)0.0086 (14)0.0105 (14)
C60.0322 (19)0.0301 (19)0.0325 (19)0.0012 (15)0.0041 (15)0.0008 (15)
C70.033 (2)0.031 (2)0.049 (2)0.0010 (16)0.0107 (17)0.0038 (17)
O7W0.0518 (19)0.0393 (17)0.0522 (19)0.0089 (14)0.0036 (14)0.0070 (14)
C80.0312 (19)0.033 (2)0.0318 (19)0.0005 (15)0.0030 (15)0.0020 (15)
O8W0.058 (2)0.054 (2)0.0413 (17)0.0037 (16)0.0047 (15)0.0012 (14)
Geometric parameters (Å, º) top
Mg1—O3W2.041 (3)C3—C41.380 (6)
Mg1—O6W2.047 (3)C3—C61.460 (5)
Mg1—O4W2.052 (3)N3—N41.330 (5)
Mg1—O2W2.061 (3)O4W—H4WA0.8201
Mg1—O5W2.064 (3)O4W—H4WB0.8201
Mg1—O1W2.092 (3)N4—C61.329 (5)
O1—C81.225 (5)C4—C51.367 (6)
N1—C61.329 (5)C4—H4A0.9300
N1—N21.335 (5)O5W—H5WA0.8202
O1W—H1WA0.8203O5W—H5WB0.8202
O1W—H1WB0.8202N5—C51.334 (5)
C1—N51.337 (5)N5—C71.469 (5)
C1—C21.359 (6)C5—H5A0.9300
C1—H1A0.9300O6W—H6WA0.8203
O2—C81.238 (5)O6W—H6WB0.8203
O2W—H2WA0.8203C7—C81.536 (5)
O2W—H2WB0.8202C7—H7A0.9700
N2—N31.311 (5)C7—H7B0.9700
C2—C31.372 (6)O7W—H7WA0.8201
C2—H2A0.9300O7W—H7WB0.8202
O3W—H3WA0.8202O8W—H8WA0.9070
O3W—H3WB0.8203O8W—H8WB0.8201
O3W—Mg1—O6W176.38 (14)N2—N3—N4109.3 (3)
O3W—Mg1—O4W91.72 (14)Mg1—O4W—H4WA124.9
O6W—Mg1—O4W91.89 (14)Mg1—O4W—H4WB135.0
O3W—Mg1—O2W88.26 (13)H4WA—O4W—H4WB88.3
O6W—Mg1—O2W91.94 (14)C6—N4—N3104.8 (3)
O4W—Mg1—O2W90.85 (14)C5—C4—C3120.2 (4)
O3W—Mg1—O5W89.14 (13)C5—C4—H4A119.9
O6W—Mg1—O5W87.24 (13)C3—C4—H4A119.9
O4W—Mg1—O5W177.82 (15)Mg1—O5W—H5WA123.7
O2W—Mg1—O5W91.18 (15)Mg1—O5W—H5WB127.9
O3W—Mg1—O1W90.50 (14)H5WA—O5W—H5WB108.3
O6W—Mg1—O1W89.51 (14)C5—N5—C1120.3 (4)
O4W—Mg1—O1W85.77 (14)C5—N5—C7120.7 (3)
O2W—Mg1—O1W176.36 (15)C1—N5—C7118.6 (3)
O5W—Mg1—O1W92.22 (15)N5—C5—C4120.6 (4)
C6—N1—N2104.3 (3)N5—C5—H5A119.7
Mg1—O1W—H1WA133.6C4—C5—H5A119.7
Mg1—O1W—H1WB125.3Mg1—O6W—H6WA122.2
H1WA—O1W—H1WB99.7Mg1—O6W—H6WB121.5
N5—C1—C2120.7 (4)H6WA—O6W—H6WB109.2
N5—C1—H1A119.7N4—C6—N1111.8 (4)
C2—C1—H1A119.7N4—C6—C3122.9 (3)
Mg1—O2W—H2WA122.8N1—C6—C3125.2 (3)
Mg1—O2W—H2WB122.2N5—C7—C8110.6 (3)
H2WA—O2W—H2WB106.0N5—C7—H7A109.5
N3—N2—N1109.7 (3)C8—C7—H7A109.5
C1—C2—C3120.6 (4)N5—C7—H7B109.5
C1—C2—H2A119.7C8—C7—H7B109.5
C3—C2—H2A119.7H7A—C7—H7B108.1
Mg1—O3W—H3WA125.2H7WA—O7W—H7WB121.4
Mg1—O3W—H3WB124.6O1—C8—O2127.0 (4)
H3WA—O3W—H3WB100.2O1—C8—C7118.2 (3)
C2—C3—C4117.6 (4)O2—C8—C7114.8 (3)
C2—C3—C6120.8 (3)H8WA—O8W—H8WB98.7
C4—C3—C6121.6 (3)
C6—N1—N2—N30.4 (5)N3—N4—C6—N10.3 (5)
N5—C1—C2—C30.1 (7)N3—N4—C6—C3179.5 (4)
C1—C2—C3—C41.7 (7)N2—N1—C6—N40.4 (5)
C1—C2—C3—C6178.5 (4)N2—N1—C6—C3179.7 (4)
N1—N2—N3—N40.2 (5)C2—C3—C6—N44.7 (6)
N2—N3—N4—C60.0 (5)C4—C3—C6—N4175.5 (4)
C2—C3—C4—C52.1 (6)C2—C3—C6—N1176.2 (4)
C6—C3—C4—C5178.1 (4)C4—C3—C6—N13.7 (6)
C2—C1—N5—C51.1 (7)C5—N5—C7—C892.9 (4)
C2—C1—N5—C7171.8 (4)C1—N5—C7—C880.0 (5)
C1—N5—C5—C40.7 (6)N5—C7—C8—O110.1 (5)
C7—N5—C5—C4172.1 (4)N5—C7—C8—O2170.4 (3)
C3—C4—C5—N51.0 (7)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1W—H1WA···N1i0.822.072.883 (5)174
O1W—H1WB···Cl10.822.363.180 (3)173
O2W—H2WA···N3ii0.822.072.885 (5)178
O2W—H2WB···O1iii0.821.992.793 (4)167
O3W—H3WA···O10.821.912.722 (4)170
O3W—H3WB···O7Wiv0.821.952.748 (4)165
O4W—H4WA···O2v0.821.942.738 (4)164
O4W—H4WB···O8Wvi0.821.982.794 (4)174
O5W—H5WA···Cl1vii0.822.343.162 (3)174
O5W—H5WB···O20.821.912.715 (4)169
O6W—H6WA···O8Wii0.821.972.763 (5)164
O6W—H6WB···O7Wv0.821.862.678 (4)178
O7W—H7WA···N2viii0.821.942.748 (5)169
O7W—H7WB···Cl1vii0.822.293.106 (3)170
O8W—H8WA···Cl1iv0.912.263.109 (4)156
O8W—H8WB···N40.822.002.822 (5)179
Symmetry codes: (i) x1/2, y+1/2, z1/2; (ii) x, y+1, z; (iii) x, y+1, z+1; (iv) x+1/2, y1/2, z+1/2; (v) x1, y, z; (vi) x1/2, y+1/2, z+1/2; (vii) x+1/2, y+1/2, z+1/2; (viii) x+1/2, y+1/2, z1/2.

Experimental details

Crystal data
Chemical formula[Mg(H2O)6](C8H6N5O2)Cl·2H2O
Mr408.07
Crystal system, space groupMonoclinic, P21/n
Temperature (K)298
a, b, c (Å)8.1627 (16), 12.896 (3), 17.435 (4)
β (°) 96.85 (3)
V3)1822.3 (7)
Z4
Radiation typeMo Kα
µ (mm1)0.30
Crystal size (mm)0.40 × 0.30 × 0.20
Data collection
DiffractometerRigaku Mercury2
Absorption correctionMulti-scan
(CrystalClear; Rigaku, 2005)
Tmin, Tmax0.89, 1.00
No. of measured, independent and
observed [I > 2σ(I)] reflections
18612, 4172, 3261
Rint0.044
(sin θ/λ)max1)0.649
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.061, 0.181, 1.10
No. of reflections4172
No. of parameters226
No. of restraints16
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)1.00, 0.41

Computer programs: CrystalClear (Rigaku, 2005), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), XP in SHELXTL (Sheldrick, 2008) and DIAMOND (Brandenburg, 1999), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1W—H1WA···N1i0.822.072.883 (5)174
O1W—H1WB···Cl10.822.363.180 (3)173
O2W—H2WA···N3ii0.822.072.885 (5)178
O2W—H2WB···O1iii0.821.992.793 (4)167
O3W—H3WA···O10.821.912.722 (4)170
O3W—H3WB···O7Wiv0.821.952.748 (4)165
O4W—H4WA···O2v0.821.942.738 (4)164
O4W—H4WB···O8Wvi0.821.982.794 (4)174
O5W—H5WA···Cl1vii0.822.343.162 (3)174
O5W—H5WB···O20.821.912.715 (4)169
O6W—H6WA···O8Wii0.821.972.763 (5)164
O6W—H6WB···O7Wv0.821.862.678 (4)178
O7W—H7WA···N2viii0.821.942.748 (5)169
O7W—H7WB···Cl1vii0.822.293.106 (3)170
O8W—H8WA···Cl1iv0.912.263.109 (4)156
O8W—H8WB···N40.822.002.822 (5)179
Symmetry codes: (i) x1/2, y+1/2, z1/2; (ii) x, y+1, z; (iii) x, y+1, z+1; (iv) x+1/2, y1/2, z+1/2; (v) x1, y, z; (vi) x1/2, y+1/2, z+1/2; (vii) x+1/2, y+1/2, z+1/2; (viii) x+1/2, y+1/2, z1/2.
 

Acknowledgements

This work was supported by the doctoral fund of Southeast University, People's Republic of China.

References

First citationBrandenburg, K. (1999). DIAMOND. Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationFu, D.-W., Dai, J., Ge, J.-Z., Ye, H.-Y. & Qu, Z.-R. (2010). Inorg. Chem. Commun. 13, 282–285.  Web of Science CSD CrossRef CAS Google Scholar
First citationFu, D.-W., Ge, J.-Z., Dai, J., Ye, H.-Y. & Qu, Z.-R. (2009). Inorg. Chem. Commun. 12, 994–997.  Web of Science CSD CrossRef CAS Google Scholar
First citationRigaku (2005). CrystalClear. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds