organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

5-Chloro-1-nonyl-1H-benzimidazol-2(3H)-one

aLaboratoire de Chimie Organique Appliquée, Université Sidi Mohamed Ben Abdallah, Faculté des Sciences et Techniques, Route d'immouzzer, BP 2202, Fès, Morocco, bLaboratoire de Chimie Organique Hétérocyclique URAC21, Faculté des Sciences, Université Mohammed V-Agdal, Av. Ibn Battouta, BP 1014, Rabat, Morocco, cDepartamento de Quimica Inorganica & Organica, ESTCE, Universitat Jaume I, E-12080 Castellon, Spain, dInstitut für Anorganische Chemie, J.W. Goethe-Universität Frankfurt, Max-von-Laue-Strasse 7, 60438 Frankfurt/Main, Germany, and eLaboratoire de Chimie du Solide Appliquée, Faculté des Sciences, Université Mohammed V-Agdal, Avenue Ibn Battouta, BP 1014, Rabat, Morocco
*Correspondence e-mail: ouazzani_chahid@yahoo.fr

(Received 26 October 2011; accepted 10 November 2011; online 16 November 2011)

The asymmetric unit of the title compound, C16H23ClN2O, comtains two independent mol­ecules in which the fused-ring systems are essentially planar, the largest deviation from the mean plane of each mol­ecule being 0.011 (2) Å and 0.016 (2) Å. The benzimidazole rings of the two mol­ecules make a dihedral angle of 66.65 (7)°. The nonyl substituents are almost perpendicular to the benzimidazole planes [C—N—C—C tosrsion angles = 96.0 (3) and 81.0 (2)°]. In the crystal, each independent molecule forms an inversion dimer via a pair of N—H⋯O hydrogen bonds. In one of the independent molecules, the terminal –CH2–CH3 group of the alkyl chain is disordered over two sets of sites with a refined occupancy ratio of 0.746 (7):0.254 (7).

Related literature

For the pharmacological, biochemical and structural properties of benzimidazolo­nes, see: Al Muhaimeed (1997[Al Muhaimeed, H. (1997). J. Int. Med. Res. 25, 175-181.]); Nakano et al. (2000[Nakano, H., Inoue, T., Kawasaki, N., Miyataka, H., Matsumoto, H., Taguchi, T., Inagaki, N., Nagai, H. & Satoh, T. (2000). Bioorg. Med. Chem. 8, 373-380.]); Scott et al. (2002[Scott, L. J., Dunn, C. J., Mallarkey, G. & Sharpe, M. (2002). Drugs, 62, 1503-1538.]); Zarrinmayeh et al. (1998[Zarrinmayeh, H., Nunes, A. M., Ornstein, P. L., Zimmerman, D. M., Arnold, M. B., Schober, D. A., Gackenheimer, S. L., Bruns, R. F., Hipskind, P. A., Britton, T. C., Cantrell, B. E. & Gehlert, D. R. (1998). J. Med. Chem. 41, 2709-2719.]); Zhu et al. (2000[Zhu, Z., Lippa, B., Drach, J. C. & Townsend, L. B. (2000). J. Med. Chem. 43, 2430-2437.]); Ouzidan et al. (2011a[Ouzidan, Y., Kandri Rodi, Y., Butcher, R. J., Essassi, E. M. & El Ammari, L. (2011a). Acta Cryst. E67, o283.],b[Ouzidan, Y., Kandri Rodi, Y., Saffon, N., Essassi, E. M. & Ng, S. W. (2011b). Acta Cryst. E67, o520.]).

[Scheme 1]

Experimental

Crystal data
  • C16H23ClN2O

  • Mr = 294.81

  • Triclinic, [P \overline 1]

  • a = 5.51441 (17) Å

  • b = 15.6507 (4) Å

  • c = 20.0540 (6) Å

  • α = 71.807 (3)°

  • β = 86.612 (2)°

  • γ = 80.709 (2)°

  • V = 1622.59 (8) Å3

  • Z = 4

  • Cu Kα radiation

  • μ = 2.06 mm−1

  • T = 296 K

  • 0.43 × 0.20 × 0.16 mm

Data collection
  • Agilent SuperNova Dual (Cu at zero) Atlas diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996[Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.]) Tmin = 0.640, Tmax = 0.720

  • 31859 measured reflections

  • 6416 independent reflections

  • 5705 reflections with I > 2σ(I)

  • Rint = 0.031

Refinement
  • R[F2 > 2σ(F2)] = 0.044

  • wR(F2) = 0.124

  • S = 1.03

  • 6416 reflections

  • 379 parameters

  • 9 restraints

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.46 e Å−3

  • Δρmin = −0.32 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N2—H2⋯O1i 0.83 (2) 1.96 (2) 2.778 (2) 170 (2)
N2A—H2A⋯O1Aii 0.85 (2) 1.95 (2) 2.7937 (18) 171.1 (19)
Symmetry codes: (i) -x+2, -y+2, -z+1; (ii) -x+3, -y, -z.

Data collection: CrysAlis PRO (Agilent, 2011[Agilent (2011). CrysAlis PRO. Agilent Technologies, Yarnton, England.]); cell refinement: CrysAlis PRO; data reduction: CrysAlis PRO; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: XP (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

Benzimidazoles and their derivatives exhibit a number of important pharmacological properties, such as antihistaminic (Al Muhaimeed, 1997) anti-ulcerative (Scott et al., 2002) and antiallergic (Nakano et al., 2000). In addition, benzimidazole derivatives are effective against the human cytomegalovirus (HCMV) (Zhu et al., 2000) and are also efficient selective neuropeptide Y Y1 receptor antagonists (Zarrinmayeh et al., 1998).

As a continuation of our research work devoted to the development of substituted benzimidazol-2-one derivatives (Ouzidan et al., 2011a, 2011b), we report the synthesis of a new benzimidazol-2-one derivative by action of nonyl bromide with 5-chloro-1,3-dihydrobenzimidazol-2-one. The reaction provided the title compound (Scheme 1).

The asymmetric unit of the title compound, C16H23ClN2O is built up from two independent molecules with different orientations as shown in Fig.1. The two fused five and six-membered rings building each molecule are almost planar with the maximum deviation of 0.011 (2) Å and 0.016 (2) Å for N2 in the first molecule (C1 to C19) and for C1A in the second molecule (C1A to C19A), respectively. The dihedral angle between the two benzimidazole rings is 66.65 (7)°. The nonyl groups are almost perpendicular to the benzimidazole planes as indicated by the torsion angles of C1—N1—C11—C12 = 96.0 (3) ° and C1A—N1A—C11A—C12A = 81.0 (2) °.

In the crystal structure, each molecule forms a hydrogen bonded centrosymmetrical dimer as shown in Fig.2.

Related literature top

For the pharmacological, biochemical and structural properties of benzimidazolones, see: Al Muhaimeed (1997); Nakano et al. (2000); Scott et al. (2002); Zarrinmayeh et al. (1998); Zhu et al. (2000); Ouzidan et al. (2011a,b).

Experimental top

To 5-chloro-1,3-dihydrobenzimidazol-2-one (0.2 g, 1.18 mmol), potassium carbonate (0.33 g, 2.38 mmol), and tetra-n-butylammonium bromide (0.04 g, 0.11 mmol) in DMF (15 ml) was added nonyl bromide (0.34 ml, 1.78 mmol). Stirring was continued at room temperature for 6 h. The salts were removed by filtration and the filtrate concentrated under reduced pressure. The residue was separated by chromatography on a column of silica gel with ethyl acetate/hexane (1/2) as eluent (Yield: 34%). Single crystals were isolated when the solvent was allowed to evaporate at room temperature.

Refinement top

The nonyl group of the first molecule shows a disordered –CH2—CH3 terminus as shown in the high values of the atomic displacement parameters. This group is refined with C18–C19 distance restraints to 1.510 Å. H atoms were located in a difference map and treated as riding with N—H = 0.86 Å, C—H = 0.93 Å (aromatic), C—H = 0.97 Å (methylene) and C—H = 0.96 Å (methyl) with Uiso(H) = 1.2 Ueq(aromatic, methylene) and Uiso(H) = 1.5 Ueq(methyl). The nitrogen bonded H atom was refined without fixed thermal parameters.

Structure description top

Benzimidazoles and their derivatives exhibit a number of important pharmacological properties, such as antihistaminic (Al Muhaimeed, 1997) anti-ulcerative (Scott et al., 2002) and antiallergic (Nakano et al., 2000). In addition, benzimidazole derivatives are effective against the human cytomegalovirus (HCMV) (Zhu et al., 2000) and are also efficient selective neuropeptide Y Y1 receptor antagonists (Zarrinmayeh et al., 1998).

As a continuation of our research work devoted to the development of substituted benzimidazol-2-one derivatives (Ouzidan et al., 2011a, 2011b), we report the synthesis of a new benzimidazol-2-one derivative by action of nonyl bromide with 5-chloro-1,3-dihydrobenzimidazol-2-one. The reaction provided the title compound (Scheme 1).

The asymmetric unit of the title compound, C16H23ClN2O is built up from two independent molecules with different orientations as shown in Fig.1. The two fused five and six-membered rings building each molecule are almost planar with the maximum deviation of 0.011 (2) Å and 0.016 (2) Å for N2 in the first molecule (C1 to C19) and for C1A in the second molecule (C1A to C19A), respectively. The dihedral angle between the two benzimidazole rings is 66.65 (7)°. The nonyl groups are almost perpendicular to the benzimidazole planes as indicated by the torsion angles of C1—N1—C11—C12 = 96.0 (3) ° and C1A—N1A—C11A—C12A = 81.0 (2) °.

In the crystal structure, each molecule forms a hydrogen bonded centrosymmetrical dimer as shown in Fig.2.

For the pharmacological, biochemical and structural properties of benzimidazolones, see: Al Muhaimeed (1997); Nakano et al. (2000); Scott et al. (2002); Zarrinmayeh et al. (1998); Zhu et al. (2000); Ouzidan et al. (2011a,b).

Computing details top

Data collection: CrysAlis PRO (Agilent, 2011); cell refinement: CrysAlis PRO (Agilent, 2011); data reduction: CrysAlis PRO (Agilent, 2011); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: XP (Sheldrick, 2008); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. Molecular structure of the title compound. Displacement ellipsoids are drawn at the 50% probability level. H atoms are represented as small circles.
[Figure 2] Fig. 2. Centrosymmetric dimer of one of the independent molecules linked by hydrogen bonds.
5-Chloro-1-nonyl-1H-benzimidazol-2(3H)-one top
Crystal data top
C16H23ClN2OZ = 4
Mr = 294.81F(000) = 632
Triclinic, P1Dx = 1.207 Mg m3
Hall symbol: -P 1Cu Kα radiation, λ = 1.54184 Å
a = 5.51441 (17) ÅCell parameters from 5000 reflections
b = 15.6507 (4) Åθ = 5–50°
c = 20.0540 (6) ŵ = 2.06 mm1
α = 71.807 (3)°T = 296 K
β = 86.612 (2)°Block, yellow
γ = 80.709 (2)°0.43 × 0.20 × 0.16 mm
V = 1622.59 (8) Å3
Data collection top
Agilent SuperNova Dual (Cu at zero) Atlas
diffractometer
6416 independent reflections
Radiation source: SuperNova (Cu) X-ray Source5705 reflections with I > 2σ(I)
Mirror monochromatorRint = 0.031
Detector resolution: 10.4051 pixels mm-1θmax = 73.5°, θmin = 3.0°
ω scansh = 66
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
k = 1919
Tmin = 0.640, Tmax = 0.720l = 2424
31859 measured reflections
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.044H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.124 w = 1/[σ2(Fo2) + (0.0609P)2 + 0.658P]
where P = (Fo2 + 2Fc2)/3
S = 1.03(Δ/σ)max < 0.001
6416 reflectionsΔρmax = 0.46 e Å3
379 parametersΔρmin = 0.32 e Å3
9 restraintsExtinction correction: SHELXL, Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.0031 (3)
Crystal data top
C16H23ClN2Oγ = 80.709 (2)°
Mr = 294.81V = 1622.59 (8) Å3
Triclinic, P1Z = 4
a = 5.51441 (17) ÅCu Kα radiation
b = 15.6507 (4) ŵ = 2.06 mm1
c = 20.0540 (6) ÅT = 296 K
α = 71.807 (3)°0.43 × 0.20 × 0.16 mm
β = 86.612 (2)°
Data collection top
Agilent SuperNova Dual (Cu at zero) Atlas
diffractometer
6416 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
5705 reflections with I > 2σ(I)
Tmin = 0.640, Tmax = 0.720Rint = 0.031
31859 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0449 restraints
wR(F2) = 0.124H atoms treated by a mixture of independent and constrained refinement
S = 1.03Δρmax = 0.46 e Å3
6416 reflectionsΔρmin = 0.32 e Å3
379 parameters
Special details top

Geometry. All s.u.'s (except the s.u. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell s.u.'s are taken into account individually in the estimation of s.u.'s in distances, angles and torsion angles; correlations between s.u.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell s.u.'s is used for estimating s.u.'s involving l.s. planes.

Refinement. Refinement of F2 against all reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on all data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
Cl10.25688 (10)1.14681 (4)0.21378 (3)0.05904 (16)
O10.9124 (2)0.88615 (9)0.54464 (7)0.0510 (3)
N10.6002 (3)0.87446 (10)0.47672 (8)0.0432 (3)
N20.7802 (3)0.99710 (11)0.44015 (8)0.0434 (3)
H20.873 (4)1.0339 (15)0.4395 (11)0.049 (6)*
C10.4881 (3)0.92923 (12)0.41404 (9)0.0409 (4)
C20.6050 (3)1.00686 (12)0.39072 (9)0.0400 (4)
C30.5395 (3)1.07491 (12)0.32944 (9)0.0434 (4)
H30.61851.12590.31350.052*
C40.3486 (3)1.06323 (13)0.29259 (9)0.0441 (4)
C50.2297 (3)0.98786 (14)0.31460 (10)0.0469 (4)
H50.10260.98320.28810.056*
C60.2996 (3)0.91879 (13)0.37635 (10)0.0463 (4)
H60.22200.86740.39170.056*
C70.7793 (3)0.91679 (13)0.49246 (9)0.0430 (4)
C110.5279 (4)0.79200 (14)0.52610 (10)0.0521 (5)
H11A0.35290.79360.52180.063*
H11B0.55760.79140.57340.063*
C120.6626 (4)0.70491 (14)0.51532 (11)0.0555 (5)
H12A0.83690.70870.51100.067*
H12B0.63910.65480.55700.067*
C130.5848 (4)0.68309 (13)0.45206 (11)0.0526 (5)
H13A0.61220.73210.41000.063*
H13B0.41020.67970.45570.063*
C140.7238 (4)0.59384 (14)0.44517 (12)0.0573 (5)
H14A0.89750.59860.43950.069*
H14B0.70320.54570.48840.069*
C150.6427 (4)0.56742 (13)0.38457 (12)0.0578 (5)
H15A0.65460.61680.34150.069*
H15B0.47160.55890.39160.069*
C160.7941 (5)0.48115 (16)0.37656 (15)0.0746 (7)
H16A0.96400.49080.36800.090*
H16B0.78760.43260.42050.090*
C170.7129 (7)0.4510 (2)0.31899 (18)0.0965 (10)
H17A0.73960.49500.27390.116*0.746 (7)
H17B0.53880.44690.32410.116*0.746 (7)
H17C0.63670.50620.28470.116*0.254 (7)
H17D0.58090.41660.33920.116*0.254 (7)
C180.8622 (12)0.3558 (3)0.3220 (2)0.118 (2)0.746 (7)
H18A1.03520.36200.31700.141*0.746 (7)
H18B0.83920.31420.36840.141*0.746 (7)
C190.8116 (13)0.3189 (4)0.2768 (4)0.167 (3)0.746 (7)
H19A0.92650.26450.28100.250*0.746 (7)
H19B0.82220.36060.23040.250*0.746 (7)
H19C0.64810.30400.28530.250*0.746 (7)
C18'0.869 (2)0.3959 (10)0.2756 (8)0.095 (4)*0.254 (7)
H18C0.75800.36120.26320.115*0.254 (7)
H18D0.90860.44050.23210.115*0.254 (7)
C19'1.056 (2)0.3440 (8)0.2934 (7)0.084 (4)*0.254 (7)
H19D1.12240.32330.25480.126*0.254 (7)
H19E1.02240.29290.33210.126*0.254 (7)
H19F1.17270.37440.30730.126*0.254 (7)
Cl1A1.08169 (10)0.26825 (3)0.31097 (3)0.06033 (16)
O1A1.2494 (2)0.09656 (8)0.01986 (6)0.0430 (3)
N1A0.9635 (2)0.06117 (9)0.07076 (7)0.0368 (3)
N2A1.3088 (2)0.03410 (9)0.07700 (7)0.0367 (3)
H2A1.445 (4)0.0579 (13)0.0637 (10)0.042 (5)*
C1A0.9508 (3)0.01099 (11)0.13176 (9)0.0347 (3)
C2A1.1701 (3)0.07145 (11)0.13562 (9)0.0345 (3)
C3A1.2157 (3)0.15133 (11)0.18992 (9)0.0386 (4)
H3A1.36170.19140.19270.046*
C4A1.0307 (3)0.16868 (12)0.24037 (9)0.0414 (4)
C5A0.8119 (3)0.11037 (13)0.23750 (9)0.0425 (4)
H5A0.69340.12510.27240.051*
C6A0.7689 (3)0.02980 (12)0.18245 (9)0.0395 (4)
H6A0.62280.01020.17980.047*
C7A1.1823 (3)0.04634 (11)0.03651 (9)0.0358 (3)
C11A0.7749 (3)0.13966 (11)0.04375 (9)0.0394 (4)
H11C0.61530.11950.05050.047*
H11D0.80090.16570.00630.047*
C12A0.7736 (3)0.21293 (11)0.07887 (10)0.0403 (4)
H12C0.92380.23940.06670.048*
H12D0.76900.18570.12940.048*
C13A0.5537 (3)0.28753 (11)0.05638 (10)0.0416 (4)
H13C0.40420.26030.06610.050*
H13D0.56340.31660.00610.050*
C14A0.5394 (3)0.35946 (12)0.09357 (11)0.0477 (4)
H14C0.55320.32930.14370.057*
H14D0.67850.39200.07880.057*
C15A0.3046 (3)0.42779 (12)0.07968 (11)0.0486 (4)
H15C0.16540.39540.09500.058*
H15D0.28990.45770.02950.058*
C16A0.2936 (4)0.49973 (13)0.11649 (12)0.0521 (5)
H16C0.42530.53520.09840.062*
H16D0.32200.46960.16620.062*
C17A0.0511 (4)0.56397 (13)0.10765 (12)0.0513 (5)
H17E0.02530.59550.05810.062*
H17F0.08110.52830.12440.062*
C18A0.0374 (4)0.63392 (15)0.14628 (14)0.0618 (6)
H18E0.07510.60270.19530.074*
H18F0.16120.67280.12710.074*
C19A0.2113 (4)0.69262 (15)0.14139 (15)0.0666 (6)
H19G0.20890.73530.16680.100*
H19H0.33460.65480.16130.100*
H19I0.24830.72500.09300.100*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cl10.0582 (3)0.0627 (3)0.0485 (3)0.0098 (2)0.0121 (2)0.0134 (2)
O10.0467 (7)0.0585 (8)0.0468 (7)0.0017 (6)0.0114 (6)0.0160 (6)
N10.0388 (8)0.0488 (8)0.0421 (8)0.0026 (6)0.0022 (6)0.0155 (6)
N20.0385 (8)0.0489 (8)0.0446 (8)0.0044 (7)0.0046 (6)0.0173 (7)
C10.0345 (8)0.0476 (9)0.0414 (9)0.0018 (7)0.0004 (7)0.0191 (7)
C20.0326 (8)0.0486 (9)0.0417 (9)0.0009 (7)0.0006 (7)0.0216 (7)
C30.0403 (9)0.0458 (9)0.0444 (9)0.0003 (7)0.0009 (7)0.0180 (8)
C40.0389 (9)0.0520 (10)0.0409 (9)0.0072 (7)0.0030 (7)0.0199 (8)
C50.0350 (9)0.0607 (11)0.0495 (10)0.0022 (8)0.0059 (7)0.0269 (9)
C60.0378 (9)0.0531 (10)0.0513 (10)0.0031 (8)0.0009 (8)0.0225 (8)
C70.0361 (9)0.0513 (10)0.0429 (9)0.0024 (7)0.0026 (7)0.0202 (8)
C110.0491 (11)0.0587 (11)0.0450 (10)0.0084 (9)0.0010 (8)0.0111 (9)
C120.0517 (11)0.0519 (11)0.0547 (11)0.0041 (9)0.0080 (9)0.0050 (9)
C130.0498 (11)0.0475 (10)0.0527 (11)0.0016 (8)0.0024 (9)0.0068 (8)
C140.0552 (12)0.0441 (10)0.0616 (12)0.0007 (9)0.0009 (10)0.0037 (9)
C150.0588 (12)0.0414 (10)0.0664 (13)0.0022 (9)0.0010 (10)0.0098 (9)
C160.0811 (17)0.0474 (12)0.0872 (17)0.0025 (11)0.0077 (14)0.0166 (12)
C170.119 (3)0.0678 (17)0.111 (2)0.0117 (16)0.022 (2)0.0447 (17)
C180.199 (6)0.065 (2)0.074 (3)0.010 (3)0.041 (3)0.023 (2)
C190.153 (6)0.113 (5)0.272 (9)0.012 (4)0.016 (6)0.119 (6)
Cl1A0.0607 (3)0.0530 (3)0.0560 (3)0.0081 (2)0.0013 (2)0.0012 (2)
O1A0.0374 (6)0.0425 (6)0.0453 (7)0.0005 (5)0.0027 (5)0.0113 (5)
N1A0.0302 (7)0.0375 (7)0.0436 (7)0.0013 (5)0.0006 (6)0.0170 (6)
N2A0.0275 (7)0.0388 (7)0.0432 (8)0.0019 (5)0.0023 (6)0.0156 (6)
C1A0.0293 (8)0.0379 (8)0.0411 (8)0.0019 (6)0.0028 (6)0.0193 (7)
C2A0.0279 (7)0.0385 (8)0.0415 (8)0.0033 (6)0.0005 (6)0.0195 (7)
C3A0.0311 (8)0.0373 (8)0.0486 (9)0.0009 (6)0.0024 (7)0.0169 (7)
C4A0.0403 (9)0.0410 (9)0.0438 (9)0.0081 (7)0.0021 (7)0.0131 (7)
C5A0.0347 (9)0.0524 (10)0.0443 (9)0.0101 (7)0.0051 (7)0.0196 (8)
C6A0.0277 (8)0.0484 (9)0.0462 (9)0.0004 (7)0.0000 (7)0.0229 (8)
C7A0.0307 (8)0.0373 (8)0.0428 (9)0.0025 (6)0.0016 (7)0.0180 (7)
C11A0.0311 (8)0.0411 (9)0.0470 (9)0.0034 (6)0.0060 (7)0.0182 (7)
C12A0.0327 (8)0.0385 (8)0.0512 (10)0.0006 (6)0.0060 (7)0.0180 (7)
C13A0.0365 (9)0.0385 (9)0.0480 (10)0.0032 (7)0.0047 (7)0.0146 (7)
C14A0.0437 (10)0.0408 (9)0.0598 (11)0.0029 (7)0.0064 (8)0.0206 (8)
C15A0.0428 (10)0.0432 (9)0.0617 (12)0.0037 (8)0.0047 (8)0.0229 (9)
C16A0.0442 (10)0.0466 (10)0.0686 (13)0.0046 (8)0.0058 (9)0.0270 (9)
C17A0.0435 (10)0.0449 (10)0.0684 (13)0.0037 (8)0.0053 (9)0.0260 (9)
C18A0.0461 (11)0.0578 (12)0.0918 (16)0.0046 (9)0.0058 (10)0.0428 (12)
C19A0.0532 (12)0.0552 (12)0.1005 (18)0.0067 (9)0.0053 (12)0.0434 (13)
Geometric parameters (Å, º) top
Cl1—C41.7478 (19)C18'—H18D0.9700
O1—C71.236 (2)C19'—H19D0.9600
N1—C71.376 (2)C19'—H19E0.9600
N1—C11.395 (2)C19'—H19F0.9600
N1—C111.458 (2)Cl1A—C4A1.7435 (18)
N2—C71.363 (2)O1A—C7A1.234 (2)
N2—C21.382 (2)N1A—C7A1.376 (2)
N2—H20.83 (2)N1A—C1A1.389 (2)
C1—C61.379 (3)N1A—C11A1.457 (2)
C1—C21.405 (3)N2A—C7A1.370 (2)
C2—C31.373 (3)N2A—C2A1.385 (2)
C3—C41.388 (3)N2A—H2A0.85 (2)
C3—H30.9300C1A—C6A1.383 (2)
C4—C51.381 (3)C1A—C2A1.400 (2)
C5—C61.392 (3)C2A—C3A1.376 (2)
C5—H50.9300C3A—C4A1.391 (2)
C6—H60.9300C3A—H3A0.9300
C11—C121.515 (3)C4A—C5A1.383 (2)
C11—H11A0.9700C5A—C6A1.389 (3)
C11—H11B0.9700C5A—H5A0.9300
C12—C131.514 (3)C6A—H6A0.9300
C12—H12A0.9700C11A—C12A1.521 (2)
C12—H12B0.9700C11A—H11C0.9700
C13—C141.523 (3)C11A—H11D0.9700
C13—H13A0.9700C12A—C13A1.522 (2)
C13—H13B0.9700C12A—H12C0.9700
C14—C151.512 (3)C12A—H12D0.9700
C14—H14A0.9700C13A—C14A1.523 (2)
C14—H14B0.9700C13A—H13C0.9700
C15—C161.517 (3)C13A—H13D0.9700
C15—H15A0.9700C14A—C15A1.519 (2)
C15—H15B0.9700C14A—H14C0.9700
C16—C171.492 (4)C14A—H14D0.9700
C16—H16A0.9700C15A—C16A1.519 (3)
C16—H16B0.9700C15A—H15C0.9700
C17—C18'1.543 (11)C15A—H15D0.9700
C17—C181.566 (5)C16A—C17A1.521 (2)
C17—H17A0.9700C16A—H16C0.9700
C17—H17B0.9700C16A—H16D0.9700
C17—H17C0.9700C17A—C18A1.517 (3)
C17—H17D0.9700C17A—H17E0.9700
C18—C191.282 (7)C17A—H17F0.9700
C18—H18A0.9700C18A—C19A1.512 (3)
C18—H18B0.9700C18A—H18E0.9700
C19—H19A0.9600C18A—H18F0.9700
C19—H19B0.9600C19A—H19G0.9600
C19—H19C0.9600C19A—H19H0.9600
C18'—C19'1.202 (12)C19A—H19I0.9600
C18'—H18C0.9700
C7—N1—C1109.15 (15)H19B—C19—H19C109.5
C7—N1—C11121.78 (16)C19'—C18'—C17126.9 (12)
C1—N1—C11128.50 (16)C19'—C18'—H18C105.6
C7—N2—C2110.23 (16)C17—C18'—H18C105.6
C7—N2—H2123.3 (15)C19'—C18'—H18D105.6
C2—N2—H2126.5 (15)C17—C18'—H18D105.6
C6—C1—N1132.18 (18)H18C—C18'—H18D106.1
C6—C1—C2121.04 (17)C18'—C19'—H19D109.5
N1—C1—C2106.78 (15)C18'—C19'—H19E109.5
C3—C2—N2131.50 (17)H19D—C19'—H19E109.5
C3—C2—C1121.83 (16)C18'—C19'—H19F109.5
N2—C2—C1106.67 (16)H19D—C19'—H19F109.5
C2—C3—C4116.14 (17)H19E—C19'—H19F109.5
C2—C3—H3121.9C7A—N1A—C1A109.46 (13)
C4—C3—H3121.9C7A—N1A—C11A123.64 (14)
C5—C4—C3123.14 (17)C1A—N1A—C11A126.86 (13)
C5—C4—Cl1118.22 (14)C7A—N2A—C2A109.97 (13)
C3—C4—Cl1118.63 (15)C7A—N2A—H2A122.0 (13)
C4—C5—C6120.23 (17)C2A—N2A—H2A127.7 (13)
C4—C5—H5119.9C6A—C1A—N1A131.97 (15)
C6—C5—H5119.9C6A—C1A—C2A121.06 (15)
C1—C6—C5117.62 (18)N1A—C1A—C2A106.96 (13)
C1—C6—H6121.2C3A—C2A—N2A131.38 (14)
C5—C6—H6121.2C3A—C2A—C1A121.85 (15)
O1—C7—N2127.51 (18)N2A—C2A—C1A106.77 (14)
O1—C7—N1125.34 (18)C2A—C3A—C4A116.09 (15)
N2—C7—N1107.16 (15)C2A—C3A—H3A122.0
N1—C11—C12113.94 (16)C4A—C3A—H3A122.0
N1—C11—H11A108.8C5A—C4A—C3A123.16 (16)
C12—C11—H11A108.8C5A—C4A—Cl1A118.98 (14)
N1—C11—H11B108.8C3A—C4A—Cl1A117.85 (13)
C12—C11—H11B108.8C4A—C5A—C6A120.05 (16)
H11A—C11—H11B107.7C4A—C5A—H5A120.0
C13—C12—C11115.51 (17)C6A—C5A—H5A120.0
C13—C12—H12A108.4C1A—C6A—C5A117.78 (15)
C11—C12—H12A108.4C1A—C6A—H6A121.1
C13—C12—H12B108.4C5A—C6A—H6A121.1
C11—C12—H12B108.4O1A—C7A—N2A127.19 (15)
H12A—C12—H12B107.5O1A—C7A—N1A125.98 (15)
C12—C13—C14112.76 (17)N2A—C7A—N1A106.83 (14)
C12—C13—H13A109.0N1A—C11A—C12A113.23 (14)
C14—C13—H13A109.0N1A—C11A—H11C108.9
C12—C13—H13B109.0C12A—C11A—H11C108.9
C14—C13—H13B109.0N1A—C11A—H11D108.9
H13A—C13—H13B107.8C12A—C11A—H11D108.9
C15—C14—C13114.34 (17)H11C—C11A—H11D107.7
C15—C14—H14A108.7C11A—C12A—C13A111.52 (14)
C13—C14—H14A108.7C11A—C12A—H12C109.3
C15—C14—H14B108.7C13A—C12A—H12C109.3
C13—C14—H14B108.7C11A—C12A—H12D109.3
H14A—C14—H14B107.6C13A—C12A—H12D109.3
C14—C15—C16113.1 (2)H12C—C12A—H12D108.0
C14—C15—H15A109.0C12A—C13A—C14A112.85 (15)
C16—C15—H15A109.0C12A—C13A—H13C109.0
C14—C15—H15B109.0C14A—C13A—H13C109.0
C16—C15—H15B109.0C12A—C13A—H13D109.0
H15A—C15—H15B107.8C14A—C13A—H13D109.0
C17—C16—C15114.6 (2)H13C—C13A—H13D107.8
C17—C16—H16A108.6C15A—C14A—C13A114.10 (16)
C15—C16—H16A108.6C15A—C14A—H14C108.7
C17—C16—H16B108.6C13A—C14A—H14C108.7
C15—C16—H16B108.6C15A—C14A—H14D108.7
H16A—C16—H16B107.6C13A—C14A—H14D108.7
C16—C17—C18'128.3 (6)H14C—C14A—H14D107.6
C16—C17—C18109.5 (3)C14A—C15A—C16A113.61 (16)
C18'—C17—C1835.5 (5)C14A—C15A—H15C108.8
C16—C17—H17A109.8C16A—C15A—H15C108.8
C18'—C17—H17A74.6C14A—C15A—H15D108.8
C18—C17—H17A109.8C16A—C15A—H15D108.8
C16—C17—H17B109.8H15C—C15A—H15D107.7
C18'—C17—H17B117.5C15A—C16A—C17A114.03 (16)
C18—C17—H17B109.8C15A—C16A—H16C108.7
H17A—C17—H17B108.2C17A—C16A—H16C108.7
C16—C17—H17C105.2C15A—C16A—H16D108.7
C18'—C17—H17C105.2C17A—C16A—H16D108.7
C18—C17—H17C139.6H16C—C16A—H16D107.6
H17A—C17—H17C36.9C18A—C17A—C16A114.01 (17)
H17B—C17—H17C76.1C18A—C17A—H17E108.8
C16—C17—H17D105.2C16A—C17A—H17E108.8
C18'—C17—H17D105.2C18A—C17A—H17F108.8
C18—C17—H17D84.3C16A—C17A—H17F108.8
H17A—C17—H17D134.3H17E—C17A—H17F107.6
H17B—C17—H17D30.1C19A—C18A—C17A113.28 (18)
H17C—C17—H17D105.9C19A—C18A—H18E108.9
C19—C18—C17117.6 (5)C17A—C18A—H18E108.9
C19—C18—H18A107.9C19A—C18A—H18F108.9
C17—C18—H18A107.9C17A—C18A—H18F108.9
C19—C18—H18B107.9H18E—C18A—H18F107.7
C17—C18—H18B107.9C18A—C19A—H19G109.5
H18A—C18—H18B107.2C18A—C19A—H19H109.5
C18—C19—H19A109.5H19G—C19A—H19H109.5
C18—C19—H19B109.5C18A—C19A—H19I109.5
H19A—C19—H19B109.5H19G—C19A—H19I109.5
C18—C19—H19C109.5H19H—C19A—H19I109.5
H19A—C19—H19C109.5
C7—N1—C1—C6179.22 (18)C16—C17—C18'—C19'26 (2)
C11—N1—C1—C67.9 (3)C18—C17—C18'—C19'42.3 (13)
C7—N1—C1—C20.62 (18)C7A—N1A—C1A—C6A177.64 (17)
C11—N1—C1—C2171.91 (16)C11A—N1A—C1A—C6A0.1 (3)
C7—N2—C2—C3179.52 (17)C7A—N1A—C1A—C2A0.82 (18)
C7—N2—C2—C10.68 (18)C11A—N1A—C1A—C2A178.39 (14)
C6—C1—C2—C30.7 (3)C7A—N2A—C2A—C3A178.36 (17)
N1—C1—C2—C3179.40 (14)C7A—N2A—C2A—C1A0.95 (18)
C6—C1—C2—N2179.08 (15)C6A—C1A—C2A—C3A0.6 (2)
N1—C1—C2—N20.78 (18)N1A—C1A—C2A—C3A179.32 (14)
N2—C2—C3—C4178.71 (17)C6A—C1A—C2A—N2A178.74 (15)
C1—C2—C3—C41.1 (2)N1A—C1A—C2A—N2A0.07 (17)
C2—C3—C4—C50.7 (2)N2A—C2A—C3A—C4A178.81 (16)
C2—C3—C4—Cl1179.55 (12)C1A—C2A—C3A—C4A0.4 (2)
C3—C4—C5—C60.1 (3)C2A—C3A—C4A—C5A0.0 (3)
Cl1—C4—C5—C6178.81 (13)C2A—C3A—C4A—Cl1A179.05 (12)
N1—C1—C6—C5179.77 (17)C3A—C4A—C5A—C6A0.3 (3)
C2—C1—C6—C50.0 (2)Cl1A—C4A—C5A—C6A178.81 (13)
C4—C5—C6—C10.4 (3)N1A—C1A—C6A—C5A178.69 (16)
C2—N2—C7—O1179.57 (17)C2A—C1A—C6A—C5A0.4 (2)
C2—N2—C7—N10.30 (19)C4A—C5A—C6A—C1A0.0 (3)
C1—N1—C7—O1179.92 (16)C2A—N2A—C7A—O1A178.60 (16)
C11—N1—C7—O17.9 (3)C2A—N2A—C7A—N1A1.45 (18)
C1—N1—C7—N20.20 (18)C1A—N1A—C7A—O1A178.65 (15)
C11—N1—C7—N2172.19 (15)C11A—N1A—C7A—O1A1.0 (3)
C7—N1—C11—C1293.8 (2)C1A—N1A—C7A—N2A1.40 (18)
C1—N1—C11—C1295.8 (2)C11A—N1A—C7A—N2A179.06 (14)
N1—C11—C12—C1373.8 (2)C7A—N1A—C11A—C12A101.69 (18)
C11—C12—C13—C14178.88 (17)C1A—N1A—C11A—C12A81.1 (2)
C12—C13—C14—C15177.21 (18)N1A—C11A—C12A—C13A172.36 (14)
C13—C14—C15—C16176.70 (19)C11A—C12A—C13A—C14A176.96 (15)
C14—C15—C16—C17177.7 (2)C12A—C13A—C14A—C15A172.27 (16)
C15—C16—C17—C18'151.9 (8)C13A—C14A—C15A—C16A179.44 (17)
C15—C16—C17—C18173.2 (3)C14A—C15A—C16A—C17A175.42 (18)
C16—C17—C18—C19178.6 (6)C15A—C16A—C17A—C18A178.20 (19)
C18'—C17—C18—C1951.9 (10)C16A—C17A—C18A—C19A175.7 (2)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H2···O1i0.83 (2)1.96 (2)2.778 (2)170 (2)
N2A—H2A···O1Aii0.85 (2)1.95 (2)2.7937 (18)171.1 (19)
Symmetry codes: (i) x+2, y+2, z+1; (ii) x+3, y, z.

Experimental details

Crystal data
Chemical formulaC16H23ClN2O
Mr294.81
Crystal system, space groupTriclinic, P1
Temperature (K)296
a, b, c (Å)5.51441 (17), 15.6507 (4), 20.0540 (6)
α, β, γ (°)71.807 (3), 86.612 (2), 80.709 (2)
V3)1622.59 (8)
Z4
Radiation typeCu Kα
µ (mm1)2.06
Crystal size (mm)0.43 × 0.20 × 0.16
Data collection
DiffractometerAgilent SuperNova Dual (Cu at zero) Atlas
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.640, 0.720
No. of measured, independent and
observed [I > 2σ(I)] reflections
31859, 6416, 5705
Rint0.031
(sin θ/λ)max1)0.622
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.044, 0.124, 1.03
No. of reflections6416
No. of parameters379
No. of restraints9
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.46, 0.32

Computer programs: CrysAlis PRO (Agilent, 2011), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), XP (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H2···O1i0.83 (2)1.96 (2)2.778 (2)170 (2)
N2A—H2A···O1Aii0.85 (2)1.95 (2)2.7937 (18)171.1 (19)
Symmetry codes: (i) x+2, y+2, z+1; (ii) x+3, y, z.
 

References

First citationAgilent (2011). CrysAlis PRO. Agilent Technologies, Yarnton, England.  Google Scholar
First citationAl Muhaimeed, H. (1997). J. Int. Med. Res. 25, 175–181.  CAS PubMed Web of Science Google Scholar
First citationNakano, H., Inoue, T., Kawasaki, N., Miyataka, H., Matsumoto, H., Taguchi, T., Inagaki, N., Nagai, H. & Satoh, T. (2000). Bioorg. Med. Chem. 8, 373–380.  Web of Science CrossRef PubMed CAS Google Scholar
First citationOuzidan, Y., Kandri Rodi, Y., Butcher, R. J., Essassi, E. M. & El Ammari, L. (2011a). Acta Cryst. E67, o283.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationOuzidan, Y., Kandri Rodi, Y., Saffon, N., Essassi, E. M. & Ng, S. W. (2011b). Acta Cryst. E67, o520.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationScott, L. J., Dunn, C. J., Mallarkey, G. & Sharpe, M. (2002). Drugs, 62, 1503–1538.  Web of Science CrossRef PubMed CAS Google Scholar
First citationSheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationZarrinmayeh, H., Nunes, A. M., Ornstein, P. L., Zimmerman, D. M., Arnold, M. B., Schober, D. A., Gackenheimer, S. L., Bruns, R. F., Hipskind, P. A., Britton, T. C., Cantrell, B. E. & Gehlert, D. R. (1998). J. Med. Chem. 41, 2709–2719.  Web of Science CSD CrossRef CAS PubMed Google Scholar
First citationZhu, Z., Lippa, B., Drach, J. C. & Townsend, L. B. (2000). J. Med. Chem. 43, 2430–2437.  Web of Science CrossRef PubMed CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds