organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

1-(4-Benz­yl­oxy-2-hy­dr­oxy­phen­yl)ethanone

aCollege of Life Sciences, Northwest A&F University, Yangling Shaanxi 712100, People's Republic of China, and bCollege of Science, Northwest A&F University, Yangling Shaanxi 712100, People's Republic of China
*Correspondence e-mail: mnathantuan@yahoo.com

(Received 11 October 2011; accepted 3 November 2011; online 9 November 2011)

The title compound, C15H14O3, has been obtained from the reaction of 2,4-dihy­droxy­acetophenone, potassium carbonate and benzyl bromide. The remaining hy­droxy group is involved in an intra­molecular O—H⋯O hydrogen bond. In the crystal, inter­molecular C—H⋯O contacts occur.

Related literature

For background to the Williamson reaction in organic synthesis, see: Dermer (1934[Dermer, O. C. (1934). Chem. Rev. 14, 385-430.]). For synthetic procedures for related compounds, see: Mendelson et al. (1996[Mendelson, W. L., Holmes, M. & Dougherty, J. (1996). Synth. Commun. 26, 593-601.]). For a related structure, see: Ma et al. (2010[Ma, Y.-T., Zhang, A.-L., Yuan, M.-S. & Gao, J.-M. (2010). Acta Cryst. E66, o2468.]).

[Scheme 1]

Experimental

Crystal data
  • C15H14O3

  • Mr = 242.26

  • Triclinic, [P \overline 1]

  • a = 5.8433 (7) Å

  • b = 8.0096 (8) Å

  • c = 13.8089 (13) Å

  • α = 74.061 (1)°

  • β = 84.589 (1)°

  • γ = 87.372 (2)°

  • V = 618.54 (11) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.09 mm−1

  • T = 298 K

  • 0.23 × 0.20 × 0.15 mm

Data collection
  • Siemens SMART CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996[Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.]) Tmin = 0.980, Tmax = 0.987

  • 3169 measured reflections

  • 2167 independent reflections

  • 1291 reflections with I > 2σ(I)

  • Rint = 0.026

Refinement
  • R[F2 > 2σ(F2)] = 0.045

  • wR(F2) = 0.114

  • S = 1.02

  • 2167 reflections

  • 165 parameters

  • H-atom parameters constrained

  • Δρmax = 0.15 e Å−3

  • Δρmin = −0.14 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O2—H2⋯O1 0.82 1.84 2.554 (2) 146
C1—H1B⋯O2i 0.96 2.52 3.408 (3) 154
Symmetry code: (i) x-1, y, z.

Data collection: SMART (Siemens, 1996[Siemens (1996). SMART and SAINT. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Siemens, 1996[Siemens (1996). SMART and SAINT. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

The Williamson reaction is a very useful transformation in organic synthesis since the products are of value in both industrial and academic applications. It usually involves the employment of an alkali-metal salt of the hydroxy compound and an alkyl halide (Dermer, 1934). Synthetic procedures to ethers derived from 2,4-dihydroxy-acetophenone as well as the structural characterisation of a related molecule have been described before (Mendelson et al., 1996; Ma et al., 2010).

In this paper, we present the title compound, (I), which was synthesized by the reaction of 2, 4-dihydroxy-acetonephenone, potassium carbonate and benzyl bromide. In (I) (Fig. 1), the dihedral angle between the aromatic rings is 53.48 (4)°. The crystal packing exhibits no significantly short intermolecular contacts.

Related literature top

For background to the Williamson reaction in organic synthesis, see: Dermer (1934). For synthetic procedures for related compounds, see: Mendelson et al. (1996). For a related structure, see: Ma et al. (2010).

Experimental top

2, 4-Dihydroxy-acetonephenone (4 mmol), potassium carbonate (8 mmol), benzyl bromide (4 mmol), and 40 ml acetone were mixed in a 100 ml flask. After 3 h stirring at 331 K, the crude product was obtained (yield: 78%). Single crystals were obtained by recrystallization from methanol.

Refinement top

The positions of all H atoms were fixed geometrically and refined using a riding model with C—H = 0.93–0.97 Å ,O—H= 0.82 Å, and Uiso(H) = 1.2–1.5 Ueq(C, O).

Structure description top

The Williamson reaction is a very useful transformation in organic synthesis since the products are of value in both industrial and academic applications. It usually involves the employment of an alkali-metal salt of the hydroxy compound and an alkyl halide (Dermer, 1934). Synthetic procedures to ethers derived from 2,4-dihydroxy-acetophenone as well as the structural characterisation of a related molecule have been described before (Mendelson et al., 1996; Ma et al., 2010).

In this paper, we present the title compound, (I), which was synthesized by the reaction of 2, 4-dihydroxy-acetonephenone, potassium carbonate and benzyl bromide. In (I) (Fig. 1), the dihedral angle between the aromatic rings is 53.48 (4)°. The crystal packing exhibits no significantly short intermolecular contacts.

For background to the Williamson reaction in organic synthesis, see: Dermer (1934). For synthetic procedures for related compounds, see: Mendelson et al. (1996). For a related structure, see: Ma et al. (2010).

Computing details top

Data collection: SMART (Siemens, 1996); cell refinement: SAINT (Siemens, 1996); data reduction: SHELXTL (Sheldrick, 2008); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. Molecular structure of (I). Displacement ellipsoids are drawn at the 30% probability level.
[Figure 2] Fig. 2. Crystal packing of (I) viewed along the b axis, with hydrogen bonds shown as dashed lines.
1-(4-Benzyloxy-2-hydroxyphenyl)ethanone top
Crystal data top
C15H14O3Z = 2
Mr = 242.26F(000) = 256
Triclinic, P1Dx = 1.301 Mg m3
Hall symbol: -P 1Melting point = 378–379 K
a = 5.8433 (7) ÅMo Kα radiation, λ = 0.71073 Å
b = 8.0096 (8) ÅCell parameters from 945 reflections
c = 13.8089 (13) Åθ = 2.7–25.4°
α = 74.061 (1)°µ = 0.09 mm1
β = 84.589 (1)°T = 298 K
γ = 87.372 (2)°Triclinic, colourless
V = 618.54 (11) Å30.23 × 0.20 × 0.15 mm
Data collection top
Siemens SMART CCD area-detector
diffractometer
2167 independent reflections
Radiation source: fine-focus sealed tube1291 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.026
phi and ω scansθmax = 25.0°, θmin = 2.7°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 66
Tmin = 0.980, Tmax = 0.987k = 99
3169 measured reflectionsl = 1615
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.045Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.114H-atom parameters constrained
S = 1.02 w = 1/[σ2(Fo2) + (0.0468P)2]
where P = (Fo2 + 2Fc2)/3
2167 reflections(Δ/σ)max < 0.001
165 parametersΔρmax = 0.15 e Å3
0 restraintsΔρmin = 0.14 e Å3
Crystal data top
C15H14O3γ = 87.372 (2)°
Mr = 242.26V = 618.54 (11) Å3
Triclinic, P1Z = 2
a = 5.8433 (7) ÅMo Kα radiation
b = 8.0096 (8) ŵ = 0.09 mm1
c = 13.8089 (13) ÅT = 298 K
α = 74.061 (1)°0.23 × 0.20 × 0.15 mm
β = 84.589 (1)°
Data collection top
Siemens SMART CCD area-detector
diffractometer
2167 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
1291 reflections with I > 2σ(I)
Tmin = 0.980, Tmax = 0.987Rint = 0.026
3169 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0450 restraints
wR(F2) = 0.114H-atom parameters constrained
S = 1.02Δρmax = 0.15 e Å3
2167 reflectionsΔρmin = 0.14 e Å3
165 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.6013 (3)0.8182 (2)0.02477 (10)0.0812 (5)
O20.8544 (3)0.91909 (18)0.08846 (10)0.0723 (5)
H20.80700.91620.03490.108*
O30.6839 (2)0.71044 (16)0.44284 (9)0.0584 (4)
C10.2766 (4)0.6428 (3)0.03392 (16)0.0804 (7)
H1A0.26550.66130.03720.121*
H1B0.13820.68480.06350.121*
H1C0.29710.52100.06530.121*
C20.4770 (4)0.7384 (3)0.04958 (16)0.0627 (6)
C30.5296 (3)0.7344 (2)0.15150 (13)0.0499 (5)
C40.7175 (3)0.8243 (2)0.16617 (13)0.0529 (5)
C50.7750 (3)0.8181 (2)0.26222 (13)0.0520 (5)
H50.90210.87710.27050.062*
C60.6417 (3)0.7236 (2)0.34562 (13)0.0479 (5)
C70.4525 (3)0.6338 (2)0.33393 (14)0.0544 (5)
H70.36360.57000.39020.065*
C80.3993 (3)0.6409 (2)0.23848 (14)0.0566 (5)
H80.27190.58150.23100.068*
C90.8747 (3)0.8038 (3)0.45748 (14)0.0605 (6)
H9A0.85780.92570.42200.073*
H9B1.01620.75940.43010.073*
C100.8863 (3)0.7845 (2)0.56755 (14)0.0501 (5)
C110.7172 (3)0.8552 (3)0.62181 (15)0.0618 (6)
H110.58870.90880.59050.074*
C120.7353 (4)0.8478 (3)0.72185 (15)0.0655 (6)
H120.61970.89610.75740.079*
C130.9239 (4)0.7690 (3)0.76880 (16)0.0654 (6)
H130.93730.76460.83600.078*
C141.0919 (4)0.6970 (3)0.71643 (17)0.0688 (6)
H141.21960.64300.74820.083*
C151.0730 (4)0.7039 (3)0.61631 (15)0.0606 (6)
H151.18780.65350.58150.073*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.1067 (13)0.0896 (12)0.0446 (9)0.0045 (10)0.0021 (9)0.0160 (8)
O20.0836 (10)0.0796 (11)0.0449 (8)0.0142 (8)0.0097 (7)0.0051 (7)
O30.0708 (9)0.0625 (9)0.0418 (8)0.0226 (7)0.0022 (6)0.0115 (6)
C10.0932 (18)0.0912 (18)0.0669 (15)0.0076 (15)0.0257 (13)0.0336 (13)
C20.0768 (16)0.0593 (14)0.0544 (14)0.0154 (12)0.0087 (12)0.0211 (11)
C30.0601 (13)0.0478 (12)0.0422 (12)0.0036 (10)0.0029 (9)0.0139 (9)
C40.0627 (14)0.0488 (12)0.0410 (12)0.0001 (10)0.0065 (10)0.0057 (9)
C50.0569 (13)0.0515 (12)0.0464 (12)0.0099 (10)0.0014 (10)0.0106 (9)
C60.0593 (12)0.0441 (11)0.0385 (11)0.0048 (10)0.0007 (9)0.0096 (9)
C70.0612 (13)0.0548 (13)0.0461 (12)0.0141 (10)0.0056 (10)0.0134 (9)
C80.0581 (13)0.0589 (13)0.0558 (13)0.0075 (10)0.0035 (10)0.0202 (10)
C90.0640 (14)0.0650 (14)0.0533 (13)0.0178 (11)0.0017 (10)0.0158 (10)
C100.0537 (12)0.0511 (12)0.0466 (12)0.0088 (10)0.0041 (10)0.0137 (9)
C110.0546 (13)0.0719 (15)0.0578 (14)0.0027 (11)0.0098 (10)0.0147 (11)
C120.0641 (14)0.0770 (16)0.0577 (14)0.0032 (12)0.0022 (11)0.0245 (11)
C130.0768 (16)0.0720 (16)0.0485 (13)0.0132 (13)0.0077 (12)0.0158 (11)
C140.0660 (15)0.0761 (16)0.0606 (15)0.0005 (12)0.0168 (12)0.0088 (12)
C150.0606 (14)0.0612 (14)0.0595 (14)0.0012 (11)0.0002 (11)0.0178 (10)
Geometric parameters (Å, º) top
O1—C21.238 (2)C7—H70.9300
O2—C41.347 (2)C8—H80.9300
O2—H20.8200C9—C101.493 (2)
O3—C61.362 (2)C9—H9A0.9700
O3—C91.430 (2)C9—H9B0.9700
C1—C21.491 (3)C10—C151.377 (3)
C1—H1A0.9600C10—C111.379 (3)
C1—H1B0.9600C11—C121.380 (2)
C1—H1C0.9600C11—H110.9300
C2—C31.460 (3)C12—C131.371 (3)
C3—C41.400 (3)C12—H120.9300
C3—C81.404 (2)C13—C141.365 (3)
C4—C51.386 (2)C13—H130.9300
C5—C61.383 (2)C14—C151.383 (3)
C5—H50.9300C14—H140.9300
C6—C71.392 (2)C15—H150.9300
C7—C81.368 (2)
C4—O2—H2109.5C7—C8—H8118.8
C6—O3—C9117.04 (14)C3—C8—H8118.8
C2—C1—H1A109.5O3—C9—C10109.89 (15)
C2—C1—H1B109.5O3—C9—H9A109.7
H1A—C1—H1B109.5C10—C9—H9A109.7
C2—C1—H1C109.5O3—C9—H9B109.7
H1A—C1—H1C109.5C10—C9—H9B109.7
H1B—C1—H1C109.5H9A—C9—H9B108.2
O1—C2—C3120.3 (2)C15—C10—C11118.14 (18)
O1—C2—C1119.2 (2)C15—C10—C9120.72 (17)
C3—C2—C1120.5 (2)C11—C10—C9121.03 (18)
C4—C3—C8116.92 (17)C10—C11—C12121.11 (19)
C4—C3—C2120.48 (19)C10—C11—H11119.4
C8—C3—C2122.6 (2)C12—C11—H11119.4
O2—C4—C5116.22 (19)C13—C12—C11119.94 (19)
O2—C4—C3122.26 (17)C13—C12—H12120.0
C5—C4—C3121.51 (17)C11—C12—H12120.0
C6—C5—C4119.41 (19)C14—C13—C12119.7 (2)
C6—C5—H5120.3C14—C13—H13120.2
C4—C5—H5120.3C12—C13—H13120.2
O3—C6—C5123.69 (18)C13—C14—C15120.3 (2)
O3—C6—C7115.64 (16)C13—C14—H14119.8
C5—C6—C7120.67 (17)C15—C14—H14119.8
C8—C7—C6119.02 (18)C10—C15—C14120.81 (19)
C8—C7—H7120.5C10—C15—H15119.6
C6—C7—H7120.5C14—C15—H15119.6
C7—C8—C3122.5 (2)
O1—C2—C3—C41.6 (3)C5—C6—C7—C80.3 (3)
C1—C2—C3—C4179.90 (17)C6—C7—C8—C30.5 (3)
O1—C2—C3—C8177.70 (18)C4—C3—C8—C71.0 (3)
C1—C2—C3—C80.8 (3)C2—C3—C8—C7178.29 (16)
C8—C3—C4—O2179.70 (16)C6—O3—C9—C10176.25 (14)
C2—C3—C4—O21.0 (3)O3—C9—C10—C15117.1 (2)
C8—C3—C4—C51.3 (3)O3—C9—C10—C1166.5 (2)
C2—C3—C4—C5178.00 (16)C15—C10—C11—C120.9 (3)
O2—C4—C5—C6179.84 (16)C9—C10—C11—C12175.56 (18)
C3—C4—C5—C61.1 (3)C10—C11—C12—C130.0 (3)
C9—O3—C6—C51.4 (2)C11—C12—C13—C140.6 (3)
C9—O3—C6—C7178.88 (15)C12—C13—C14—C150.3 (3)
C4—C5—C6—O3179.73 (15)C11—C10—C15—C141.2 (3)
C4—C5—C6—C70.6 (3)C9—C10—C15—C14175.30 (19)
O3—C6—C7—C8179.99 (15)C13—C14—C15—C100.6 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O2—H2···O10.821.842.554 (2)146
C1—H1B···O2i0.962.523.408 (3)154
Symmetry code: (i) x1, y, z.

Experimental details

Crystal data
Chemical formulaC15H14O3
Mr242.26
Crystal system, space groupTriclinic, P1
Temperature (K)298
a, b, c (Å)5.8433 (7), 8.0096 (8), 13.8089 (13)
α, β, γ (°)74.061 (1), 84.589 (1), 87.372 (2)
V3)618.54 (11)
Z2
Radiation typeMo Kα
µ (mm1)0.09
Crystal size (mm)0.23 × 0.20 × 0.15
Data collection
DiffractometerSiemens SMART CCD area-detector
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.980, 0.987
No. of measured, independent and
observed [I > 2σ(I)] reflections
3169, 2167, 1291
Rint0.026
(sin θ/λ)max1)0.595
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.045, 0.114, 1.02
No. of reflections2167
No. of parameters165
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.15, 0.14

Computer programs: SMART (Siemens, 1996), SAINT (Siemens, 1996), SHELXTL (Sheldrick, 2008), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O2—H2···O10.821.842.554 (2)146
C1—H1B···O2i0.962.523.408 (3)154
Symmetry code: (i) x1, y, z.
 

Acknowledgements

We would like to acknowledge funding support by Shaanxi Province Science and Technology (under contract No. 2011 K02–07) and the Program of Northwest A&F University (No. Z111020908).

References

First citationDermer, O. C. (1934). Chem. Rev. 14, 385–430.  CrossRef CAS Google Scholar
First citationMa, Y.-T., Zhang, A.-L., Yuan, M.-S. & Gao, J.-M. (2010). Acta Cryst. E66, o2468.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationMendelson, W. L., Holmes, M. & Dougherty, J. (1996). Synth. Commun. 26, 593–601.  CrossRef CAS Web of Science Google Scholar
First citationSheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSiemens (1996). SMART and SAINT. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.  Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds