organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

1,3-Di­benzyl-1H-benzimidazol-2(3H)-one

aLaboratoire de Chimie Organique Appliquée, Université Sidi Mohamed Ben Abdallah, Faculté des Sciences et Techniques, Route d'immouzzer, BP 2202 Fès, Morocco, bLaboratoire de Chimie Organique Hétérocyclique URAC21, Faculté des Sciences, Université Mohammed V-Agdal, Av. Ibn Battouta, BP 1014, Rabat, Morocco, cDepartamento de Quimica Inorganica & Organica, ESTCE, Universitat Jaume I, E-12080 Castellon, Spain, dInstitut für Anorganische Chemie, J.W. Goethe-Universität Frankfurt, Max-von-Laue-Strasse 7, 60438 Frankfurt/Main, Germany, and eLaboratoire de Chimie du Solide Appliquée, Faculté des Sciences, Université Mohammed V-Agdal, Avenue Ibn Battouta, BP 1014, Rabat, Morocco
*Correspondence e-mail: ouazzani_chahid@yahoo.fr

(Received 19 October 2011; accepted 1 November 2011; online 9 November 2011)

In the mol­ecular structure of the title compound, C21H18N2O, the fused-ring system is essentially planar, the largest deviation from the mean plane being 0.0121 (9) Å. The O atom and adjacent C atom are located in Wyckoff position 4e on a twofold axis (0, y, 1/4). The two benzyl groups are almost perpendicular to the benzimidazole plane, but point in opposite directions. The dihedral angle between the benzimidazole mean plane and the phenyl ring is 81.95 (5)°, whereas that between the two benzyl groups is 60.96 (7)°.

Related literature

For pharmacological and biochemical properties of benzimidazoles, see: Gravatt et al. (1994[Gravatt, G. L., Baguley, B. C., Wilson, W. R. & Denny, W. A. (1994). J. Med. Chem. 37, 4338-4345.]); Horton et al. (2003[Horton, D. A., Bourne, G. T. & Smythe, M. L. (2003). Chem. Rev. 103, 893-930.]); Kim et al. (1996[Kim, J. S., Gatto, B., Yu, C., Liu, A., Liu, L. F. & La Voie, E. J. (1996). J. Med. Chem. 39, 992-998.]); Roth et al. (1997[Roth, T., Morningstar, M. L., Boyer, P. L., Hughes, S. H., Buckheit, R. W. & Michejda, C. J. (1997). J. Med. Chem. 40, 4199-4207.]). Ouzidan et al. (2011a[Ouzidan, Y., Kandri Rodi, Y., Butcher, R. J., Essassi, E. M. & El Ammari, L. (2011a). Acta Cryst. E67, o283.],b[Ouzidan, Y., Kandri Rodi, Y., Fronczek, F. R., Venkatraman, R., El Ammari, L. & Essassi, E. M. (2011b). Acta Cryst. E67, o362-o363.],c[Ouzidan, Y., Essassi, E. M., Luis, S. V., Bolte, M. & El Ammari, L. (2011c). Acta Cryst. E67, o1822.]).

[Scheme 1]

Experimental

Crystal data
  • C21H18N2O

  • Mr = 314.37

  • Monoclinic, C 2/c

  • a = 19.5983 (7) Å

  • b = 9.0882 (2) Å

  • c = 10.0473 (3) Å

  • β = 115.593 (4)°

  • V = 1613.98 (10) Å3

  • Z = 4

  • Cu Kα radiation

  • μ = 0.63 mm−1

  • T = 200 K

  • 0.37 × 0.21 × 0.15 mm

Data collection
  • Agilent SuperNova Dual Cu at zero Atlas diffractometer

  • Absorption correction: multi-scan [CrysAlis PRO (Agilent, 2011)[Agilent (2011). CrysAlis PRO. Agilent Technologies, Yarnton, England.], using spherical harmonics, implemented in SCALE3 ABSPACK scaling algorithm (Clark & Reid (1995[Clark, R. C. & Reid, J. S. (1995). Acta Cryst. A51, 887-897.])] Tmin = 0.950, Tmax = 1.000

  • 7837 measured reflections

  • 1611 independent reflections

  • 1397 reflections with I > 2σ(I)

  • Rint = 0.028

Refinement
  • R[F2 > 2σ(F2)] = 0.037

  • wR(F2) = 0.106

  • S = 1.07

  • 1611 reflections

  • 111 parameters

  • H-atom parameters constrained

  • Δρmax = 0.15 e Å−3

  • Δρmin = −0.16 e Å−3

Data collection: CrysAlis PRO (Agilent, 2011[Agilent (2011). CrysAlis PRO. Agilent Technologies, Yarnton, England.]); cell refinement: CrysAlis PRO; data reduction: CrysAlis PRO; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: XP (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

Benzimidazoles are very useful intermediates/subunits for the development of molecules of pharmaceutical or biological interest. Benzimidazole and its derivatives are an important class of bioactive molecules in the field of drugs and pharmaceuticals. Benzimidazole derivatives have found applications in diverse therapeutic areas including anti-ulcers, anti-hypertensives, anti-virals, anti-fungals, anti-cancers, (Gravatt et al. 1994; Horton et al. 2003; Kim et al. 1996; Roth et al. 1997).

As a continuation of our research work devoted to the development of substituted benzimidazol-2-one derivatives (Ouzidan et al., 2011a, 2011b), we reported the synthesis of new benzimidazol-2-one derivative by action of benzyl chloride with 1H-benzimidazol-2(3H)-one in the presence of a catalytic quantity of tetra-n-butylammonium bromide under mild conditions to furnish two compounds: mono-substituted (Ouzidan et al., 2011c) and the title compound (Scheme 1).

The title compound C21H18N2O is a new heterocyclic system deriving from benzimidazole. The crystal structure of this molecule is built up from two fused six and five-membered rings linked to two benzyl groups. The oxygen and the adjacent carbon atom are located in the Wyckoff position 4 e on the twofold axis (0, y, 1/4). The fused-ring system is essentially planar, with the maximum deviation of 0.0121 (9) Å for N1 as shown in Fig.1. The benzyl groups are almost perpendicular to the benzimidazole plane but oriented in opposite directions, with a dihedral angle of 81.95 (7). The dihedral angle between the two benzyl rings is abut 60.965 (7)°.

Related literature top

For pharmacological and biochemical properties of benzimidazoles, see: Gravatt et al. (1994); Horton et al. (2003); Kim et al. (1996); Roth et al. (1997). Ouzidan et al. (2011a,b,c).

Experimental top

To a mxture of 1H-benzimidazol-2(3H)-one (0.2 g, 1.5 mmol), potassium carbonate (0.41 g, 3 mmol) and tetra-n-butylammonium bromide (0.05 g, 0.15 mmol) in DMF (15 ml) was added benzyl chloride (0.34 ml, 3 mmol). Stirring was continued at room temperature for 6 h. The salt was removed by filtration and the filtrate concentrated under reduced pressure. The residue was separated by chromatography on a column of silica gel with ethyl acetate/hexane (1/2) as eluent. The compound was recrystallized from ethanol to give colourless crystals (yield: 75%).

Refinement top

H atoms were located in a difference map and treated as riding with C—H = 0.93 Å for all H atoms with Uiso(H) = 1.2 Ueqfor aromatic and methylene.

Structure description top

Benzimidazoles are very useful intermediates/subunits for the development of molecules of pharmaceutical or biological interest. Benzimidazole and its derivatives are an important class of bioactive molecules in the field of drugs and pharmaceuticals. Benzimidazole derivatives have found applications in diverse therapeutic areas including anti-ulcers, anti-hypertensives, anti-virals, anti-fungals, anti-cancers, (Gravatt et al. 1994; Horton et al. 2003; Kim et al. 1996; Roth et al. 1997).

As a continuation of our research work devoted to the development of substituted benzimidazol-2-one derivatives (Ouzidan et al., 2011a, 2011b), we reported the synthesis of new benzimidazol-2-one derivative by action of benzyl chloride with 1H-benzimidazol-2(3H)-one in the presence of a catalytic quantity of tetra-n-butylammonium bromide under mild conditions to furnish two compounds: mono-substituted (Ouzidan et al., 2011c) and the title compound (Scheme 1).

The title compound C21H18N2O is a new heterocyclic system deriving from benzimidazole. The crystal structure of this molecule is built up from two fused six and five-membered rings linked to two benzyl groups. The oxygen and the adjacent carbon atom are located in the Wyckoff position 4 e on the twofold axis (0, y, 1/4). The fused-ring system is essentially planar, with the maximum deviation of 0.0121 (9) Å for N1 as shown in Fig.1. The benzyl groups are almost perpendicular to the benzimidazole plane but oriented in opposite directions, with a dihedral angle of 81.95 (7). The dihedral angle between the two benzyl rings is abut 60.965 (7)°.

For pharmacological and biochemical properties of benzimidazoles, see: Gravatt et al. (1994); Horton et al. (2003); Kim et al. (1996); Roth et al. (1997). Ouzidan et al. (2011a,b,c).

Computing details top

Data collection: CrysAlis PRO (Agilent, 2011); cell refinement: CrysAlis PRO (Agilent, 2011); data reduction: CrysAlis PRO (Agilent, 2011); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: XP (Sheldrick, 2008); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. Molecular structure of the title compound with the atom-labelling scheme. Displacement ellipsoids are drawn at the 50% probability level. H atoms are represented as small circles.
1,3-Dibenzyl-1H-benzimidazol-2(3H)-one top
Crystal data top
C21H18N2OF(000) = 664
Mr = 314.37Dx = 1.294 Mg m3
Monoclinic, C2/cCu Kα radiation, λ = 1.54184 Å
Hall symbol: -C 2ycCell parameters from 5000 reflections
a = 19.5983 (7) Åθ = 5–50°
b = 9.0882 (2) ŵ = 0.63 mm1
c = 10.0473 (3) ÅT = 200 K
β = 115.593 (4)°Block, colourless
V = 1613.98 (10) Å30.37 × 0.21 × 0.15 mm
Z = 4
Data collection top
Agilent SuperNova Dual Cu at zero Atlas
diffractometer
1611 independent reflections
Radiation source: SuperNova (Cu) X-ray Source1397 reflections with I > 2σ(I)
Mirror monochromatorRint = 0.028
Detector resolution: 10.4051 pixels mm-1θmax = 73.4°, θmin = 5.0°
ω scansh = 2318
Absorption correction: multi-scan
[CrysAlis PRO (Agilent, 2011), using spherical harmonics, implemented in SCALE3 ABSPACK scaling algorithm (Clark & Reid (1995)]
k = 1111
Tmin = 0.950, Tmax = 1.000l = 1212
7837 measured reflections
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.037H-atom parameters constrained
wR(F2) = 0.106 w = 1/[σ2(Fo2) + (0.0565P)2 + 0.4305P]
where P = (Fo2 + 2Fc2)/3
S = 1.07(Δ/σ)max = 0.001
1611 reflectionsΔρmax = 0.15 e Å3
111 parametersΔρmin = 0.16 e Å3
0 restraintsExtinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.0010 (2)
Crystal data top
C21H18N2OV = 1613.98 (10) Å3
Mr = 314.37Z = 4
Monoclinic, C2/cCu Kα radiation
a = 19.5983 (7) ŵ = 0.63 mm1
b = 9.0882 (2) ÅT = 200 K
c = 10.0473 (3) Å0.37 × 0.21 × 0.15 mm
β = 115.593 (4)°
Data collection top
Agilent SuperNova Dual Cu at zero Atlas
diffractometer
1611 independent reflections
Absorption correction: multi-scan
[CrysAlis PRO (Agilent, 2011), using spherical harmonics, implemented in SCALE3 ABSPACK scaling algorithm (Clark & Reid (1995)]
1397 reflections with I > 2σ(I)
Tmin = 0.950, Tmax = 1.000Rint = 0.028
7837 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0370 restraints
wR(F2) = 0.106H-atom parameters constrained
S = 1.07Δρmax = 0.15 e Å3
1611 reflectionsΔρmin = 0.16 e Å3
111 parameters
Special details top

Experimental. CrysAlisPro, Agilent Technologies, Version 1.171.35.11 (release 16-05-2011 CrysAlis171 .NET) Empirical absorption correction using spherical harmonics, implemented in SCALE3 ABSPACK scaling algorithm (Clark & Reid (1995)).

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against all reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on all data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.50000.58201 (13)0.25000.0492 (4)
N10.53746 (5)0.35600 (11)0.19370 (10)0.0366 (3)
C10.52407 (6)0.20943 (12)0.21516 (11)0.0333 (3)
C20.54925 (7)0.08014 (14)0.17958 (13)0.0390 (3)
H20.58350.08060.13460.047*
C30.52422 (7)0.05071 (14)0.21593 (14)0.0432 (3)
H30.54020.14440.19070.052*
C40.50000.44731 (19)0.25000.0378 (4)
C50.58741 (7)0.40758 (14)0.13068 (13)0.0412 (3)
H5A0.57850.51170.10880.049*
H5B0.57510.35640.03840.049*
C110.67024 (7)0.38418 (13)0.23142 (12)0.0376 (3)
C120.71696 (8)0.30976 (15)0.18389 (14)0.0459 (3)
H120.69700.26940.08960.055*
C130.79366 (8)0.29464 (16)0.27566 (17)0.0522 (4)
H130.82490.24500.24250.063*
C140.82333 (8)0.35325 (17)0.41560 (16)0.0518 (4)
H140.87480.34450.47650.062*
C150.77703 (8)0.42476 (16)0.46569 (14)0.0507 (4)
H150.79700.46260.56100.061*
C160.70099 (8)0.44026 (15)0.37424 (14)0.0450 (3)
H160.66990.48880.40850.054*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0546 (8)0.0361 (7)0.0477 (7)0.0000.0136 (6)0.000
N10.0302 (5)0.0396 (6)0.0357 (5)0.0023 (4)0.0103 (4)0.0015 (4)
C10.0233 (5)0.0391 (6)0.0293 (5)0.0018 (4)0.0036 (4)0.0003 (4)
C20.0295 (6)0.0461 (7)0.0374 (6)0.0012 (5)0.0107 (5)0.0031 (5)
C30.0371 (7)0.0390 (6)0.0469 (7)0.0015 (5)0.0120 (6)0.0036 (5)
C40.0329 (9)0.0390 (9)0.0311 (8)0.0000.0038 (7)0.000
C50.0356 (7)0.0493 (7)0.0337 (6)0.0049 (5)0.0101 (5)0.0064 (5)
C110.0331 (6)0.0406 (6)0.0349 (6)0.0063 (5)0.0106 (5)0.0064 (5)
C120.0424 (7)0.0531 (8)0.0415 (6)0.0052 (6)0.0174 (6)0.0003 (6)
C130.0403 (8)0.0581 (9)0.0592 (8)0.0011 (6)0.0224 (7)0.0053 (7)
C140.0336 (7)0.0607 (9)0.0511 (8)0.0050 (6)0.0088 (6)0.0129 (6)
C150.0412 (7)0.0618 (9)0.0377 (7)0.0089 (6)0.0065 (6)0.0011 (6)
C160.0393 (7)0.0527 (7)0.0397 (7)0.0028 (6)0.0139 (6)0.0000 (6)
Geometric parameters (Å, º) top
O1—C41.224 (2)C5—H5B0.9700
N1—C41.3807 (14)C11—C121.3790 (19)
N1—C11.3924 (15)C11—C161.3910 (18)
N1—C51.4541 (15)C12—C131.3896 (19)
C1—C21.3801 (17)C12—H120.9300
C1—C1i1.397 (2)C13—C141.376 (2)
C2—C31.3939 (18)C13—H130.9300
C2—H20.9576C14—C151.376 (2)
C3—C3i1.390 (3)C14—H140.9300
C3—H30.9773C15—C161.3790 (18)
C4—N1i1.3807 (14)C15—H150.9300
C5—C111.5118 (17)C16—H160.9300
C5—H5A0.9700
C4—N1—C1110.02 (10)H5A—C5—H5B107.8
C4—N1—C5124.18 (11)C12—C11—C16118.71 (12)
C1—N1—C5125.68 (10)C12—C11—C5121.24 (11)
C2—C1—N1131.45 (11)C16—C11—C5120.04 (12)
C2—C1—C1i121.63 (7)C11—C12—C13120.56 (12)
N1—C1—C1i106.92 (6)C11—C12—H12119.7
C1—C2—C3116.92 (12)C13—C12—H12119.7
C1—C2—H2121.4C14—C13—C12119.89 (14)
C3—C2—H2121.7C14—C13—H13120.1
C3i—C3—C2121.44 (8)C12—C13—H13120.1
C3i—C3—H3119.4C13—C14—C15120.15 (13)
C2—C3—H3119.1C13—C14—H14119.9
O1—C4—N1i126.94 (7)C15—C14—H14119.9
O1—C4—N1126.94 (7)C14—C15—C16119.88 (13)
N1i—C4—N1106.12 (14)C14—C15—H15120.1
N1—C5—C11113.16 (9)C16—C15—H15120.1
N1—C5—H5A108.9C15—C16—C11120.78 (13)
C11—C5—H5A108.9C15—C16—H16119.6
N1—C5—H5B108.9C11—C16—H16119.6
C11—C5—H5B108.9
Symmetry code: (i) x+1, y, z+1/2.

Experimental details

Crystal data
Chemical formulaC21H18N2O
Mr314.37
Crystal system, space groupMonoclinic, C2/c
Temperature (K)200
a, b, c (Å)19.5983 (7), 9.0882 (2), 10.0473 (3)
β (°) 115.593 (4)
V3)1613.98 (10)
Z4
Radiation typeCu Kα
µ (mm1)0.63
Crystal size (mm)0.37 × 0.21 × 0.15
Data collection
DiffractometerAgilent SuperNova Dual Cu at zero Atlas
Absorption correctionMulti-scan
[CrysAlis PRO (Agilent, 2011), using spherical harmonics, implemented in SCALE3 ABSPACK scaling algorithm (Clark & Reid (1995)]
Tmin, Tmax0.950, 1.000
No. of measured, independent and
observed [I > 2σ(I)] reflections
7837, 1611, 1397
Rint0.028
(sin θ/λ)max1)0.621
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.037, 0.106, 1.07
No. of reflections1611
No. of parameters111
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.15, 0.16

Computer programs: CrysAlis PRO (Agilent, 2011), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), XP (Sheldrick, 2008).

 

References

First citationAgilent (2011). CrysAlis PRO. Agilent Technologies, Yarnton, England.  Google Scholar
First citationClark, R. C. & Reid, J. S. (1995). Acta Cryst. A51, 887–897.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationGravatt, G. L., Baguley, B. C., Wilson, W. R. & Denny, W. A. (1994). J. Med. Chem. 37, 4338–4345.  CrossRef CAS PubMed Web of Science Google Scholar
First citationHorton, D. A., Bourne, G. T. & Smythe, M. L. (2003). Chem. Rev. 103, 893–930.  Web of Science CrossRef PubMed CAS Google Scholar
First citationKim, J. S., Gatto, B., Yu, C., Liu, A., Liu, L. F. & La Voie, E. J. (1996). J. Med. Chem. 39, 992–998.  CrossRef CAS PubMed Web of Science Google Scholar
First citationOuzidan, Y., Essassi, E. M., Luis, S. V., Bolte, M. & El Ammari, L. (2011c). Acta Cryst. E67, o1822.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationOuzidan, Y., Kandri Rodi, Y., Butcher, R. J., Essassi, E. M. & El Ammari, L. (2011a). Acta Cryst. E67, o283.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationOuzidan, Y., Kandri Rodi, Y., Fronczek, F. R., Venkatraman, R., El Ammari, L. & Essassi, E. M. (2011b). Acta Cryst. E67, o362–o363.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationRoth, T., Morningstar, M. L., Boyer, P. L., Hughes, S. H., Buckheit, R. W. & Michejda, C. J. (1997). J. Med. Chem. 40, 4199–4207.  Web of Science CrossRef CAS PubMed Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds